ijms-logo

Journal Browser

Journal Browser

In-Silico Prediction and Characterization of Intrinsic Disorder in Proteins

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Physical Chemistry, Theoretical and Computational Chemistry".

Deadline for manuscript submissions: closed (31 May 2015) | Viewed by 97483

Special Issue Editors


E-Mail Website
Guest Editor
Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
Interests: bioinformatics of proteins and short RNAs; intrinsically disordered proteins; protein structure; protein-ligand interactions; protein-nucleic acids interactions; structural genomics; microRNAs; microRNA targets
Special Issues, Collections and Topics in MDPI journals

grade E-Mail Website
Guest Editor
Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612, USA
Interests: intrinsically disordered proteins; protein folding; protein misfolding; partially folded proteins; protein aggregation; protein structure; protein function; protein stability; protein biophysics; protein bioinformatics; conformational diseases; protein–ligand interactions; protein–protein interactions; liquid-liquid phase transitions
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The dominant dogma that proteins must fold into precise, rigid molecules to function correctly is changing. Intrinsically disordered proteins (IDPs) have at least some disordered (also called unfolded/highly flexible) regions that exist as heterogeneous ensembles of conformers. Many IDPs carry out their function without ever fully folding into a rigid molecule. They are abundant in nature, enriched in eukaryotic genomes, and crucial for numerous cellular functions, including signal transduction, regulation of cell division, transcription, translation, and many posttranslational modifications. The prevalence of disorders involving IDPs is reflected by human diseases such as cancers and cardiovascular, neurodegenerative, and genetic diseases.

Experimental annotations of IDPs are time- and resource-consuming and thus computational methods that predict and analyze disorders from protein sequences have emerged as a viable alternative to investigating IDPs. These methods find numerous important applications in functional and structural proteomics. We invite you to contribute articles that describe computational methods for predicting intrinsic disorders and their mechanisms, and the applications of computational methods to characterize the abundance, functional roles, and other characteristic features of intrinsic disorders. Articles that include an experimental component are also encouraged.

Dr. Lukasz Kurgan
Dr. Vladimir N. Uversky
Guest Editors

 

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


Keywords

  • intrinsic disorder
  • intrinsically disordered proteins
  • intrinsically disordered regions
  • natively unfolded proteins
  • natively denatured proteins
  • intrinsically unstructured proteins
  • intrinsically unfolded proteins
  • computational prediction
  • function of intrinsic disorder

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

3696 KiB  
Article
Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein Interactions in Intra-Nuclear Compartments
by Fanchi Meng, Insung Na, Lukasz Kurgan and Vladimir N. Uversky
Int. J. Mol. Sci. 2016, 17(1), 24; https://doi.org/10.3390/ijms17010024 - 25 Dec 2015
Cited by 92 | Viewed by 9673
Abstract
The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA [...] Read more.
The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA (or, in some cases, DNA) and proteins. We analyzed 3005 mouse proteins localized in specific intra-nuclear organelles, such as nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinuclear compartment and compared them with ~29,863 non-nuclear proteins from mouse proteome. Our analysis revealed that intrinsic disorder is enriched in the majority of intra-nuclear compartments, except for the nuclear pore and lamina. These compartments are depleted in proteins that lack disordered domains and enriched in proteins that have multiple disordered domains. Moonlighting proteins found in multiple intra-nuclear compartments are more likely to have multiple disordered domains. Protein-protein interaction networks in the intra-nuclear compartments are denser and include more hubs compared to the non-nuclear proteins. Hubs in the intra-nuclear compartments (except for the nuclear pore) are enriched in disorder compared with non-nuclear hubs and non-nuclear proteins. Therefore, our work provides support to the idea of the functional importance of intrinsic disorder in the cell nucleus and shows that many proteins associated with sub-nuclear organelles in nuclei of mouse cells are enriched in disorder. This high level of disorder in the mouse nuclear proteins defines their ability to serve as very promiscuous binders, possessing both large quantities of potential disorder-based interaction sites and the ability of a single such site to be involved in a large number of interactions. Full article
Show Figures

