Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 302 KiB  
Review
Breaking Seed Dormancy during Dry Storage: A Useful Tool or Major Problem for Successful Restoration via Direct Seeding?
by Carol C. Baskin and Jerry M. Baskin
Plants 2020, 9(5), 636; https://doi.org/10.3390/plants9050636 - 16 May 2020
Cited by 67 | Viewed by 7912
Abstract
To facilitate the restoration of disturbed vegetation, seeds of wild species are collected and held in dry storage, but often there is a shortage of seeds for this purpose. Thus, much research effort is expended to maximize the use of the available seeds [...] Read more.
To facilitate the restoration of disturbed vegetation, seeds of wild species are collected and held in dry storage, but often there is a shortage of seeds for this purpose. Thus, much research effort is expended to maximize the use of the available seeds and to ensure that they are nondormant when sown. Sowing nondormant (versus dormant) seeds in the field should increase the success of the restoration. Of the various treatments available to break seed dormancy, afterripening, that is, dormancy break during dry storage, is the most cost-effective. Seeds that can undergo afterripening have nondeep physiological dormancy, and this includes members of common families such as Asteraceae and Poaceae. In this review, we consider differences between species in terms of seed moisture content, temperature and time required for afterripening and discuss the conditions in which afterripening is rapid but could lead to seed aging and death if storage is too long. Attention is given to the induction of secondary dormancy in seeds that have become nondormant via afterripening and to the biochemical and molecular changes occurring in seeds during dry storage. Some recommendations are made for managing afterripening so that seeds are nondormant at the time for sowing. The most important recommendation probably is that germination responses of the seeds need to be monitored for germinability/viability during the storage period. Full article
15 pages, 5531 KiB  
Article
The Potential Risk of Plant-Virus Disease Initiation by Infected Tomatoes
by Chen Klap, Neta Luria, Elisheva Smith, Elena Bakelman, Eduard Belausov, Orly Laskar, Oded Lachman, Amit Gal-On and Aviv Dombrovsky
Plants 2020, 9(5), 623; https://doi.org/10.3390/plants9050623 - 14 May 2020
Cited by 36 | Viewed by 8404
Abstract
During 2019, tomato fruits showing viral-like symptoms of marbled yellow spots were abundant in Israel. The new symptoms were distinctive from those typical of tomato brown rugose fruit virus (ToBRFV) infection but resembled symptoms of pepino mosaic virus (PepMV) infection. RT-PCR analysis and [...] Read more.
During 2019, tomato fruits showing viral-like symptoms of marbled yellow spots were abundant in Israel. The new symptoms were distinctive from those typical of tomato brown rugose fruit virus (ToBRFV) infection but resembled symptoms of pepino mosaic virus (PepMV) infection. RT-PCR analysis and the serological tests (enzyme linked immunosorbent assay, western blot and in situ immunofluorescence) revealed and confirmed the presence of both the tobamovirus ToBRFV and the potexvirus PepMV in the symptomatic fruits. A mixture of rod-like and filamentous particles, characteristic of viruses belonging to tobamovirus and potexvirus genera, was visualized by transmission electron microscopy of the tomato fruit viral extract. Sanger sequencing of amplified PepMV-coat protein gene segments showed ~98% sequence identity to the Chilean (CH2)-strain. In a biological assay testing the contribution of traded infected tomatoes to the establishment of tomato plant disease, we applied direct and indirect inoculation modes using Tm-22-resistant tomato plants. The results, assessed by disease symptom development along with serological and molecular analyses, showed that the ToBRFV and PepMV co-infected fruits were an effective inoculum source for disease spread only when fruits were damaged. Importantly, intact fruits did not spread the viral disease. These results added a new factor to disease epidemiology of these viruses. Full article
(This article belongs to the Special Issue Plant Virus Epidemiology)
Show Figures

Graphical abstract

14 pages, 2481 KiB  
Article
Xyloglucan Is Not Essential for the Formation and Integrity of the Cellulose Network in the Primary Cell Wall Regenerated from Arabidopsis Protoplasts
by Hiroaki Kuki, Ryusuke Yokoyama, Takeshi Kuroha and Kazuhiko Nishitani
Plants 2020, 9(5), 629; https://doi.org/10.3390/plants9050629 - 14 May 2020
Cited by 19 | Viewed by 4704
Abstract
The notion that xyloglucans (XG) play a pivotal role in tethering cellulose microfibrils in the primary cell wall of plants can be traced back to the first molecular model of the cell wall proposed in 1973, which was reinforced in the 1990s by [...] Read more.
The notion that xyloglucans (XG) play a pivotal role in tethering cellulose microfibrils in the primary cell wall of plants can be traced back to the first molecular model of the cell wall proposed in 1973, which was reinforced in the 1990s by the identification of Xyloglucan Endotransglucosylase/Hydrolase (XTH) enzymes that cleave and reconnect xyloglucan crosslinks in the cell wall. However, this tethered network model has been seriously challenged since 2008 by the identification of the Arabidopsis thaliana xyloglucan-deficient mutant (xxt1 xxt2), which exhibits functional cell walls. Thus, the molecular mechanism underlying the physical integration of cellulose microfibrils into the cell wall remains controversial. To resolve this dilemma, we investigated the cell wall regeneration process using mesophyll protoplasts derived from xxt1 xxt2 mutant leaves. Imaging analysis revealed only a slight difference in the structure of cellulose microfibril network between xxt1 xxt2 and wild-type (WT) protoplasts. Additionally, exogenous xyloglucan application did not alter the cellulose deposition patterns or mechanical stability of xxt1 xxt2 mutant protoplasts. These results indicate that xyloglucan is not essential for the initial assembly of the cellulose network, and the cellulose network formed in the absence of xyloglucan provides sufficient tensile strength to the primary cell wall regenerated from protoplasts. Full article
(This article belongs to the Special Issue Mechanical Signaling in Plants)
Show Figures

Figure 1

22 pages, 391 KiB  
Review
Breeding Maize Maternal Haploid Inducers
by Henrique Uliana Trentin, Ursula K. Frei and Thomas Lübberstedt
Plants 2020, 9(5), 614; https://doi.org/10.3390/plants9050614 - 12 May 2020
Cited by 33 | Viewed by 6335
Abstract
Maize doubled haploid (DH) lines are usually created in vivo, through crosses with maternal haploid inducers. These inducers have the inherent ability of generating seeds with haploid embryos when used to pollinate other genotypes. The resulting haploid plants are treated with a doubling [...] Read more.
Maize doubled haploid (DH) lines are usually created in vivo, through crosses with maternal haploid inducers. These inducers have the inherent ability of generating seeds with haploid embryos when used to pollinate other genotypes. The resulting haploid plants are treated with a doubling agent and self-pollinated, producing completely homozygous seeds. This rapid method of inbred line production reduces the length of breeding cycles and, consequently, increases genetic gain. Such advantages explain the wide adoption of this technique by large, well-established maize breeding programs. However, a slower rate of adoption was observed in medium to small-scale breeding programs. The high price and/or lack of environmental adaptation of inducers available for licensing, or the poor performance of those free of cost, might explain why smaller operations did not take full advantage of this technique. The lack of adapted inducers is especially felt in tropical countries, where inducer breeding efforts are more recent. Therefore, defining optimal breeding approaches for inducer development could benefit many breeding programs which are in the process of adopting the DH technique. In this manuscript, we review traits important to maize maternal haploid inducers, explain their genetic basis, listing known genes and quantitative trait loci (QTL), and discuss different breeding approaches for inducer development. The performance of haploid inducers has an important impact on the cost of DH line production. Full article
(This article belongs to the Collection Doubled Haploid Technology in Plant Breeding)
11 pages, 3211 KiB  
Article
A Role for Auxin in Ethylene-Dependent Inducible Aerenchyma Formation in Rice Roots
by Takaki Yamauchi, Akihiro Tanaka, Nobuhiro Tsutsumi, Yoshiaki Inukai and Mikio Nakazono
Plants 2020, 9(5), 610; https://doi.org/10.3390/plants9050610 - 11 May 2020
Cited by 48 | Viewed by 5345
Abstract
Internal oxygen diffusion from shoot to root tips is enhanced by the formation of aerenchyma (gas space) in waterlogged soils. Lysigenous aerenchyma is created by programmed cell death and subsequent lysis of the root cortical cells. Rice (Oryza sativa) forms aerenchyma [...] Read more.
Internal oxygen diffusion from shoot to root tips is enhanced by the formation of aerenchyma (gas space) in waterlogged soils. Lysigenous aerenchyma is created by programmed cell death and subsequent lysis of the root cortical cells. Rice (Oryza sativa) forms aerenchyma constitutively under aerobic conditions and increases its formation under oxygen-deficient conditions. Recently, we have demonstrated that constitutive aerenchyma formation is regulated by auxin signaling mediated by Auxin/indole-3-acetic acid protein (AUX/IAA; IAA). While ethylene is involved in inducible aerenchyma formation, the relationship of auxin and ethylene during aerenchyma formation remains unclear. Here, we examined the effects of oxygen deficiency and ethylene on aerenchyma formation in the roots of a rice mutant (iaa13) in which auxin signaling is suppressed by a mutation in the degradation domain of IAA13 protein. The results showed that AUX/IAA-mediated auxin signaling contributes to ethylene-dependent inducible aerenchyma formation in rice roots. An auxin transport inhibitor abolished aerenchyma formation under oxygen-deficient conditions and reduced the expression of genes encoding ethylene biosynthesis enzymes, further supporting the idea that auxin is involved in ethylene-dependent inducible aerenchyma formation. Based on these studies, we propose a mechanism that underlies the relationship between auxin and ethylene during inducible aerenchyma formation in rice roots. Full article
(This article belongs to the Special Issue Plant Responses to Hypoxia)
Show Figures

