Nanostructured Composite and Hybrid Materials for Pollution Remediation and Bio-Waste Valorization

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Energy and Catalysis".

Deadline for manuscript submissions: closed (30 September 2021) | Viewed by 16297

Special Issue Editors


E-Mail Website
Guest Editor
School of Chemistry, Aristolte University of Thessanoliniki, 54124 Thessaloniki, Greece
Interests: physicochemical properties of nanostructured materials; photo-, sono-, thermo- and electromagnetic catalysis; mechanochemistry; sonophotochemistry; interfacial phenomena in catalysis; detoxification of toxic vapors; biomass valorization; selective oxidation processes; air and water remediation; materials chemistry; MOFs and metal-oxide nanocomposites; activated carbons; graphite/graphite oxide; graphitic carbon nitride polymers; semiconductor nanocatalysts; carbon quantum dots
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
Interests: green chemistry; heterogeneous catalysis; synthesis and characterization of nanostructured materials; thermochemical and catalytic processes for biomass valorisation; biobased polymers and nanocomposites
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The development of novel and innovative sorptive and catalytic materials for environmental pollution remediation and waste biomass valorization is crucial in working towards a sustainable future. Enhancing materials’ performance properties (e.g., functionality and selective reactivity, low-energy activation, easier and faster access to the active sites, large surface area to volume ratio, stability and reusability) is of paramount importance, and has been a field of intense research effort in the last several decades. Low-dimensional materials such as metal nanoparticles, nanostructures, and nanoclusters are well-known to possess unique electronic and chemical properties, thus providing highly efficient nano-catalysts and nano-adsorbents compared to their larger bulk metals or metal oxides.

The knowledge-based design and synthesis of the next generation of nanostructured composites or hybrid materials for real-life applications in air or water pollution remediation and conversion of biomass-derived molecules can be achieved by tailoring key properties such as the structural, morphological, textural, electronic, and surface characteristics. Additionally, new features can be derived due to synergies in hybrid materials, for example when highly active molecular catalytic species are grafted on high-surface-area micro/mesoporous carbon or silica-based materials. Metal organic frameworks (MOFs) and periodic mesoporous organosilicas (PMOs) may exhibit high affinity towards specific molecules to be adsorbed and/or react owing to their unique structural and textural characteristics. Graphene oxides, carbides, nitrides, and related 2D materials spiked with single metal atoms or clusters have also shown unprecedented photo- and chemo-catalytic reactivities in relevant oxidation or hydrogenation reactions.

This Special Issue aims to collect contributions on novel nanostructured composites and hybrid materials with high performance in the removal—adsorptive or catalytic—of hazardous compounds, as well as in the conversion of biomass towards high-added-value chemicals, such as in the selective oxidation of hydroxymethylfurfural (HMF) to furandicarboxylic acid (FDCA), the hydrogenation of furans (furfural, HMF) to the corresponding furanics (methylfuran (MF), dimethylfuran (DMF), methyltetrahydrofuran (MTHF)), the hydrodeoxygenation of oxygenated bio-oil compounds towards alkane and hydrocarbon fuels, etc. Special emphasis should be given on the comprehensive characterization of the composites/hybrids in order to elucidate the structure–reactivity relationships or to rationalize the adsorption/desorption mechanisms, with the aid of advanced theoretical and computational chemistry studies. Within this context, we invite the submission of original research papers, communications, and review articles presenting the very latest developments and trends in the synthesis, characterization, and applications of nanostructured composite and hybrid materials for environment-oriented and biomass valorization applications by all active research groups in the field.

Dr. Dimitrios A. Giannakoudakis
Prof. Konstantinos S. Triantafyllidis
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • multifunctional nanomaterials/nanoparticles
  • nanocomposites
  • nanostructured hybrids
  • molecular catalysts and adsorbents
  • air and water remediation
  • adsorption
  • catalysis
  • selective oxidation processes
  • removal of pollutants
  • decontamination of pharmaceuticals
  • removal of metals/metalloids
  • waste biomass valorization
  • bio-chemicals and bio-waste upgrade