Graphical abstract

503 KiB  
Article
Accurate Ab Initio and Template-Based Prediction of Short Intrinsically-Disordered Regions by Bidirectional Recurrent Neural Networks Trained on Large-Scale Datasets
by Viola Volpato, Badr Alshomrani and Gianluca Pollastri
Int. J. Mol. Sci. 2015, 16(8), 19868-19885; https://doi.org/10.3390/ijms160819868 - 21 Aug 2015
Cited by 1 | Viewed by 5833
Abstract
Intrinsically-disordered regions lack a well-defined 3D structure, but play key roles in determining the function of many proteins. Although predictors of disorder have been shown to achieve relatively high rates of correct classification of these segments, improvements over the the years have been [...] Read more.
Intrinsically-disordered regions lack a well-defined 3D structure, but play key roles in determining the function of many proteins. Although predictors of disorder have been shown to achieve relatively high rates of correct classification of these segments, improvements over the the years have been slow, and accurate methods are needed that are capable of accommodating the ever-increasing amount of structurally-determined protein sequences to try to boost predictive performances. In this paper, we propose a predictor for short disordered regions based on bidirectional recurrent neural networks and tested by rigorous five-fold cross-validation on a large, non-redundant dataset collected from MobiDB, a new comprehensive source of protein disorder annotations. The system exploits sequence and structural information in the forms of frequency profiles, predicted secondary structure and solvent accessibility and direct disorder annotations from homologous protein structures (templates) deposited in the Protein Data Bank. The contributions of sequence, structure and homology information result in large improvements in predictive accuracy. Additionally, the large scale of the training set leads to low false positive rates, making our systems a robust and efficient way to address high-throughput disorder prediction. Full article
Show Figures

Figure 1

2835 KiB  
Article
In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae
by Atsushi Kurotani and Tetsuya Sakurai
Int. J. Mol. Sci. 2015, 16(8), 19812-19835; https://doi.org/10.3390/ijms160819812 - 20 Aug 2015
Cited by 21 | Viewed by 6397
Abstract
Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae [...] Read more.
Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups. Full article
Show Figures

Graphical abstract

1549 KiB  
Article
How Common Is Disorder? Occurrence of Disordered Residues in Four Domains of Life
by Mikhail Yu. Lobanov and Oxana V. Galzitskaya
Int. J. Mol. Sci. 2015, 16(8), 19490-19507; https://doi.org/10.3390/ijms160819490 - 18 Aug 2015
Cited by 22 | Viewed by 5211
Abstract
Disordered regions play important roles in protein adaptation to challenging environmental conditions. Flexible and disordered residues have the highest propensities to alter the protein packing. Therefore, identification of disordered/flexible regions is important for structural and functional analysis of proteins. We used the IsUnstruct [...] Read more.
Disordered regions play important roles in protein adaptation to challenging environmental conditions. Flexible and disordered residues have the highest propensities to alter the protein packing. Therefore, identification of disordered/flexible regions is important for structural and functional analysis of proteins. We used the IsUnstruct program to predict the ordered or disordered status of residues in 122 proteomes, including 97 eukaryotic and 25 large bacterial proteomes larger than 2,500,000 residues. We found that bacterial and eukaryotic proteomes contain comparable fraction of disordered residues, which was 0.31 in the bacterial and 0.38 in the eukaryotic proteomes. Additional analysis of the total of 1540 bacterial proteomes of various sizes yielded a smaller fraction of disordered residues, which was only 0.26. Together, the results showed that the larger is the size of the proteome, the larger is the fraction of the disordered residues. A continuous dependence of the fraction of disordered residues on the size of the proteome is observed for four domains of life: Eukaryota, Bacteria, Archaea, and Viruses. Furthermore, our analysis of 122 proteomes showed that the fraction of disordered residues increased with increasing the length of homo-repeats for polar, charged, and small residues, and decreased for hydrophobic residues. The maximal fraction of disordered residues was obtained for proteins containing lysine and arginine homo-repeats. The minimal fraction was found in valine and leucine homo-repeats. For 15-residue long homo-repeats these values were 0.2 (for Val and Leu) and 0.7 (for Lys and Arg). Full article
Show Figures

Graphical abstract

997 KiB  
Article
DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields
by Sheng Wang, Shunyan Weng, Jianzhu Ma and Qingming Tang
Int. J. Mol. Sci. 2015, 16(8), 17315-17330; https://doi.org/10.3390/ijms160817315 - 29 Jul 2015
Cited by 58 | Viewed by 8021
Abstract
Intrinsically disordered proteins or protein regions are involved in key biological processes including regulation of transcription, signal transduction, and alternative splicing. Accurately predicting order/disorder regions ab initio from the protein sequence is a prerequisite step for further analysis of functions and mechanisms for [...] Read more.
Intrinsically disordered proteins or protein regions are involved in key biological processes including regulation of transcription, signal transduction, and alternative splicing. Accurately predicting order/disorder regions ab initio from the protein sequence is a prerequisite step for further analysis of functions and mechanisms for these disordered regions. This work presents a learning method, weighted DeepCNF (Deep Convolutional Neural Fields), to improve the accuracy of order/disorder prediction by exploiting the long-range sequential information and the interdependency between adjacent order/disorder labels and by assigning different weights for each label during training and prediction to solve the label imbalance issue. Evaluated by the CASP9 and CASP10 targets, our method obtains 0.855 and 0.898 AUC values, which are higher than the state-of-the-art single ab initio predictors. Full article
Show Figures