Figure 1

8 pages, 1167 KiB  
Review
uORF Shuffling Fine-Tunes Gene Expression at a Deep Level of the Process
by Yukio Kurihara
Plants 2020, 9(5), 608; https://doi.org/10.3390/plants9050608 - 11 May 2020
Cited by 17 | Viewed by 5417
Abstract
Upstream open reading frames (uORFs) are present in the 5’ leader sequences (or 5’ untranslated regions) upstream of the protein-coding main ORFs (mORFs) in eukaryotic polycistronic mRNA. It is well known that a uORF negatively affects translation of the mORF. Emerging ribosome profiling [...] Read more.
Upstream open reading frames (uORFs) are present in the 5’ leader sequences (or 5’ untranslated regions) upstream of the protein-coding main ORFs (mORFs) in eukaryotic polycistronic mRNA. It is well known that a uORF negatively affects translation of the mORF. Emerging ribosome profiling approaches have revealed that uORFs themselves, as well as downstream mORFs, can be translated. However, it has also been revealed that plants can fine-tune gene expression by modulating uORF-mediated regulation in some situations. This article reviews several proposed mechanisms that enable genes to escape from uORF-mediated negative regulation and gives insight into the application of uORF-mediated regulation for precisely controlling gene expression. Full article
(This article belongs to the Special Issue Plant Systems and Application)
Show Figures

Figure 1

36 pages, 1538 KiB  
Review
Bioinformatics Resources for Plant Abiotic Stress Responses: State of the Art and Opportunities in the Fast Evolving -Omics Era
by Luca Ambrosino, Chiara Colantuono, Gianfranco Diretto, Alessia Fiore and Maria Luisa Chiusano
Plants 2020, 9(5), 591; https://doi.org/10.3390/plants9050591 - 6 May 2020
Cited by 29 | Viewed by 7391
Abstract
Abiotic stresses are among the principal limiting factors for productivity in agriculture. In the current era of continuous climate changes, the understanding of the molecular aspects involved in abiotic stress response in plants is a priority. The rise of -omics approaches provides key [...] Read more.
Abiotic stresses are among the principal limiting factors for productivity in agriculture. In the current era of continuous climate changes, the understanding of the molecular aspects involved in abiotic stress response in plants is a priority. The rise of -omics approaches provides key strategies to promote effective research in the field, facilitating the investigations from reference models to an increasing number of species, tolerant and sensitive genotypes. Integrated multilevel approaches, based on molecular investigations at genomics, transcriptomics, proteomics and metabolomics levels, are now feasible, expanding the opportunities to clarify key molecular aspects involved in responses to abiotic stresses. To this aim, bioinformatics has become fundamental for data production, mining and integration, and necessary for extracting valuable information and for comparative efforts, paving the way to the modeling of the involved processes. We provide here an overview of bioinformatics resources for research on plant abiotic stresses, describing collections from -omics efforts in the field, ranging from raw data to complete databases or platforms, highlighting opportunities and still open challenges in abiotic stress research based on -omics technologies. Full article
(This article belongs to the Special Issue Effects of Abiotic Stress on Plants 2020–2021)
Show Figures

Figure 1

10 pages, 2944 KiB  
Review
Mechanical Signaling in the Sensitive Plant Mimosa pudica L.
by Takuma Hagihara and Masatsugu Toyota
Plants 2020, 9(5), 587; https://doi.org/10.3390/plants9050587 - 4 May 2020
Cited by 51 | Viewed by 15743
Abstract
As sessile organisms, plants do not possess the nerves and muscles that facilitate movement in most animals. However, several plant species can move quickly in response to various stimuli (e.g., touch). One such plant species, Mimosa pudica L., possesses the motor organ pulvinus [...] Read more.
As sessile organisms, plants do not possess the nerves and muscles that facilitate movement in most animals. However, several plant species can move quickly in response to various stimuli (e.g., touch). One such plant species, Mimosa pudica L., possesses the motor organ pulvinus at the junction of the leaflet-rachilla, rachilla-petiole, and petiole-stem, and upon mechanical stimulation, this organ immediately closes the leaflets and moves the petiole. Previous electrophysiological studies have demonstrated that a long-distance and rapid electrical signal propagates through M. pudica in response to mechanical stimulation. Furthermore, the spatial and temporal patterns of the action potential in the pulvinar motor cells were found to be closely correlated with rapid movements. In this review, we summarize findings from past research and discuss the mechanisms underlying long-distance signal transduction in M. pudica. We also propose a model in which the action potential, followed by water flux (i.e., a loss of turgor pressure) in the pulvinar motor cells is a critical step to enable rapid movement. Full article
(This article belongs to the Special Issue Mechanical Signaling in Plants)
Show Figures

Figure 1

18 pages, 1857 KiB  
Review
The Role of Mechanoperception in Plant Cell Wall Integrity Maintenance
by Laura Bacete and Thorsten Hamann
Plants 2020, 9(5), 574; https://doi.org/10.3390/plants9050574 - 1 May 2020
Cited by 70 | Viewed by 8582
Abstract
The plant cell walls surrounding all plant cells are highly dynamic structures, which change their composition and organization in response to chemical and physical stimuli originating both in the environment and in plants themselves. They are intricately involved in all interactions between plants [...] Read more.
The plant cell walls surrounding all plant cells are highly dynamic structures, which change their composition and organization in response to chemical and physical stimuli originating both in the environment and in plants themselves. They are intricately involved in all interactions between plants and their environment while also providing adaptive structural support during plant growth and development. A key mechanism contributing to these adaptive changes is the cell wall integrity (CWI) maintenance mechanism. It monitors and maintains the functional integrity of cell walls by initiating adaptive changes in cellular and cell wall metabolism. Despite its importance, both our understanding of its mode of action and knowledge regarding the molecular components that form it are limited. Intriguingly, the available evidence implicates mechanosensing in the mechanism. Here, we provide an overview of the knowledge available regarding the molecular mechanisms involved in and discuss how mechanoperception and signal transduction may contribute to plant CWI maintenance. Full article
(This article belongs to the Special Issue Mechanical Signaling in Plants)
Show Figures

Figure 1

20 pages, 1788 KiB  
Article
Mosquito Larvicidal Activity, Antimicrobial Activity, and Chemical Compositions of Essential Oils from Four Species of Myrtaceae from Central Vietnam
by Nguyen Thi Giang An, Le Thi Huong, Prabodh Satyal, Thieu Anh Tai, Do Ngoc Dai, Nguyen Huy Hung, Nguyen Thi Bich Ngoc and William N. Setzer
Plants 2020, 9(4), 544; https://doi.org/10.3390/plants9040544 - 22 Apr 2020
Cited by 47 | Viewed by 7319
Abstract
Mosquitoes are important vectors of several diseases, and control of these insects is imperative for human health. Insecticides have proven useful in controlling mosquito populations, but insecticide resistance and environmental concerns are increasing. Additionally, emerging and re-emerging microbial infections are problematic. Essential oils [...] Read more.
Mosquitoes are important vectors of several diseases, and control of these insects is imperative for human health. Insecticides have proven useful in controlling mosquito populations, but insecticide resistance and environmental concerns are increasing. Additionally, emerging and re-emerging microbial infections are problematic. Essential oils have been shown to be promising mosquito larvicidal agents as well as antimicrobial agents. In this work, the essential oils from four species of Myrtaceae (Baeckea frutescens, Callistemon citrinus, Melaleuca leucadendra, and Syzygium nervosum) growing wild in central Vietnam have been obtained by hydrodistillation and analyzed by gas chromatographic techniques. The essential oils have been screened for mosquito larvicidal activity against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus, and for antimicrobial activity against Enterococcus faecalis, Staphylococcus aureus, and Candida albicans. Callistemon citrinus fruit essential oil, rich in α-pinene (35.1%), 1,8-cineole (32.4%), limonene (8.2%), and α-terpineol (5.8%) showed good larvicidal activity with 24-h LC50 = 17.3 μg/mL against both Ae. aegypti and Cx. quinquefasciatus, and good antibacterial activity against E. faecalis (minimum inhibitory concentration (MIC) = 16 μg/mL) The 48-h larvicidal activities of M. leucadendra leaf essential oil, rich in α-eudesmol (17.6%), guaiol (10.9%), linalool (5.1%), (E)-caryophyllene (7.0%), and bulnesol (3.6%) were particularly notable, with LC50 of 1.4 and 1.8 μg/mL on Ae. aegypti and Cx. quinquefasciatus. Similarly, M. leucadendra bark essential oil, with α-eudesmol (24.1%) and guaiol (11.3%), showed good antibacterial activity against. E. faecalis. Both B. frutescens and C. citrinus leaf essential oils demonstrated anti-Candida activities with MIC values of 16 μg/mL. The results of this investigation suggest that essential oils derived from the Myrtaceae may serve as “green” alternatives for the control of mosquitoes and/or complementary antimicrobial agents. Full article
(This article belongs to the Special Issue 2019 Feature Papers by Plants’ Editorial Board Members)
Show Figures

Graphical abstract

9 pages, 469 KiB  
Review
Insights into the Root Invasion by the Plant Pathogenic Bacterium Ralstonia solanacearum
by Hao Xue, Rosa Lozano-Durán and Alberto P. Macho
Plants 2020, 9(4), 516; https://doi.org/10.3390/plants9040516 - 16 Apr 2020
Cited by 58 | Viewed by 12096
Abstract
The plant pathogenic bacterium Ralstonia solanacearum, causal agent of the devastating bacterial wilt disease, is a soil-borne microbe that infects host plants through their roots. The initial mutual recognition between host plants and bacteria and the ensuing invasion of root tissues by [...] Read more.
The plant pathogenic bacterium Ralstonia solanacearum, causal agent of the devastating bacterial wilt disease, is a soil-borne microbe that infects host plants through their roots. The initial mutual recognition between host plants and bacteria and the ensuing invasion of root tissues by R. solanacearum are critical steps in the establishment of the infection, and can determine the outcome of the interaction between plant and pathogen. In this minireview, we will focus on the early stages of the bacterial invasion, offering an overview of the defence mechanisms deployed by the host plants, the manipulation exerted by the pathogen in order to promote virulence, and the alterations in root development concomitant to bacterial colonization. Full article
Show Figures