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3635 KiB  
Article
Complete Degradation and Detoxification of Ciprofloxacin by a Micro-/Nanostructured Biogenic Mn Oxide Composite from a Highly Active Mn2+-Oxidizing Pseudomonas Strain
by Li Li, Jin Liu, Jie Zeng, Jiaoqing Li, Yongxuan Liu, Xiaowen Sun, Liangzheng Xu and Lin Li
Nanomaterials 2021, 11(7), 1660; https://doi.org/10.3390/nano11071660 - 24 Jun 2021
Cited by 21 | Viewed by 2642
Abstract
Ciprofloxacin (CIP), as a representative broad-spectrum antibiotic, poses a major threat to human health and the ecological environment as a result of its abuse and emissions. In this study, a highly active Mn2+-oxidizing bacterium, Pseudomonas sp. CCTCC M2014168, was induced to [...] Read more.
Ciprofloxacin (CIP), as a representative broad-spectrum antibiotic, poses a major threat to human health and the ecological environment as a result of its abuse and emissions. In this study, a highly active Mn2+-oxidizing bacterium, Pseudomonas sp. CCTCC M2014168, was induced to form micro-/nanostructured biogenic Mn oxide (BMO) aggregates through continuous culturing with 1 mmoL−1 Mn2+. Following the characterization of Mn4+ oxides and the micro-/nanostructures by scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction assays, the BMO composites were subjected to CIP degradation and detoxification in laboratory trials. High-performance liquid chromatograph (HPLC) analysis identified that the BMO composites were capable of completely degrading CIP, and HPLC with a mass spectrometer (LC/MS) assays identified three intermediates in the degradation pathway. The reaction temperature, pH and initial ciprofloxacin concentration substantially affected the degradation efficiency of CIP to a certain extent, and the metal ions Mg2+, Cu2+, Ni2+ and Co2+ exerted significant inhibitory effects on CIP degradation. A toxicity test of the degradation products showed that CIP was completely detoxified by degradation. Moreover, the prepared BMO composite exhibited a high capacity for repeated degradation and good performance in continuous degradation cycles, as well as a high capacity to degrade CIP in real natural water. Full article
Show Figures

Figure 1

21 pages, 3721 KiB  
Article
Removal of Emerging Pollutants from Water Using Environmentally Friendly Processes: Photocatalysts Preparation, Characterization, Intermediates Identification and Toxicity Assessment
by Nina Finčur, Paula Sfîrloagă, Predrag Putnik, Vesna Despotović, Marina Lazarević, Maria Uzelac, Biljana Abramović, Paulina Vlazan, Cătălin Ianăși, Tünde Alapi, Máté Náfrádi, Ivana Maksimović, Marina Putnik-Delić and Daniela Šojić Merkulov
Nanomaterials 2021, 11(1), 215; https://doi.org/10.3390/nano11010215 - 15 Jan 2021
Cited by 20 | Viewed by 2989
Abstract
Pharmaceuticals and pesticides are emerging contaminants problematic in the aquatic environment because of their adverse effects on aquatic life and humans. In order to remove them from water, photocatalysis is one of the most modern technologies to be used. First, newly synthesized photocatalysts [...] Read more.
Pharmaceuticals and pesticides are emerging contaminants problematic in the aquatic environment because of their adverse effects on aquatic life and humans. In order to remove them from water, photocatalysis is one of the most modern technologies to be used. First, newly synthesized photocatalysts were successfully prepared using a sol–gel method and characterized by different techniques (XRD, FTIR, UV/Vis, BET and SEM/EDX). The photocatalytic properties of TiO2, ZnO and MgO nanoparticles were examined according to their removal from water for two antibiotics (ciprofloxacin and ceftriaxone) and two herbicides (tembotrione and fluroxypyr) exposed to UV/simulated sunlight (SS). TiO2 proved to be the most efficient nanopowder under UV and SS. Addition of (NH4)2S2O8 led to the faster removal of both antibiotics and herbicide fluroxypyr. The main intermediates were separated and identified for the herbicides and antibiotic ciprofloxacin. Finally, the toxicity of each emerging pollutant mixture and formed intermediates was assessed on wheat germination and biomass production. Full article
Show Figures

Figure 1

19 pages, 4828 KiB  
Article
Evolution of Surface Catalytic Sites on Bimetal Silica-Based Fenton-Like Catalysts for Degradation of Dyes with Different Molecular Charges
by Ivalina Trendafilova, Andraž Šuligoj, Alenka Ristić, Nigel Van de Velde, Goran Dražić, Mojca Opresnik, Nataša Zabukovec Logar, Albin Pintar and Nataša Novak Tušar
Nanomaterials 2020, 10(12), 2419; https://doi.org/10.3390/nano10122419 - 3 Dec 2020
Cited by 6 | Viewed by 2461
Abstract
We present here important new findings on the direct synthesis of bimetal Cu-Mn containing porous silica catalyst and the effects of structure-directing agent removal from the prepared nanomaterial on the evolution of surface catalytic sites. The extraction-calcination procedure of the structure-directing agent removal [...] Read more.
We present here important new findings on the direct synthesis of bimetal Cu-Mn containing porous silica catalyst and the effects of structure-directing agent removal from the prepared nanomaterial on the evolution of surface catalytic sites. The extraction-calcination procedure of the structure-directing agent removal led to the formation of Cu and Mn oxo-clusters and Cu and Mn oxide nanoparticles smaller than 5 nm, while the solely calcination procedure led to the mentioned species and in addition to the appearance of CuO nanoparticles 20 nm in size. Catalysts were tested in the Fenton-like catalytic degradation of dyes with different molecular charge (cationic, anionic, and zwitterionic) as model organic pollutants in wastewater at neutral pH. Significantly faster degradation of cationic and anionic dyes in the first 60 min was observed with the catalyst containing larger CuO nanoparticles (>20 nm) due to the less hindered generation of OH radicals and slower obstructing of the active sites on the catalysts surface by intermediates. However, this was not found beneficial for zwitterionic dye with no adsorption on the catalysts surface, where the catalyst with smaller Cu species performed better. Full article
Show Figures

