Micro/Nanoscale Electrokinetics

A topical collection in Micromachines (ISSN 2072-666X). This collection belongs to the section "C:Chemistry".

Viewed by 2620

Editors


E-Mail Website
Collection Editor
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
Interests: microfluidics; electrokinetics; magnetofluidics; viscoelasticity
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Collection Editor
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
Interests: micromanufacturing; biomanufacturing; carbonaceous materials; electrokinetics; microfluidics; bacteria; composites; healthcare diagnostics; multicultural collaboration
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

Micro/nanofluidic chips have found increasing applications in the analysis of chemical and biological samples over the past two decades. Electrokinetics has become the method of choice in these micro/nanochips for transporting, manipulating and sensing ions, (bio)molecules, fluids and (bio)particles, etc., due to the high maneuverability, scalability, sensitivity, and integrability. The involved phenomena, which cover electro-osmosis, electrophoresis, dielectrophoresis, electrohydrodynamics, electrothermal flow, diffusioosmosis, diffusiophoresis, streaming potential, current, etc., arise from either the inherent or the induced surface charge of the solid–liquid interface under DC and/or AC electric fields. To review the state-of-the-art of micro/nanochip electrokinetics, this Topical Collection of Micromachines welcomes all original research or review articles on the fundamentals and applications of any electrokinetic phenomena in both microfluidic and nanofluidic devices.

Prof. Dr. Xiangchun Xuan
Dr. Rodrigo Martinez-Duarte
Collection Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electrokinetics
  • micro/nanofluidics
  • electroosmosis
  • electrophoresis
  • diffusioosmosis
  • diffusiophoresis
  • streaming potential/current
  • dielectrophoresis
  • induced charge electrokinetics
  • electrical sensing

Published Papers (2 papers)

2024

34 pages, 15586 KiB  
Review
Constrained Volume Micro- and Nanoparticle Collection Methods in Microfluidic Systems
by Tanner N. Wells, Holger Schmidt and Aaron R. Hawkins
Micromachines 2024, 15(6), 699; https://doi.org/10.3390/mi15060699 - 25 May 2024
Viewed by 713
Abstract
Particle trapping and enrichment into confined volumes can be useful in particle processing and analysis. This review is an evaluation of the methods used to trap and enrich particles into constrained volumes in microfluidic and nanofluidic systems. These methods include physical, optical, electrical, [...] Read more.
Particle trapping and enrichment into confined volumes can be useful in particle processing and analysis. This review is an evaluation of the methods used to trap and enrich particles into constrained volumes in microfluidic and nanofluidic systems. These methods include physical, optical, electrical, magnetic, acoustic, and some hybrid techniques, all capable of locally enhancing nano- and microparticle concentrations on a microscale. Some key qualitative and quantitative comparison points are also explored, illustrating the specific applicability and challenges of each method. A few applications of these types of particle trapping are also discussed, including enhancing biological and chemical sensors, particle washing techniques, and fluid medium exchange systems. Full article
Show Figures

Figure 1

16 pages, 2767 KiB  
Article
Optimizing Optical Dielectrophoretic (ODEP) Performance: Position- and Size-Dependent Droplet Manipulation in an Open-Chamber Oil Medium
by Md Aminul Islam and Sung-Yong Park
Micromachines 2024, 15(1), 119; https://doi.org/10.3390/mi15010119 - 11 Jan 2024
Viewed by 1391
Abstract
An optimization study is presented to enhance optical dielectrophoretic (ODEP) performance for effective manipulation of an oil-immersed droplet in the floating electrode optoelectronic tweezers (FEOET) device. This study focuses on understanding how the droplet’s position and size, relative to light illumination, affect the [...] Read more.
An optimization study is presented to enhance optical dielectrophoretic (ODEP) performance for effective manipulation of an oil-immersed droplet in the floating electrode optoelectronic tweezers (FEOET) device. This study focuses on understanding how the droplet’s position and size, relative to light illumination, affect the maximum ODEP force. Numerical simulations identified the characteristic length (Lc) of the electric field as a pivotal factor, representing the location of peak field strength. Utilizing 3D finite element simulations, the ODEP force is calculated through the Maxwell stress tensor by integrating the electric field strength over the droplet’s surface and then analyzed as a function of the droplet’s position and size normalized to Lc. Our findings reveal that the optimal position is xopt= Lc+ r, (with r being the droplet radius), while the optimal droplet size is ropt = 5Lc, maximizing light-induced field perturbation around the droplet. Experimental validations involving the tracking of droplet dynamics corroborated these findings. Especially, a droplet sized at r = 5Lc demonstrated the greatest optical actuation by performing the longest travel distance of 13.5 mm with its highest moving speed of 6.15 mm/s, when it was initially positioned at x0= Lc+ r = 6Lc from the light’s center. These results align well with our simulations, confirming the criticality of both the position (xopt) and size (ropt) for maximizing ODEP force. This study not only provides a deeper understanding of the position- and size-dependent parameters for effective droplet manipulation in FEOET systems, but also advances the development of low-cost, disposable, lab-on-a-chip (LOC) devices for multiplexed biological and biochemical analyses. Full article
Show Figures

Figure 1

Back to TopTop