Figure 1

16 pages, 2707 KiB  
Review
The Plasma Membrane—An Integrating Compartment for Mechano-Signaling
by Frank Ackermann and Thomas Stanislas
Plants 2020, 9(4), 505; https://doi.org/10.3390/plants9040505 - 14 Apr 2020
Cited by 31 | Viewed by 11246
Abstract
Plants are able to sense their mechanical environment. This mechanical signal is used by the plant to determine its phenotypic features. This is true also at a smaller scale. Morphogenesis, both at the cell and tissue level, involves mechanical signals that influence specific [...] Read more.
Plants are able to sense their mechanical environment. This mechanical signal is used by the plant to determine its phenotypic features. This is true also at a smaller scale. Morphogenesis, both at the cell and tissue level, involves mechanical signals that influence specific patterns of gene expression and trigger signaling pathways. How a mechanical stress is perceived and how this signal is transduced into the cell remains a challenging question in the plant community. Among the structural components of plant cells, the plasma membrane has received very little attention. Yet, its position at the interface between the cell wall and the interior of the cell makes it a key factor at the nexus between biochemical and mechanical cues. So far, most of the key players that are described to perceive and maintain mechanical cell status and to respond to a mechanical stress are localized at or close to the plasma membrane. In this review, we will focus on the importance of the plasma membrane in mechano-sensing and try to illustrate how the composition of this dynamic compartment is involved in the regulatory processes of a cell to respond to mechanical stress. Full article
(This article belongs to the Special Issue Mechanical Signaling in Plants)
Show Figures

Graphical abstract

19 pages, 2169 KiB  
Article
Phenylalanine and Tyrosine as Exogenous Precursors of Wheat (Triticum aestivum L.) Secondary Metabolism through PAL-Associated Pathways
by Pavel Feduraev, Liubov Skrypnik, Anastasiia Riabova, Artem Pungin, Elina Tokupova, Pavel Maslennikov and Galina Chupakhina
Plants 2020, 9(4), 476; https://doi.org/10.3390/plants9040476 - 9 Apr 2020
Cited by 88 | Viewed by 9479
Abstract
Reacting to environmental exposure, most higher plants activate secondary metabolic pathways, such as the metabolism of phenylpropanoids. This pathway results in the formation of lignin, one of the most important polymers of the plant cell, as well as a wide range of phenolic [...] Read more.
Reacting to environmental exposure, most higher plants activate secondary metabolic pathways, such as the metabolism of phenylpropanoids. This pathway results in the formation of lignin, one of the most important polymers of the plant cell, as well as a wide range of phenolic secondary metabolites. Aromatic amino acids, such as phenylalanine and tyrosine, largely stimulate this process, determining two ways of lignification in plant tissues, varying in their efficiency. The current study analyzed the effect of phenylalanine and tyrosine, involved in plant metabolism through the phenylalanine ammonia-lyase (PAL) pathway, on the synthesis and accumulation of phenolic compounds, as well as lignin by means of the expression of a number of genes responsible for its biosynthesis, based on the example of common wheat (Triticum aestivum L.). Full article
(This article belongs to the Special Issue Biostimulants in Plants Science)
Show Figures

Graphical abstract

14 pages, 329 KiB  
Review
Endomembrane Reorganization Induced by Heavy Metals
by Monica De Caroli, Antonella Furini, Giovanni DalCorso, Makarena Rojas and Gian-Pietro Di Sansebastiano
Plants 2020, 9(4), 482; https://doi.org/10.3390/plants9040482 - 9 Apr 2020
Cited by 43 | Viewed by 4561
Abstract
Plant cells maintain plasmatic concentrations of essential heavy metal ions, such as iron, zinc, and copper, within the optimal functional range. To do so, several molecular mechanisms have to be committed to maintain concentrations of non-essential heavy metals and metalloids, such as cadmium, [...] Read more.
Plant cells maintain plasmatic concentrations of essential heavy metal ions, such as iron, zinc, and copper, within the optimal functional range. To do so, several molecular mechanisms have to be committed to maintain concentrations of non-essential heavy metals and metalloids, such as cadmium, mercury and arsenic below their toxicity threshold levels. Compartmentalization is central to heavy metals homeostasis and secretory compartments, finely interconnected by traffic mechanisms, are determinant. Endomembrane reorganization can have unexpected effects on heavy metals tolerance altering in a complex way membrane permeability, storage, and detoxification ability beyond gene’s expression regulation. The full understanding of endomembrane role is propaedeutic to the comprehension of translocation and hyper-accumulation mechanisms and their applicative employment. It is evident that further studies on dynamic localization of these and many more proteins may significantly contribute to the understanding of heavy metals tolerance mechanisms. The aim of this review is to provide an overview about the endomembrane alterations involved in heavy metals compartmentalization and tolerance in plants. Full article
(This article belongs to the Special Issue Plant Endomembranes Organization and Trafficking)
13 pages, 1467 KiB  
Review
The Role of Triacylglycerol in Plant Stress Response
by Junhao Lu, Yang Xu, Juli Wang, Stacy D. Singer and Guanqun Chen
Plants 2020, 9(4), 472; https://doi.org/10.3390/plants9040472 - 8 Apr 2020
Cited by 75 | Viewed by 10935
Abstract
Vegetable oil is mainly composed of triacylglycerol (TAG), a storage lipid that serves as a major commodity for food and industrial purposes, as well as an alternative biofuel source. While TAG is typically not produced at significant levels in vegetative tissues, emerging evidence [...] Read more.
Vegetable oil is mainly composed of triacylglycerol (TAG), a storage lipid that serves as a major commodity for food and industrial purposes, as well as an alternative biofuel source. While TAG is typically not produced at significant levels in vegetative tissues, emerging evidence suggests that its accumulation in such tissues may provide one mechanism by which plants cope with abiotic stress. Different types of abiotic stress induce lipid remodeling through the action of specific lipases, which results in various alterations in membrane lipid composition. This response induces the formation of toxic lipid intermediates that cause membrane damage or cell death. However, increased levels of TAG under stress conditions are believed to function, at least in part, as a means of sequestering these toxic lipid intermediates. Moreover, the lipid droplets (LDs) in which TAG is enclosed also function as a subcellular factory to provide binding sites and substrates for the biosynthesis of bioactive compounds that protect against insects and fungi. Though our knowledge concerning the role of TAG in stress tolerance is expanding, many gaps in our understanding of the mechanisms driving these processes are still evident. In this review, we highlight progress that has been made to decipher the role of TAG in plant stress response, and we discuss possible ways in which this information could be utilized to improve crops in the future. Full article
(This article belongs to the Special Issue Function of Lipids in Plant Stress)
Show Figures

Figure 1

16 pages, 2038 KiB  
Review
Plant Defenses Against Tetranychus urticae: Mind the Gaps
by M. Estrella Santamaria, Ana Arnaiz, Irene Rosa-Diaz, Pablo González-Melendi, Gara Romero-Hernandez, Dairon A. Ojeda-Martinez, Alejandro Garcia, Estefania Contreras, Manuel Martinez and Isabel Diaz
Plants 2020, 9(4), 464; https://doi.org/10.3390/plants9040464 - 7 Apr 2020
Cited by 60 | Viewed by 6948
Abstract
The molecular interactions between a pest and its host plant are the consequence of an evolutionary arms race based on the perception of the phytophagous arthropod by the plant and the different strategies adopted by the pest to overcome plant triggered defenses. The [...] Read more.
The molecular interactions between a pest and its host plant are the consequence of an evolutionary arms race based on the perception of the phytophagous arthropod by the plant and the different strategies adopted by the pest to overcome plant triggered defenses. The complexity and the different levels of these interactions make it difficult to get a wide knowledge of the whole process. Extensive research in model species is an accurate way to progressively move forward in this direction. The two-spotted spider mite, Tetranychus urticae Koch has become a model species for phytophagous mites due to the development of a great number of genetic tools and a high-quality genome sequence. This review is an update of the current state of the art in the molecular interactions between the generalist pest T. urticae and its host plants. The knowledge of the physical and chemical constitutive defenses of the plant and the mechanisms involved in the induction of plant defenses are summarized. The molecular events produced from plant perception to the synthesis of defense compounds are detailed, with a special focus on the key steps that are little or totally uncovered by previous research. Full article
Show Figures

Graphical abstract

28 pages, 2652 KiB  
Review
Loop Mediated Isothermal Amplification: Principles and Applications in Plant Virology
by Stefano Panno, Slavica Matić, Antonio Tiberini, Andrea Giovanni Caruso, Patrizia Bella, Livio Torta, Raffaele Stassi and Salvatore Davino
Plants 2020, 9(4), 461; https://doi.org/10.3390/plants9040461 - 6 Apr 2020
Cited by 130 | Viewed by 12791
Abstract
In the last decades, the evolution of molecular diagnosis methods has generated different advanced tools, like loop-mediated isothermal amplification (LAMP). Currently, it is a well-established technique, applied in different fields, such as the medicine, agriculture, and food industries, owing to its simplicity, specificity, [...] Read more.
In the last decades, the evolution of molecular diagnosis methods has generated different advanced tools, like loop-mediated isothermal amplification (LAMP). Currently, it is a well-established technique, applied in different fields, such as the medicine, agriculture, and food industries, owing to its simplicity, specificity, rapidity, and low-cost efforts. LAMP is a nucleic acid amplification under isothermal conditions, which is highly compatible with point-of-care (POC) analysis and has the potential to improve the diagnosis in plant protection. The great advantages of LAMP have led to several upgrades in order to implement the technique. In this review, the authors provide an overview reporting in detail the different LAMP steps, focusing on designing and main characteristics of the primer set, different methods of result visualization, evolution and different application fields, reporting in detail LAMP application in plant virology, and the main advantages of the use of this technique. Full article
(This article belongs to the Special Issue Diagnosis and Control of Plant Viral Diseases)
Show Figures