Graphical abstract

12 pages, 2516 KiB  
Article
A Novel Nanocomposite of Activated Serpentine Mineral Decorated with Magnetic Nanoparticles for Rapid and Effective Adsorption of Hazardous Cationic Dyes: Kinetics and Equilibrium Studies
by Moaaz K. Seliem, Mariusz Barczak, Ioannis Anastopoulos and Dimitrios A. Giannakoudakis
Nanomaterials 2020, 10(4), 684; https://doi.org/10.3390/nano10040684 - 5 Apr 2020
Cited by 34 | Viewed by 3349
Abstract
A widely distributed mineral, serpentine, obtained from Wadi Ghadir (Eastern Desert in Egypt) was studied as a potential naturally and abundantly available source for the synthesis of an efficient adsorbent for aquatic remediation applications. A novel nanocomposite was synthesized after the exfoliation of [...] Read more.
A widely distributed mineral, serpentine, obtained from Wadi Ghadir (Eastern Desert in Egypt) was studied as a potential naturally and abundantly available source for the synthesis of an efficient adsorbent for aquatic remediation applications. A novel nanocomposite was synthesized after the exfoliation of the layered structure of serpentine by hydrogen peroxide treatment (serpentine (SP)), followed by decoration with magnetic Fe3O4 nanoparticles (MNP). The goal behind the utilization of the latter phase was to increase the environmental remediation capability and to incorporate magnetic properties at the final adsorbent, toward a better separation after the use. The fabricated composite (MNP/SP) was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The composite’s potential adsorption application toward the removal of two cationic dyes, methylene blue (MB) and malachite green (MG), was investigated. The observed adsorption kinetics was fast, and the highest uptake was observed at pH = 8, with the capacities to reach 162 and 176 mg g−1 for MB and MG, respectively, values significantly higher than various other materials tested against these two cationic dyes. Compared to hydrogen peroxide-treated serpentine, the removal efficiency of the composite was higher by 157 and 127% for MB and MG, respectively. The MB and MG were adsorbed because of the favorable electrostatic interactions between MNP/SP active sites and the cationic dyes. The close value capacities suggest that the difference in chemistry of the two dyes does not affect the interactions, with the later occurring via the dyes’ amine functionalities. With increasing ionic strength, the adsorption of the studied basic dyes was slightly decreased, suggesting only partial antagonistic ion effect. The sorbent can be easily regenerated and reused without significant deterioration of its adsorption efficiency, which makes MNP/SP a promising adsorbent for the removal of hazardous pollutants from aquatic environments. Full article
Show Figures

Graphical abstract

21 pages, 5285 KiB  
Article
Photocatalytic and Oxidative Synthetic Pathways for Highly Efficient PANI-TiO2 Nanocomposites as Organic and Inorganic Pollutant Sorbents
by Carolina Cionti, Cristina Della Pina, Daniela Meroni, Ermelinda Falletta and Silvia Ardizzone
Nanomaterials 2020, 10(3), 441; https://doi.org/10.3390/nano10030441 - 29 Feb 2020
Cited by 27 | Viewed by 3241
Abstract
Polyaniline (PANI)-materials have recently been proposed for environmental remediation applications thanks to PANI stability and sorption properties. As an alternative to conventional PANI oxidative syntheses, which involve toxic carcinogenic compounds, an eco-friendly procedure was here adopted starting from benign reactants (aniline-dimer and H [...] Read more.
Polyaniline (PANI)-materials have recently been proposed for environmental remediation applications thanks to PANI stability and sorption properties. As an alternative to conventional PANI oxidative syntheses, which involve toxic carcinogenic compounds, an eco-friendly procedure was here adopted starting from benign reactants (aniline-dimer and H2O2) and initiated by ultraviolet (UV)-irradiated TiO2. To unlock the full potential of this procedure, we investigated the roles of TiO2 and H2O2 in the nanocomposites synthesis, with the aim of tailoring the properties of the final material to the desired application. The nanocomposites prepared by varying the TiO2:H2O2:aniline-dimer molar ratios were characterized for their thermal, optical, morphological, structural and surface properties. The reaction mechanism was investigated via mass analyses and X-ray photoelectron spectroscopy. The nanocomposites were tested on both methyl orange and hexavalent chromium removal. A fast dye-sorption was achieved also in the presence of interferents and the recovery of the dye was obtained upon eco-friendly conditions. An efficient Cr(VI) abatement was obtained also after consecutive tests and without any regeneration treatment. The fine understanding of the reaction mechanism allowed us to interpret the pollutant-removal performances of the different materials, leading to tailored nanocomposites in terms of maximum sorption and reduction capability upon consecutive tests even in simulated drinking water. Full article
Show Figures

Graphical abstract

Back to TopTop