Graphical abstract

1821 KiB  
Article
A Method for Systematic Assessment of Intrinsically Disordered Protein Regions by NMR
by Natsuko Goda, Kana Shimizu, Yohta Kuwahara, Takeshi Tenno, Tamotsu Noguchi, Takahisa Ikegami, Motonori Ota and Hidekazu Hiroaki
Int. J. Mol. Sci. 2015, 16(7), 15743-15760; https://doi.org/10.3390/ijms160715743 - 10 Jul 2015
Cited by 7 | Viewed by 8478
Abstract
Intrinsically disordered proteins (IDPs) that lack stable conformations and are highly flexible have attracted the attention of biologists. Therefore, the development of a systematic method to identify polypeptide regions that are unstructured in solution is important. We have designed an “indirect/reflected” detection system [...] Read more.
Intrinsically disordered proteins (IDPs) that lack stable conformations and are highly flexible have attracted the attention of biologists. Therefore, the development of a systematic method to identify polypeptide regions that are unstructured in solution is important. We have designed an “indirect/reflected” detection system for evaluating the physicochemical properties of IDPs using nuclear magnetic resonance (NMR). This approach employs a “chimeric membrane protein”-based method using the thermostable membrane protein PH0471. This protein contains two domains, a transmembrane helical region and a C-terminal OB (oligonucleotide/oligosaccharide binding)-fold domain (named NfeDC domain), connected by a flexible linker. NMR signals of the OB-fold domain of detergent-solubilized PH0471 are observed because of the flexibility of the linker region. In this study, the linker region was substituted with target IDPs. Fifty-three candidates were selected using the prediction tool POODLE and 35 expression vectors were constructed. Subsequently, we obtained 15N-labeled chimeric PH0471 proteins with 25 IDPs as linkers. The NMR spectra allowed us to classify IDPs into three categories: flexible, moderately flexible, and inflexible. The inflexible IDPs contain membrane-associating or aggregation-prone sequences. This is the first attempt to use an indirect/reflected NMR method to evaluate IDPs and can verify the predictions derived from our computational tools. Full article
Show Figures

Graphical abstract

6445 KiB  
Article
Structural Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins in Their Free and Bound Forms: From Predictions to Experimental Assessment
by Johnny Habchi and Sonia Longhi
Int. J. Mol. Sci. 2015, 16(7), 15688-15726; https://doi.org/10.3390/ijms160715688 - 10 Jul 2015
Cited by 17 | Viewed by 6877
Abstract
We herein review available computational and experimental data pointing to the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed molecular description of the [...] Read more.
We herein review available computational and experimental data pointing to the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed molecular description of the mechanisms governing the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (PXD) of the homologous P proteins. We also show that NTAIL–PXD complexes are “fuzzy”, i.e., they possess a significant residual disorder, and discuss the possible functional significance of this fuzziness. Finally, we emphasize the relevance of N–P interactions involving intrinsically disordered proteins as promising targets for new antiviral approaches, and end up summarizing the general functional advantages of disorder for viruses. Full article
Show Figures

Graphical abstract

1708 KiB  
Article
An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions
by Xin Deng, Jordan Gumm, Suman Karki, Jesse Eickholt and Jianlin Cheng
Int. J. Mol. Sci. 2015, 16(7), 15384-15404; https://doi.org/10.3390/ijms160715384 - 7 Jul 2015
Cited by 18 | Viewed by 6449
Abstract
Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, [...] Read more.
Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale. Full article
Show Figures