Figure 1

14 pages, 2259 KiB  
Article
Comparison of Read Mapping and Variant Calling Tools for the Analysis of Plant NGS Data
by Hanna Marie Schilbert, Andreas Rempel and Boas Pucker
Plants 2020, 9(4), 439; https://doi.org/10.3390/plants9040439 - 2 Apr 2020
Cited by 28 | Viewed by 29767
Abstract
High-throughput sequencing technologies have rapidly developed during the past years and have become an essential tool in plant sciences. However, the analysis of genomic data remains challenging and relies mostly on the performance of automatic pipelines. Frequently applied pipelines involve the alignment of [...] Read more.
High-throughput sequencing technologies have rapidly developed during the past years and have become an essential tool in plant sciences. However, the analysis of genomic data remains challenging and relies mostly on the performance of automatic pipelines. Frequently applied pipelines involve the alignment of sequence reads against a reference sequence and the identification of sequence variants. Since most benchmarking studies of bioinformatics tools for this purpose have been conducted on human datasets, there is a lack of benchmarking studies in plant sciences. In this study, we evaluated the performance of 50 different variant calling pipelines, including five read mappers and ten variant callers, on six real plant datasets of the model organism Arabidopsis thaliana. Sets of variants were evaluated based on various parameters including sensitivity and specificity. We found that all investigated tools are suitable for analysis of NGS data in plant research. When looking at different performance metrics, BWA-MEM and Novoalign were the best mappers and GATK returned the best results in the variant calling step. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

20 pages, 313 KiB  
Review
Nematicidal Amendments and Soil Remediation
by Nikoletta Ntalli, Zbigniew Adamski, Maria Doula and Nikolaos Monokrousos
Plants 2020, 9(4), 429; https://doi.org/10.3390/plants9040429 - 1 Apr 2020
Cited by 33 | Viewed by 5364
Abstract
The intensification of agriculture has created concerns about soil degradation and toxicity of agricultural chemicals to non-target organisms. As a result, there is great urgency for discovering new ecofriendly tools for pest management and plant nutrition. Botanical matrices and their extracts and purified [...] Read more.
The intensification of agriculture has created concerns about soil degradation and toxicity of agricultural chemicals to non-target organisms. As a result, there is great urgency for discovering new ecofriendly tools for pest management and plant nutrition. Botanical matrices and their extracts and purified secondary metabolites have received much research interest, but time-consuming registration issues have slowed their adoption. In contrast, cultural practices such as use of plant matrices as soil amendments could be immediately used as plant protectants or organic fertilizers. Herein, we focus on some types of soil amendments of botanical origin and their utilization for nematicidal activity and enhancement of plant nutrition. The mode of action is discussed in terms of parasite control as well as plant growth stimulation. Full article
(This article belongs to the Special Issue Plant-Parasitic Nematode Management)
18 pages, 3734 KiB  
Article
The Treasure Vault Can be Opened: Large-Scale Genome Skimming Works Well Using Herbarium and Silica Gel Dried Material
by Inger Greve Alsos, Sebastien Lavergne, Marie Kristine Føreid Merkel, Marti Boleda, Youri Lammers, Adriana Alberti, Charles Pouchon, France Denoeud, Iva Pitelkova, Mihai Pușcaș, Cristina Roquet, Bogdan-Iuliu Hurdu, Wilfried Thuiller, Niklaus E. Zimmermann, Peter M. Hollingsworth and Eric Coissac
Plants 2020, 9(4), 432; https://doi.org/10.3390/plants9040432 - 1 Apr 2020
Cited by 52 | Viewed by 8506
Abstract
Genome skimming has the potential for generating large data sets for DNA barcoding and wider biodiversity genomic studies, particularly via the assembly and annotation of full chloroplast (cpDNA) and nuclear ribosomal DNA (nrDNA) sequences. We compare the success of genome skims of 2051 [...] Read more.
Genome skimming has the potential for generating large data sets for DNA barcoding and wider biodiversity genomic studies, particularly via the assembly and annotation of full chloroplast (cpDNA) and nuclear ribosomal DNA (nrDNA) sequences. We compare the success of genome skims of 2051 herbarium specimens from Norway/Polar regions with 4604 freshly collected, silica gel dried specimens mainly from the European Alps and the Carpathians. Overall, we were able to assemble the full chloroplast genome for 67% of the samples and the full nrDNA cluster for 86%. Average insert length, cover and full cpDNA and rDNA assembly were considerably higher for silica gel dried than herbarium-preserved material. However, complete plastid genomes were still assembled for 54% of herbarium samples compared to 70% of silica dried samples. Moreover, there was comparable recovery of coding genes from both tissue sources (121 for silica gel dried and 118 for herbarium material) and only minor differences in assembly success of standard barcodes between silica dried (89% ITS2, 96% matK and rbcL) and herbarium material (87% ITS2, 98% matK and rbcL). The success rate was > 90% for all three markers in 1034 of 1036 genera in 160 families, and only Boraginaceae worked poorly, with 7 genera failing. Our study shows that large-scale genome skims are feasible and work well across most of the land plant families and genera we tested, independently of material type. It is therefore an efficient method for increasing the availability of plant biodiversity genomic data to support a multitude of downstream applications. Full article
(This article belongs to the Special Issue Plant DNA Barcode)
Show Figures

Figure 1

13 pages, 1560 KiB  
Article
Patterns of Genetic Diversity in Highly Invasive Species: Cogongrass (Imperata cylindrica) Expansion in the Invaded Range of the Southern United States (US)
by Rima D. Lucardi, Lisa E. Wallace and Gary N. Ervin
Plants 2020, 9(4), 423; https://doi.org/10.3390/plants9040423 - 31 Mar 2020
Cited by 17 | Viewed by 4210
Abstract
The spatial expansions of invasive organisms in the novel range are generally expected to follow an isolation-by-distance relationship (IBD) if the invasion is biologically driven; however, many invasions are facilitated anthropogenically. This research focused on the extant expansion patterns of cogongrass (Imperata [...] Read more.
The spatial expansions of invasive organisms in the novel range are generally expected to follow an isolation-by-distance relationship (IBD) if the invasion is biologically driven; however, many invasions are facilitated anthropogenically. This research focused on the extant expansion patterns of cogongrass (Imperata cylindrica). Cogongrass is a widespread invasive species throughout the southern United States (US). Patterns of infestation vary among US states. Cogongrass is pyrogenic, and its invasion threatens softwood (Pinus spp.) plantations, a substantial economic market for this US region. Over 600 individuals were sampled from seven invaded US states, using amplified fragment length polymorphisms (AFLPs) to assess genetic diversity and population structure. We suspected that differences in historical management efforts among US states influenced differences in genetic diversity and structure. We detected two genetic lineages at the highest level of analysis. One genetic lineage was locally restricted, whereas the other was found throughout the study region. Admixed individuals were found in all US states and consistently co-occurred with the dominant lineage, suggesting that secondary contact and hybridization may have facilitated expansion. The widespread prevalence of only one of the two detected genetic lineages suggests a primary genetic lineage responsible for on-going population expansion in the US. Full article
(This article belongs to the Special Issue Plant Biodiversity and Genetic Resources)
Show Figures

Figure 1

28 pages, 3669 KiB  
Review
Citrus Polyamines: Structure, Biosynthesis, and Physiological Functions
by Nabil Killiny and Yasser Nehela
Plants 2020, 9(4), 426; https://doi.org/10.3390/plants9040426 - 31 Mar 2020
Cited by 26 | Viewed by 5828
Abstract
Polyamines (PAs) are ubiquitous biogenic amines found in all living organisms from bacteria to Archaea, and Eukaryotes including plants and animals. Since the first description of putrescine conjugate, feruloyl-putrescine (originally called subaphylline), from grapefruit leaves and juice, many research studies have highlighted the [...] Read more.
Polyamines (PAs) are ubiquitous biogenic amines found in all living organisms from bacteria to Archaea, and Eukaryotes including plants and animals. Since the first description of putrescine conjugate, feruloyl-putrescine (originally called subaphylline), from grapefruit leaves and juice, many research studies have highlighted the importance of PAs in growth, development, and other physiological processes in citrus plants. PAs appear to be involved in a wide range of physiological processes in citrus plants; however, their exact roles are not fully understood. Accordingly, in the present review, we discuss the biosynthesis of PAs in citrus plants, with an emphasis on the recent advances in identifying and characterizing PAs-biosynthetic genes and other upstream regulatory genes involved in transcriptional regulation of PAs metabolism. In addition, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the roles of PAs metabolism in citrus physiology including somatic embryogenesis; root system formation, morphology, and architecture; plant growth and shoot system architecture; inflorescence, flowering, and flowering-associated events; fruit set, development, and quality; stomatal closure and gas-exchange; and chlorophyll fluorescence and photosynthesis. We believe that the molecular and biochemical understanding of PAs metabolism and their physiological roles in citrus plants will help citrus breeding programs to enhance tolerance to biotic and abiotic stresses and provide bases for further research into potential applications. Full article
Show Figures

Figure 1

18 pages, 1002 KiB  
Review
Plant Cells under Attack: Unconventional Endomembrane Trafficking during Plant Defense
by Guillermo Ruano and David Scheuring
Plants 2020, 9(3), 389; https://doi.org/10.3390/plants9030389 - 21 Mar 2020
Cited by 22 | Viewed by 7348
Abstract
Since plants lack specialized immune cells, each cell has to defend itself independently against a plethora of different pathogens. Therefore, successful plant defense strongly relies on precise and efficient regulation of intracellular processes in every single cell. Smooth trafficking within the plant endomembrane [...] Read more.
Since plants lack specialized immune cells, each cell has to defend itself independently against a plethora of different pathogens. Therefore, successful plant defense strongly relies on precise and efficient regulation of intracellular processes in every single cell. Smooth trafficking within the plant endomembrane is a prerequisite for a diverse set of immune responses. Pathogen recognition, signaling into the nucleus, cell wall enforcement, secretion of antimicrobial proteins and compounds, as well as generation of reactive oxygen species, all heavily depend on vesicle transport. In contrast, pathogens have developed a variety of different means to manipulate vesicle trafficking to prevent detection or to inhibit specific plant responses. Intriguingly, the plant endomembrane system exhibits remarkable plasticity upon pathogen attack. Unconventional trafficking pathways such as the formation of endoplasmic reticulum (ER) bodies or fusion of the vacuole with the plasma membrane are initiated and enforced as the counteraction. Here, we review the recent findings on unconventional and defense-induced trafficking pathways as the plant´s measures in response to pathogen attack. In addition, we describe the endomembrane system manipulations by different pathogens, with a focus on tethering and fusion events during vesicle trafficking. Full article
(This article belongs to the Special Issue Plant Endomembranes Organization and Trafficking)
Show Figures

Figure 1

23 pages, 14126 KiB  
Article
Phytochemical Profiles and Antioxidant Activity of Grasses Used in South African Traditional Medicine
by Fikisiwe Gebashe, Adeyemi O. Aremu, Jiri Gruz, Jeffrey F. Finnie and Johannes Van Staden
Plants 2020, 9(3), 371; https://doi.org/10.3390/plants9030371 - 17 Mar 2020
Cited by 23 | Viewed by 6557
Abstract
Grasses are a valuable group of monocotyledonous plants, used as nourishing foods and as remedies against diseases for both humans and livestock. Phytochemical profiles of 13 medicinal grasses were quantified, using spectrophotometric methods and ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS), while the antioxidant [...] Read more.
Grasses are a valuable group of monocotyledonous plants, used as nourishing foods and as remedies against diseases for both humans and livestock. Phytochemical profiles of 13 medicinal grasses were quantified, using spectrophotometric methods and ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS), while the antioxidant activity was done using DPPH and ferric-reducing-power assays. The phytochemical analysis included the total soluble phenolic content, flavonoids, proanthocyanidins, iridoids and phenolic acids. Among the 13 grasses, the root methanolic extracts of Cymbopogon spp., Cymbopogon nardus and Cenchrus ciliaris contained the highest concentrations of total soluble phenolics (27–31 mg GAE/g DW) and flavonoids (4–13 mg CE/g DW). Condensed tannins and total iridoid content were highest (2.3 mg CCE/g DW and 3.2 mg HE/g DW, respectively) in Cymbopogon nardus. The most common phenolic compounds in the grass species included ρ-coumaric, ferulic, salicylic and vanillic acids. In the DPPH radical scavenging assay, the EC50 values ranged from 0.02 to 0.11 mg/mL for the different grasses. The best EC50 activity (lowest) was exhibited by Cymbopogon nardus roots (0.02 mg/mL) and inflorescences (0.04 mg/mL), Cymbopogon spp. roots (0.04 mg/mL) and Vetiveria zizanioides leaves (0.06 mg/mL). The highest ferric-reducing power was detected in the whole plant extract of Cynodon dactylon (0.085 ± 0.45; r2 = 0.898). The observed antioxidant activity in the various parts of the grasses may be due to their rich pool of phytochemicals. Thus, some of these grasses provide a source of natural antioxidants and phytochemicals that can be explored for their therapeutic purposes. Full article
(This article belongs to the Special Issue Medicinal Plants)
Show Figures

Graphical abstract

12 pages, 267 KiB  
Review
What Does the Molecular Genetics of Different Types of Restorer-of-Fertility Genes Imply?
by Tomohiko Kubo, Takumi Arakawa, Yujiro Honma and Kazuyoshi Kitazaki
Plants 2020, 9(3), 361; https://doi.org/10.3390/plants9030361 - 13 Mar 2020
Cited by 12 | Viewed by 4286
Abstract
Cytoplasmic male sterility (CMS) is a widely used trait for hybrid seed production. Although male sterility is caused by S cytoplasm (male-sterility inducing mitochondria), the action of S cytoplasm is suppressed by restorer-of-fertility (Rf), a nuclear gene. Hence, the genetics of [...] Read more.
Cytoplasmic male sterility (CMS) is a widely used trait for hybrid seed production. Although male sterility is caused by S cytoplasm (male-sterility inducing mitochondria), the action of S cytoplasm is suppressed by restorer-of-fertility (Rf), a nuclear gene. Hence, the genetics of Rf has attained particular interest among plant breeders. The genetic model posits Rf diversity in which an Rf specifically suppresses the cognate S cytoplasm. Molecular analysis of Rf loci in plants has identified various genes; however, pentatricopeptide repeat (PPR) protein (a specific type of RNA-binding protein) is so prominent as the Rf-gene product that Rfs have been categorized into two classes, PPR and non-PPR. In contrast, several shared features between PPR- and some non-PPR Rfs are apparent, suggesting the possibility of another grouping. Our present focus is to group Rfs by molecular genetic classes other than the presence of PPRs. We propose three categories that define partially overlapping groups of Rfs: association with post-transcriptional regulation of mitochondrial gene expression, resistance gene-like copy number variation at the locus, and lack of a direct link to S-orf (a mitochondrial ORF associated with CMS). These groups appear to reflect their own evolutionary background and their mechanism of conferring S cytoplasm specificity. Full article
(This article belongs to the Special Issue Co-Adaptation between the Nuclear and Organelle Genomes in Plants)
14 pages, 736 KiB  
Review
Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination
by Naoto Sano, Loïc Rajjou and Helen M. North
Plants 2020, 9(3), 347; https://doi.org/10.3390/plants9030347 - 10 Mar 2020
Cited by 48 | Viewed by 8193
Abstract
Seeds characteristics such as germination ability, dormancy, and storability/longevity are important traits in agriculture, and various genes have been identified that are involved in its regulation at the transcriptional and post-transcriptional level. A particularity of mature dry seeds is a special mechanism that [...] Read more.
Seeds characteristics such as germination ability, dormancy, and storability/longevity are important traits in agriculture, and various genes have been identified that are involved in its regulation at the transcriptional and post-transcriptional level. A particularity of mature dry seeds is a special mechanism that allows them to accumulate more than 10,000 mRNAs during seed maturation and use them as templates to synthesize proteins during germination. Some of these stored mRNAs are also referred to as long-lived mRNAs because they remain translatable even after seeds have been exposed to long-term stressful conditions. Mature seeds can germinate even in the presence of transcriptional inhibitors, and this ability is acquired in mid-seed development. The type of mRNA that accumulates in seeds is affected by the plant hormone abscisic acid and environmental factors, and most of them accumulate in seeds in the form of monosomes. Release of seed dormancy during after-ripening involves the selective oxidation of stored mRNAs and this prevents translation of proteins that function in the suppression of germination after imbibition. Non-selective oxidation and degradation of stored mRNAs occurs during long-term storage of seeds so that the quality of stored RNAs is linked to the degree of seed deterioration. After seed imbibition, a population of stored mRNAs are selectively loaded into polysomes and the mRNAs, involved in processes such as redox, glycolysis, and protein synthesis, are actively translated for germination. Full article
(This article belongs to the Special Issue Genetics of Seed Germination and Growth)
Show Figures

Figure 1

16 pages, 2884 KiB  
Article
Transcriptome Analysis Reveals Candidate Genes Related to Anthocyanin Biosynthesis in Different Carrot Genotypes and Tissues
by Geng Meng, Sabine K. Clausen and Søren K. Rasmussen
Plants 2020, 9(3), 344; https://doi.org/10.3390/plants9030344 - 9 Mar 2020
Cited by 24 | Viewed by 4593
Abstract
Black carrots are characterized by a significant amount of anthocyanins, which are not only a good source of natural food colorant, but can also provide many health benefits to humans. In the present work, taproots of different carrot genotypes were used to identify [...] Read more.
Black carrots are characterized by a significant amount of anthocyanins, which are not only a good source of natural food colorant, but can also provide many health benefits to humans. In the present work, taproots of different carrot genotypes were used to identify the candidate genes related to anthocyanin synthesis, with particular a focus on R2R3MYB, bHLH transcription factors, and glutathione S-transferase gene (GST). The RNA-sequencing analysis (RNA-Seq) showed that DcMYB6 and DcMYB7 had a genotypic dependent expression and they are likely involved in the regulation of anthocyanin biosynthesis. They were specifically upregulated in solid black taproots, including both black phloem and xylem. DcbHLH3 (LOC108204485) was upregulated in all black samples compared with the orange ones. We also found that GST1 (LOC108205254) might be an important anthocyanin transporter, and its upregulated expression resulted in the increasing of vacuolar anthocyanin accumulation in black samples. Moreover, high performance liquid chromatographic (HPLC) analysis and liquid chromatography coupled to mass spectrometry (LC-MS) were used to identify the individual anthocyanin in the purple tissues of two carrot cultivars. The results showed that five main anthocyanin compounds and the most abundant anthocyanin were the same in different tissues, while the second-highest anthocyanin between three tissues was different, even in the same cultivar. In conclusion, this study combined anthocyanin profiles and comparative transcriptomic analysis to identify candidate genes involved in anthocyanin biosynthesis in carrots, thus providing a better foundation for improving anthocyanin accumulation in carrots as a source of colorants. Full article
Show Figures

Graphical abstract

22 pages, 639 KiB  
Review
Endemic Plant Species Conservation: Biotechnological Approaches
by Natacha Coelho, Sandra Gonçalves and Anabela Romano
Plants 2020, 9(3), 345; https://doi.org/10.3390/plants9030345 - 9 Mar 2020
Cited by 121 | Viewed by 16501
Abstract
Endemic plant species are usually more vulnerable to anthropogenic threats and natural changes and, therefore, hold a higher extinction risk. The preservation of these species is a major concern on a worldwide context and in situ protection alone will not guarantee their conservation. [...] Read more.
Endemic plant species are usually more vulnerable to anthropogenic threats and natural changes and, therefore, hold a higher extinction risk. The preservation of these species is a major concern on a worldwide context and in situ protection alone will not guarantee their conservation. Ex situ conservation measures must be undertaken to support the conservation of these species, and seed banking is the more efficient and cost-effective method. However, when seed banking is not an option, alternative approaches should be considered. Biotechnological tools provide new and complementary options for plant conservation including short-, medium-, and long-term strategies, and their application for plant species conservation has increased considerably in the last years. This review provides information about the status of the use biotechnology-based techniques for the conservation of endemic plant species. Particular attention is given to cryopreservation, since is the only long-term ex situ conservation strategy that can complement and support the other conservation measures. The cryopreservation of plant genetic resources is, however, more focused on crop or economically important species and few studies are available for endemic plant species. The plant material used, the cryopreservation methods employed, and the assessment of cryogenic effects are reviewed. The reasons to explain the difficulties in cryopreserving these species are discussed and new strategies are proposed to facilitate and increase the interest on this matter. We expect that further studies on the conservation of endemic plant species will increase in a near future, thus contributing to maintain these valuable genetic resources. Full article
(This article belongs to the Special Issue Plant Tissue Culture)
Show Figures