Figure 1

4412 KiB  
Article
Effect of pH on the Aggregation of α-syn12 Dimer in Explicit Water by Replica-Exchange Molecular Dynamics Simulation
by Zanxia Cao, Xiumei Zhang, Lei Liu, Liling Zhao, Haiyan Li and Jihua Wang
Int. J. Mol. Sci. 2015, 16(7), 14291-14304; https://doi.org/10.3390/ijms160714291 - 24 Jun 2015
Cited by 2 | Viewed by 6326
Abstract
The dimeric structure of the N-terminal 12 residues drives the interaction of α-synuclein protein with membranes. Moreover, experimental studies indicated that the aggregation of α-synuclein is faster at low pH than neutral pH. Nevertheless, the effects of different pH on the structural characteristics [...] Read more.
The dimeric structure of the N-terminal 12 residues drives the interaction of α-synuclein protein with membranes. Moreover, experimental studies indicated that the aggregation of α-synuclein is faster at low pH than neutral pH. Nevertheless, the effects of different pH on the structural characteristics of the α-syn12 dimer remain poorly understood. We performed 500 ns temperature replica exchange molecular dynamics (T-REMD) simulations of two α-syn12 peptides in explicit solvent. The free energy surfaces contain ten highly populated regions at physiological pH, while there are only three highly populated regions contained at acidic pH. The anti-parallel β-sheet conformations were found as the lowest free energy state. Additionally, these states are nearly flat with a very small barrier which indicates that these states can easily transit between themselves. The dimer undergoes a disorder to order transition from physiological pH to acidic pH and the α-syn12 dimer at acidic pH involves a faster dimerization process. Further, the Lys6–Asp2 contact may prevent the dimerization. Full article
Show Figures

Figure 1

3793 KiB  
Article
Identifying Similar Patterns of Structural Flexibility in Proteins by Disorder Prediction and Dynamic Programming
by Aidan Petrovich, Adam Borne, Vladimir N. Uversky and Bin Xue
Int. J. Mol. Sci. 2015, 16(6), 13829-13849; https://doi.org/10.3390/ijms160613829 - 16 Jun 2015
Cited by 7 | Viewed by 6335
Abstract
Computational methods are prevailing in identifying protein intrinsic disorder. The results from predictors are often given as per-residue disorder scores. The scores describe the disorder propensity of amino acids of a protein and can be further represented as a disorder curve. Many proteins [...] Read more.
Computational methods are prevailing in identifying protein intrinsic disorder. The results from predictors are often given as per-residue disorder scores. The scores describe the disorder propensity of amino acids of a protein and can be further represented as a disorder curve. Many proteins share similar patterns in their disorder curves. The similar patterns are often associated with similar functions and evolutionary origins. Therefore, finding and characterizing specific patterns of disorder curves provides a unique and attractive perspective of studying the function of intrinsically disordered proteins. In this study, we developed a new computational tool named IDalign using dynamic programming. This tool is able to identify similar patterns among disorder curves, as well as to present the distribution of intrinsic disorder in query proteins. The disorder-based information generated by IDalign is significantly different from the information retrieved from classical sequence alignments. This tool can also be used to infer functions of disordered regions and disordered proteins. The web server of IDalign is available at (http://labs.cas.usf.edu/bioinfo/service.html). Full article
Show Figures

Graphical abstract

444 KiB  
Article
Conformational Ensembles Explored Dynamically from Disordered Peptides Targeting Chemokine Receptor CXCR4
by Marian Vincenzi, Susan Costantini, Stefania Scala, Diego Tesauro, Antonella Accardo, Marilisa Leone, Giovanni Colonna, Jean Guillon, Luigi Portella, Anna Maria Trotta, Luisa Ronga and Filomena Rossi
Int. J. Mol. Sci. 2015, 16(6), 12159-12173; https://doi.org/10.3390/ijms160612159 - 28 May 2015
Cited by 6 | Viewed by 5827
Abstract
This work reports on the design and the synthesis of two short linear peptides both containing a few amino acids with disorder propensity and an allylic ester group at the C-terminal end. Their structural properties were firstly analyzed by means of experimental [...] Read more.
This work reports on the design and the synthesis of two short linear peptides both containing a few amino acids with disorder propensity and an allylic ester group at the C-terminal end. Their structural properties were firstly analyzed by means of experimental techniques in solution such as CD and NMR methods that highlighted peptide flexibility. These results were further confirmed by MD simulations that demonstrated the ability of the peptides to assume conformational ensembles. They revealed a network of transient and dynamic H-bonds and interactions with water molecules. Binding assays with a well-known drug-target, i.e., the CXCR4 receptor, were also carried out in an attempt to verify their biological function and the possibility to use the assays to develop new specific targets for CXCR4. Moreover, our data indicate that these peptides represent useful tools for molecular recognition processes in which a flexible conformation is required in order to obtain an interaction with a specific target. Full article
Show Figures