Figure 1

11 pages, 561 KiB  
Review
The Role of Proteases in Determining Stomatal Development and Tuning Pore Aperture: A Review
by Dimitrios Fanourakis, Nikolaos Nikoloudakis, Polyxeni Pappi, Emmanouil Markakis, Georgios Doupis, Spyridoula N. Charova, Costas Delis and Georgios Tsaniklidis
Plants 2020, 9(3), 340; https://doi.org/10.3390/plants9030340 - 8 Mar 2020
Cited by 22 | Viewed by 4732
Abstract
Plant proteases, the proteolytic enzymes that catalyze protein breakdown and recycling, play an essential role in a variety of biological processes including stomatal development and distribution, as well as, systemic stress responses. In this review, we summarize what is known about the participation [...] Read more.
Plant proteases, the proteolytic enzymes that catalyze protein breakdown and recycling, play an essential role in a variety of biological processes including stomatal development and distribution, as well as, systemic stress responses. In this review, we summarize what is known about the participation of proteases in both stomatal organogenesis and on the stomatal pore aperture tuning, with particular emphasis on their involvement in numerous signaling pathways triggered by abiotic and biotic stressors. There is a compelling body of evidence demonstrating that several proteases are directly or indirectly implicated in the process of stomatal development, affecting stomatal index, density, spacing, as well as, size. In addition, proteases are reported to be involved in a transient adjustment of stomatal aperture, thus orchestrating gas exchange. Consequently, the proteases-mediated regulation of stomatal movements considerably affects plants’ ability to cope not only with abiotic stressors, but also to perceive and respond to biotic stimuli. Even though the determining role of proteases on stomatal development and functioning is just beginning to unfold, our understanding of the underlying processes and cellular mechanisms still remains far from being completed. Full article
(This article belongs to the Special Issue Plant Proteostasis)
Show Figures

Figure 1

18 pages, 1911 KiB  
Article
The Influence of New and Artificial Aged Microplastic and Leachates on the Germination of Lepidium sativum L.
by Stephan Pflugmacher, Amalia Sulek, Hannah Mader, Jeongin Heo, Ji Hyeon Noh, Olli-Pekka Penttinen, YoungJun Kim, Sanghun Kim and Maranda Esterhuizen
Plants 2020, 9(3), 339; https://doi.org/10.3390/plants9030339 - 7 Mar 2020
Cited by 92 | Viewed by 6021
Abstract
With the increase in environmental monitoring and assessing, we are gaining insight into the extent of microplastic pollution in our environment. The threat posed by microplastics to biota could come, e.g., from leached substances. As some plastic materials have been decaying in nature [...] Read more.
With the increase in environmental monitoring and assessing, we are gaining insight into the extent of microplastic pollution in our environment. The threat posed by microplastics to biota could come, e.g., from leached substances. As some plastic materials have been decaying in nature for extended periods already, the toxic effects of leaching compounds need to be investigated. It is furthermore essential to understand the adverse effects of new plastic and how these effects differ from the effects elicited by old plastic material. Therefore, in the present study, the effects of exposure to leachates from new and artificial aged polycarbonate as well as new and aged polycarbonate granules on various germination parameters of Lepidium sativum were studied. Germination, root, and shoot length, as well as the calculated germination rate index as a measure for germination speed, was negatively influenced in substrate-free and substrate containing exposures. From an ecological and agricultural point of view, this implies possible yield losses with less germinating seeds, slower plant germination speed, and smaller seedlings in general. Full article
Show Figures

Figure 1

18 pages, 1740 KiB  
Article
Nitrogen Assimilation in the Highly Salt- and Boron-Tolerant Ecotype Zea mays L. Amylacea
by Teresa Fuertes-Mendizábal, Elizabeth Irica Bastías, Carmen González-Murua and Mª Begoña González-Moro
Plants 2020, 9(3), 322; https://doi.org/10.3390/plants9030322 - 4 Mar 2020
Cited by 20 | Viewed by 8295
Abstract
The Lluta Valley in Northern Chile is an important agricultural area affected by both salinity and boron (B) toxicity. Zea mays L. amylacea, an ecotype arisen because of the seed selection practiced in this valley, shows a high tolerance to salt and B [...] Read more.
The Lluta Valley in Northern Chile is an important agricultural area affected by both salinity and boron (B) toxicity. Zea mays L. amylacea, an ecotype arisen because of the seed selection practiced in this valley, shows a high tolerance to salt and B levels. In the present study the interaction between B and salt was studied after 20 days of treatment at low (100 mM) and high salinity (430 mM NaCl), assessing changes in nitrogen metabolites and in the activity of key nitrogen-assimilating enzymes. Under non-saline conditions, the presence of excessive B favored higher nitrate and ammonium mobilization to leaves, increasing nitrate reductase (NR) activity but not glutamine synthetase (GS). Thus, the increment of nitrogen use efficiency by B application would contribute partially to maintain the biomass production in this ecotype. Positive relationships between NR activity, nitrate, and stomatal conductance were observed in leaves. The increment of major amino acids alanine and serine would indicate a photoprotective role of photorespiration under low-salinity conditions, thus the inhibition of nitrogen assimilation pathway (NR and GS activities) occurred only at high salinity. The role of cytosolic GS regarding the proline accumulation is discussed. Full article
(This article belongs to the Special Issue Plant Nitrogen Assimilation and Metabolism)
Show Figures

Graphical abstract

13 pages, 304 KiB  
Review
Horizontal Gene Transfer and Endophytes: An Implication for the Acquisition of Novel Traits
by Pragya Tiwari and Hanhong Bae
Plants 2020, 9(3), 305; https://doi.org/10.3390/plants9030305 - 1 Mar 2020
Cited by 69 | Viewed by 9434
Abstract
Horizontal gene transfer (HGT), an important evolutionary mechanism observed in prokaryotes, is the transmission of genetic material across phylogenetically distant species. In recent years, the availability of complete genomes has facilitated the comprehensive analysis of HGT and highlighted its emerging role in the [...] Read more.
Horizontal gene transfer (HGT), an important evolutionary mechanism observed in prokaryotes, is the transmission of genetic material across phylogenetically distant species. In recent years, the availability of complete genomes has facilitated the comprehensive analysis of HGT and highlighted its emerging role in the adaptation and evolution of eukaryotes. Endophytes represent an ecologically favored association, which highlights its beneficial attributes to the environment, in agriculture and in healthcare. The HGT phenomenon in endophytes, which features an important biological mechanism for their evolutionary adaptation within the host plant and simultaneously confers “novel traits” to the associated microbes, is not yet completely understood. With a focus on the emerging implications of HGT events in the evolution of biological species, the present review discusses the occurrence of HGT in endophytes and its socio-economic importance in the current perspective. To our knowledge, this review is the first report that provides a comprehensive insight into the impact of HGT in the adaptation and evolution of endophytes. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Graphical abstract

11 pages, 1115 KiB  
Review
Shedding the Last Layer: Mechanisms of Root Cap Cell Release
by Narender Kumar and Anjali S. Iyer-Pascuzzi
Plants 2020, 9(3), 308; https://doi.org/10.3390/plants9030308 - 1 Mar 2020
Cited by 26 | Viewed by 11072
Abstract
The root cap, a small tissue at the tip of the root, protects the root from environmental stress and functions in gravity perception. To perform its functions, the position and size of the root cap remains stable throughout root growth. This occurs due [...] Read more.
The root cap, a small tissue at the tip of the root, protects the root from environmental stress and functions in gravity perception. To perform its functions, the position and size of the root cap remains stable throughout root growth. This occurs due to constant root cap cell turnover, in which the last layer of the root cap is released, and new root cap cells are produced. Cells in the last root cap layer are known as border cells or border-like cells, and have important functions in root protection against bacterial and fungal pathogens. Despite the importance of root cap cell release to root health and plant growth, the mechanisms regulating this phenomenon are not well understood. Recent work identified several factors including transcription factors, auxin, and small peptides with roles in the production and release of root cap cells. Here, we review the involvement of the known players in root cap cell release, compare the release of border-like cells and border cells, and discuss the importance of root cap cell release to root health and survival. Full article
Show Figures

Figure 1

18 pages, 2411 KiB  
Article
Comparative Study of Growth, Cadmium Accumulation and Tolerance of Three Chickpea (Cicer arietinum L.) Cultivars
by Shakir Ullah, Jafar Khan, Khizar Hayat, Ahmed Abdelfattah Elateeq, Uzma Salam, Bofan Yu, Yuehua Ma, Hongzheng Wang and Zhong-Hua Tang
Plants 2020, 9(3), 310; https://doi.org/10.3390/plants9030310 - 1 Mar 2020
Cited by 51 | Viewed by 5545
Abstract
Trace metals (TM) contamination is a severe problem in the environment and produced an adverse effect on the productivity of crops. Cadmium (Cd) is a TM ranked seven among the top 20 pollutants due to its high toxicity and solubility in water, taken [...] Read more.
Trace metals (TM) contamination is a severe problem in the environment and produced an adverse effect on the productivity of crops. Cadmium (Cd) is a TM ranked seven among the top 20 pollutants due to its high toxicity and solubility in water, taken up by the plants and affects their growth and metabolism. In this study, we evaluated the growth, Cd accumulation and tolerance capacities of three chickpea (Cicer arietinum L.) cultivars (NC234 (NC2), ICCV89310 (IC8) and ICCV89323-B (IC8-B)), subjected to two Cd concentrations (25 and 50 µM) in hydroponic culture. The toxicity of Cd reduced the plant height and fresh and dry biomass in all cultivars. The maximum reduction was observed at 50 µM of Cd. Compared with IC8-B, cultivars IC8 and NC2 exhibited better performance with high growth, biomass, root to shoot (R/S) ratio and water content under high Cd stress. To measure the accumulation of Cd in root and shoot, an inductively coupled plasma optical emission spectrometer (ICP-OES) was used. IC8 and NC2 had comparatively high Cd tolerance and accumulation ability (> 100 µg g−1 dry weight), with IC8 being more tolerant and accumulated higher Cd in shoot than NC2, while cultivar IC8-B was sensitive. Root accumulated more Cd than shoot in a dose-dependent manner. The bioconcentration factors (BCF) and bioaccumulation coefficients (BAC) were far higher than one (> 1) and increased with an increase in Cd concentrations, while the translocation factor (TF) was less than one (< 1), suggesting that all the three cultivars were unable to transfer Cd from the root to the shoot efficiently. Our results indicated that IC8 and NC2 proved to be resistant, while IC8-B showed sensitivity when exposed to high Cd stress (50 µM). Full article
Show Figures

Figure 1

40 pages, 2223 KiB  
Review
Isatis tinctoria L. (Woad): A Review of Its Botany, Ethnobotanical Uses, Phytochemistry, Biological Activities, and Biotechnological Studies
by Jasmine Speranza, Natalizia Miceli, Maria Fernanda Taviano, Salvatore Ragusa, Inga Kwiecień, Agnieszka Szopa and Halina Ekiert
Plants 2020, 9(3), 298; https://doi.org/10.3390/plants9030298 - 1 Mar 2020
Cited by 49 | Viewed by 13875
Abstract
Isatis tinctoria L. (Brassicaceae), which is commonly known as woad, is a species with an ancient and well-documented history as an indigo dye and medicinal plant. Currently, I. tinctoria is utilized more often as medicinal remedy and also as a cosmetic ingredient. In [...] Read more.
Isatis tinctoria L. (Brassicaceae), which is commonly known as woad, is a species with an ancient and well-documented history as an indigo dye and medicinal plant. Currently, I. tinctoria is utilized more often as medicinal remedy and also as a cosmetic ingredient. In 2011, I. tinctoria root was accepted in the official European phytotherapy by introducing its monograph in the European Pharmacopoeia. The biological properties of raw material have been known from Traditional Chinese Medicine (TCM). Over recent decades, I. tinctoria has been investigated both from a phytochemical and a biological point of view. The modern in vitro and in vivo scientific studies proved anti-inflammatory, anti-tumour, antimicrobial, antiviral, analgesic, and antioxidant activities. The phytochemical composition of I. tinctoria has been thoroughly investigated and the plant was proven to contain many valuable biologically active compounds, including several alkaloids, among which tryptanthrin, indirubin, indolinone, phenolic compounds, and polysaccharides as well as glucosinolates, carotenoids, volatile constituents, and fatty acids. This article provides a general botanical and ethnobotanical overview that summarizes the up-to-date knowledge on the phytochemistry and biological properties of this valuable plant in order to support its therapeutic potential. Moreover, the biotechnological studies on I. tinctoria, which mainly focused on hairy root cultures for the enhanced production of flavonoids and alkaloids as well as on the establishment of shoot cultures and micropropagation protocols, were reviewed. They provide input for future research prospects. Full article
(This article belongs to the Special Issue Mechanisms of Plant Antioxidants Action)
Show Figures

Figure 1

22 pages, 1255 KiB  
Perspective
Flexibility in the Energy Balancing Network of Photosynthesis Enables Safe Operation under Changing Environmental Conditions
by Berkley J. Walker, David M. Kramer, Nicholas Fisher and Xinyu Fu
Plants 2020, 9(3), 301; https://doi.org/10.3390/plants9030301 - 1 Mar 2020
Cited by 57 | Viewed by 6773
Abstract
Given their ability to harness chemical energy from the sun and generate the organic compounds necessary for life, photosynthetic organisms have the unique capacity to act simultaneously as their own power and manufacturing plant. This dual capacity presents many unique challenges, chiefly that [...] Read more.
Given their ability to harness chemical energy from the sun and generate the organic compounds necessary for life, photosynthetic organisms have the unique capacity to act simultaneously as their own power and manufacturing plant. This dual capacity presents many unique challenges, chiefly that energy supply must be perfectly balanced with energy demand to prevent photodamage and allow for optimal growth. From this perspective, we discuss the energy balancing network using recent studies and a quantitative framework for calculating metabolic ATP and NAD(P)H demand using measured leaf gas exchange and assumptions of metabolic demand. We focus on exploring how the energy balancing network itself is structured to allow safe and flexible energy supply. We discuss when the energy balancing network appears to operate optimally and when it favors high capacity instead. We also present the hypothesis that the energy balancing network itself can adapt over longer time scales to a given metabolic demand and how metabolism itself may participate in this energy balancing. Full article
(This article belongs to the Special Issue Regulation of Central Carbon and Amino Acid Metabolism in Plants)
Show Figures

Figure 1

23 pages, 1691 KiB  
Review
Citrus Flavones: An Update on Sources, Biological Functions, and Health Promoting Properties
by Davide Barreca, Giuseppina Mandalari, Antonella Calderaro, Antonella Smeriglio, Domenico Trombetta, Maria Rosa Felice and Giuseppe Gattuso
Plants 2020, 9(3), 288; https://doi.org/10.3390/plants9030288 - 26 Feb 2020
Cited by 94 | Viewed by 7431
Abstract
Citrus spp. are among the most widespread plants cultivated worldwide and every year millions of tons of fruit, juices, or processed compounds are produced and consumed, representing one of the main sources of nutrients in human diet. Among these, the flavonoids play a [...] Read more.
Citrus spp. are among the most widespread plants cultivated worldwide and every year millions of tons of fruit, juices, or processed compounds are produced and consumed, representing one of the main sources of nutrients in human diet. Among these, the flavonoids play a key role in providing a wide range of health beneficial effects. Apigenin, diosmetin, luteolin, acacetin, chrysoeriol, and their respective glycosides, that occur in concentrations up to 60 mg/L, are the most common flavones found in Citrus fruits and juices. The unique characteristics of their basic skeleton and the nature and position of the substituents have attracted and stimulated vigorous investigations as a consequence of an enormous biological potential, that manifests itself as (among other properties) antioxidant, anti-inflammatory, antiviral, antimicrobial, and anticancer activities. This review analyzes the biochemical, pharmacological, and biological properties of Citrus flavones, emphasizing their occurrence in Citrus spp. fruits and juices, on their bioavailability, and their ability to modulate signal cascades and key metabolic enzymes both in vitro and in vivo. Electronic databases including PubMed, Scopus, Web of Science, and SciFinder were used to investigate recent published articles on Citrus spp. in terms of components and bioactivity potentials. Full article
(This article belongs to the Special Issue 2019 Feature Papers by Plants’ Editorial Board Members)
Show Figures

Figure 1

13 pages, 377 KiB  
Article
Comprehensive Real-Time RT-PCR Assays for the Detection of Fifteen Viruses Infecting Prunus spp.
by Alfredo Diaz-Lara, Kristian Stevens, Vicki Klaassen, Deborah Golino and Maher Al Rwahnih
Plants 2020, 9(2), 273; https://doi.org/10.3390/plants9020273 - 19 Feb 2020
Cited by 17 | Viewed by 4537
Abstract
Viruses can cause economic losses in fruit trees, including Prunus spp., by reducing yield and marketable fruit. Given the genetic diversity of viruses, reliable diagnostic methods relying on PCR are critical in determining viral infection in fruit trees. This study evaluated the broad-range [...] Read more.
Viruses can cause economic losses in fruit trees, including Prunus spp., by reducing yield and marketable fruit. Given the genetic diversity of viruses, reliable diagnostic methods relying on PCR are critical in determining viral infection in fruit trees. This study evaluated the broad-range detection capacity of currently available real-time RT-PCR assays for Prunus-infecting viruses and developed new assays when current tests were inadequate or absent. Available assays for 15 different viruses were exhaustively evaluated in silico to determine their capacity to detect virus isolates deposited in GenBank. During this evaluation, several isolates deposited since the assay was designed exhibited nucleotide mismatches in relation to the existing assay’s primer sequences. In cases where updating an existing assay was impractical, we performed a redesign with the dual goals of assay compactness and comprehensive inclusion of genetic diversity. The efficiency of each developed assay was determined by a standard curve. To validate the assay designs, we tested them against a comprehensive set of 87 positive and negative Prunus samples independently analyzed by high throughput sequencing. As a result, all the real-time RT-PCR assays described herein successfully detected the different viruses and their corresponding isolates. To further validate the new and updated assays a Prunus germplasm collection was surveyed. The sensitive and reliable detection methods described here will be used for the large-scale pathogen testing required to maintain the highest quality nursery stock. Full article
(This article belongs to the Special Issue Diagnosis and Control of Plant Viral Diseases)
11 pages, 1852 KiB  
Article
In Vitro Anti-HSV-1 Activity of Polyphenol-Rich Extracts and Pure Polyphenol Compounds Derived from Pistachios Kernels (Pistacia vera L.)
by Maria Musarra-Pizzo, Rosamaria Pennisi, Ichrak Ben-Amor, Antonella Smeriglio, Giuseppina Mandalari and Maria Teresa Sciortino
Plants 2020, 9(2), 267; https://doi.org/10.3390/plants9020267 - 18 Feb 2020
Cited by 39 | Viewed by 5471
Abstract
Natural compounds are a prominent source of novel antiviral drugs. Several reports have previously shown the antimicrobial activity of pistachio polyphenol extracts. Therefore, the aim of our research was to investigate the activity of polyphenol-rich extracts of natural shelled (NPRE) pistachios kernels ( [...] Read more.
Natural compounds are a prominent source of novel antiviral drugs. Several reports have previously shown the antimicrobial activity of pistachio polyphenol extracts. Therefore, the aim of our research was to investigate the activity of polyphenol-rich extracts of natural shelled (NPRE) pistachios kernels (Pistacia vera L.) on herpes simplex virus type 1 (HSV-1) replication. The Vero cell line was used to assess the cytotoxicity and antiviral activity. The cell viability was calculated by detection of cellular ATP after treatment with various concentrations of NPRE. For antiviral studies, five nontoxic-concentrations (0.1, 0.2, 0.4, 0.6, 0.8 mg/mL) were tested. Our study demonstrated that treatment with NPRE (0.4, 0.6, 0.8 mg/mL) reduced the expression of the viral proteins ICP8 (infected cell polypeptide 8), UL42 (unique long UL42 DNA polymerase processivity factor), and US11 (unique short US11 protein), and resulted in a decrease of viral DNA synthesis. The 50% cytotoxic concentration (CC50), 50% inhibitory concentration (EC50), and the selectivity index (SI) values for NPRE were 1.2 mg/mL, 0.4mg/mL, and 3, respectively. Furthermore, we assessed the anti-herpetic effect of a mix of pure polyphenol compounds (NS MIX) present in NPRE. In conclusion, our findings indicate that natural shelled pistachio kernels have remarkable inhibitory activity against HSV-1. Full article
(This article belongs to the Special Issue Mechanisms of Plant Antioxidants Action)
Show Figures