Figure 1

Review

Jump to: Research

3395 KiB  
Review
An Overview of Predictors for Intrinsically Disordered Proteins over 2010–2014
by Jianzong Li, Yu Feng, Xiaoyun Wang, Jing Li, Wen Liu, Li Rong and Jinku Bao
Int. J. Mol. Sci. 2015, 16(10), 23446-23462; https://doi.org/10.3390/ijms161023446 - 29 Sep 2015
Cited by 40 | Viewed by 6479
Abstract
The sequence-structure-function paradigm of proteins has been changed by the occurrence of intrinsically disordered proteins (IDPs). Benefiting from the structural disorder, IDPs are of particular importance in biological processes like regulation and signaling. IDPs are associated with human diseases, including cancer, cardiovascular disease, [...] Read more.
The sequence-structure-function paradigm of proteins has been changed by the occurrence of intrinsically disordered proteins (IDPs). Benefiting from the structural disorder, IDPs are of particular importance in biological processes like regulation and signaling. IDPs are associated with human diseases, including cancer, cardiovascular disease, neurodegenerative diseases, amyloidoses, and several other maladies. IDPs attract a high level of interest and a substantial effort has been made to develop experimental and computational methods. So far, more than 70 prediction tools have been developed since 1997, within which 17 predictors were created in the last five years. Here, we presented an overview of IDPs predictors developed during 2010–2014. We analyzed the algorithms used for IDPs prediction by these tools and we also discussed the basic concept of various prediction methods for IDPs. The comparison of prediction performance among these tools is discussed as well. Full article
Show Figures

Figure 1

760 KiB  
Review
Disorder Prediction Methods, Their Applicability to Different Protein Targets and Their Usefulness for Guiding Experimental Studies
by Jennifer D. Atkins, Samuel Y. Boateng, Thomas Sorensen and Liam J. McGuffin
Int. J. Mol. Sci. 2015, 16(8), 19040-19054; https://doi.org/10.3390/ijms160819040 - 13 Aug 2015
Cited by 55 | Viewed by 7125
Abstract
The role and function of a given protein is dependent on its structure. In recent years, however, numerous studies have highlighted the importance of unstructured, or disordered regions in governing a protein’s function. Disordered proteins have been found to play important roles in [...] Read more.
The role and function of a given protein is dependent on its structure. In recent years, however, numerous studies have highlighted the importance of unstructured, or disordered regions in governing a protein’s function. Disordered proteins have been found to play important roles in pivotal cellular functions, such as DNA binding and signalling cascades. Studying proteins with extended disordered regions is often problematic as they can be challenging to express, purify and crystallise. This means that interpretable experimental data on protein disorder is hard to generate. As a result, predictive computational tools have been developed with the aim of predicting the level and location of disorder within a protein. Currently, over 60 prediction servers exist, utilizing different methods for classifying disorder and different training sets. Here we review several good performing, publicly available prediction methods, comparing their application and discussing how disorder prediction servers can be used to aid the experimental solution of protein structure. The use of disorder prediction methods allows us to adopt a more targeted approach to experimental studies by accurately identifying the boundaries of ordered protein domains so that they may be investigated separately, thereby increasing the likelihood of their successful experimental solution. Full article
Show Figures

Graphical abstract

1256 KiB  
Review
Identification of Inhibitors of Biological Interactions Involving Intrinsically Disordered Proteins
by Daniela Marasco and Pasqualina Liana Scognamiglio
Int. J. Mol. Sci. 2015, 16(4), 7394-7412; https://doi.org/10.3390/ijms16047394 - 2 Apr 2015
Cited by 42 | Viewed by 6638
Abstract
Protein–protein interactions involving disordered partners have unique features and represent prominent targets in drug discovery processes. Intrinsically Disordered Proteins (IDPs) are involved in cellular regulation, signaling and control: they bind to multiple partners and these high-specificity/low-affinity interactions play crucial roles in many human [...] Read more.
Protein–protein interactions involving disordered partners have unique features and represent prominent targets in drug discovery processes. Intrinsically Disordered Proteins (IDPs) are involved in cellular regulation, signaling and control: they bind to multiple partners and these high-specificity/low-affinity interactions play crucial roles in many human diseases. Disordered regions, terminal tails and flexible linkers are particularly abundant in DNA-binding proteins and play crucial roles in the affinity and specificity of DNA recognizing processes. Protein complexes involving IDPs are short-lived and typically involve short amino acid stretches bearing few “hot spots”, thus the identification of molecules able to modulate them can produce important lead compounds: in this scenario peptides and/or peptidomimetics, deriving from structure-based, combinatorial or protein dissection approaches, can play a key role as hit compounds. Here, we propose a panoramic review of the structural features of IDPs and how they regulate molecular recognition mechanisms focusing attention on recently reported drug-design strategies in the field of IDPs. Full article
Show Figures

Figure 1

Back to TopTop