Figure 1

23 pages, 3083 KiB  
Article
Genome-Wide Analysis of Gene Expression Provides New Insights into Waterlogging Responses in Barley (Hordeum vulgare L.)
by Ana Borrego-Benjumea, Adam Carter, James R. Tucker, Zhen Yao, Wayne Xu and Ana Badea
Plants 2020, 9(2), 240; https://doi.org/10.3390/plants9020240 - 13 Feb 2020
Cited by 48 | Viewed by 5572
Abstract
Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding, the genome-wide gene expression responses in roots of waterlogged barley seedlings of [...] Read more.
Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding, the genome-wide gene expression responses in roots of waterlogged barley seedlings of Yerong and Deder2 were analyzed by RNA-Sequencing. A total of 6736, 5482, and 4538 differentially expressed genes (DEGs) were identified in waterlogged roots of Yerong at 72 h and Deder2 at 72 and 120 h, respectively, compared with the non-waterlogged control. Gene Ontology (GO) enrichment analyses showed that the most significant changes in GO terms, resulted from these DEGs observed under waterlogging stress, were related to primary and secondary metabolism, regulation, and oxygen carrier activity. In addition, more than 297 transcription factors, including members of MYB, AP2/EREBP, NAC, WRKY, bHLH, bZIP, and G2-like families, were identified as waterlogging responsive. Tentative important contributors to waterlogging tolerance in Deder2 might be the highest up-regulated DEGs: Trichome birefringence, α/β-Hydrolases, Xylanase inhibitor, MATE efflux, serine carboxypeptidase, and SAUR-like auxin-responsive protein. The study provides insights into the molecular mechanisms underlying the response to waterlogging in barley, which will be of benefit for future studies of molecular responses to waterlogging and will greatly assist barley genetic research and breeding. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 1262 KiB  
Review
Soybean Resistance to Soybean Mosaic Virus
by Kristin Widyasari, Mazen Alazem and Kook-Hyung Kim
Plants 2020, 9(2), 219; https://doi.org/10.3390/plants9020219 - 8 Feb 2020
Cited by 44 | Viewed by 10759
Abstract
Soybean mosaic virus (SMV) occurs in all soybean-growing areas in the world and causes huge losses in soybean yields and seed quality. During early viral infection, molecular interactions between SMV effector proteins and the soybean resistance (R) protein, if present, determine the development [...] Read more.
Soybean mosaic virus (SMV) occurs in all soybean-growing areas in the world and causes huge losses in soybean yields and seed quality. During early viral infection, molecular interactions between SMV effector proteins and the soybean resistance (R) protein, if present, determine the development of resistance/disease in soybean plants. Depending on the interacting strain and cultivar, R-protein in resistant soybean perceives a specific SMV effector, which triggers either the extreme silent resistance or the typical resistance manifested by hypersensitive responses and induction of salicylic acid and reactive oxygen species. In this review, we consider the major advances that have been made in understanding the soybean–SMV arms race. We also focus on dissecting mechanisms SMV employs to establish infection and how soybean perceives and then responds to SMV attack. In addition, progress on soybean R-genes studies, as well as those addressing independent resistance genes, are also addressed. Full article
(This article belongs to the Special Issue 2019 Feature Papers by Plants’ Editorial Board Members)
Show Figures

Graphical abstract

15 pages, 1550 KiB  
Review
Co-Translational Protein Folding and Sorting in Chloroplasts
by Fabian Ries, Claudia Herkt and Felix Willmund
Plants 2020, 9(2), 214; https://doi.org/10.3390/plants9020214 - 7 Feb 2020
Cited by 19 | Viewed by 5311
Abstract
Cells depend on the continuous renewal of their proteome composition during the cell cycle and in order to replace aberrant proteins or to react to changing environmental conditions. In higher eukaryotes, protein synthesis is achieved by up to five million ribosomes per cell. [...] Read more.
Cells depend on the continuous renewal of their proteome composition during the cell cycle and in order to replace aberrant proteins or to react to changing environmental conditions. In higher eukaryotes, protein synthesis is achieved by up to five million ribosomes per cell. With the fast kinetics of translation, the large number of newly made proteins generates a substantial burden for protein homeostasis and requires a highly orchestrated cascade of factors promoting folding, sorting and final maturation. Several of the involved factors directly bind to translating ribosomes for the early processing of emerging nascent polypeptides and the translocation of ribosome nascent chain complexes to target membranes. In plant cells, protein synthesis also occurs in chloroplasts serving the expression of a relatively small set of 60–100 protein-coding genes. However, most of these proteins, together with nucleus-derived subunits, form central complexes majorly involved in the essential processes of photosynthetic light reaction, carbon fixation, metabolism and gene expression. Biogenesis of these heterogenic complexes adds an additional level of complexity for protein biogenesis. In this review, we summarize the current knowledge about co-translationally binding factors in chloroplasts and discuss their role in protein folding and ribosome translocation to thylakoid membranes. Full article
(This article belongs to the Special Issue Chloroplast RNA Metabolism and Biology)
Show Figures

Figure 1

23 pages, 2425 KiB  
Article
Cytokinins Are Abundant and Widespread among Insect Species
by Peter Andreas, Anna Kisiala, R. J. Neil Emery, Rosemarie De Clerck-Floate, John F. Tooker, Peter W. Price, Donald G. Miller III, Ming-Shun Chen and Edward F. Connor
Plants 2020, 9(2), 208; https://doi.org/10.3390/plants9020208 - 6 Feb 2020
Cited by 34 | Viewed by 7749
Abstract
Cytokinins (CKs) are a class of compounds that have long been thought to be exclusively plant growth regulators. Interestingly, some species of phytopathogenic bacteria and fungi have been shown to, and gall-inducing insects have been hypothesized to, produce CKs and use them to [...] Read more.
Cytokinins (CKs) are a class of compounds that have long been thought to be exclusively plant growth regulators. Interestingly, some species of phytopathogenic bacteria and fungi have been shown to, and gall-inducing insects have been hypothesized to, produce CKs and use them to manipulate their host plants. We used high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-MS/MS) to examine concentrations of a wide range of CKs in 17 species of phytophagous insects, including gall- and non-gall-inducing species from all six orders of Insecta that contain species known to induce galls: Thysanoptera, Hemiptera, Lepidoptera, Coleoptera, Diptera, and Hymenoptera. We found CKs in all six orders of insects, and they were not associated exclusively with gall-inducing species. We detected 24 different CK analytes, varying in their chemical structure and biological activity. Isoprenoid precursor nucleotide and riboside forms of trans-zeatin (tZ) and isopentenyladenine (iP) were most abundant and widespread across the surveyed insect species. Notably, the observed concentrations of CKs often markedly exceeded those reported in plants suggesting that insects are synthesizing CKs rather than obtaining them from the host plant via tissue consumption, compound sequestration, and bioaccumulation. These findings support insect-derived CKs as means for gall-inducing insects to manipulate their host plant to facilitate cell proliferation, and for both gall- and non-gall-inducing insects to modify nutrient flux and plant defenses during herbivory. Furthermore, wide distribution of CKs across phytophagous insects, including non-gall-inducing species, suggests that insect-borne CKs could be involved in manipulation of source-sink mechanisms of nutrient allocation to sustain the feeding site and altering plant defensive responses, rather than solely gall induction. Given the absence of any evidence for genes in the de novo CK biosynthesis pathway in insects, we postulate that the tRNA-ipt pathway is responsible for CK production. However, the unusually high concentrations of CKs in insects, and the tendency toward dominance of their CK profiles by tZ and iP suggest that the tRNA-ipt pathway functions differently and substantially more efficiently in insects than in plants. Full article
Show Figures

Figure 1

26 pages, 1490 KiB  
Review
Plant Cell Walls Tackling Climate Change: Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming
by Ignacio Ezquer, Ilige Salameh, Lucia Colombo and Panagiotis Kalaitzis
Plants 2020, 9(2), 212; https://doi.org/10.3390/plants9020212 - 6 Feb 2020
Cited by 49 | Viewed by 9912
Abstract
Plant cell wall (CW) is a complex and intricate structure that performs several functions throughout the plant life cycle. The CW of plants is critical to the maintenance of cells’ structural integrity by resisting internal hydrostatic pressures, providing flexibility to support cell division [...] Read more.
Plant cell wall (CW) is a complex and intricate structure that performs several functions throughout the plant life cycle. The CW of plants is critical to the maintenance of cells’ structural integrity by resisting internal hydrostatic pressures, providing flexibility to support cell division and expansion during tissue differentiation, and acting as an environmental barrier that protects the cells in response to abiotic stress. Plant CW, comprised primarily of polysaccharides, represents the largest sink for photosynthetically fixed carbon, both in plants and in the biosphere. The CW structure is highly varied, not only between plant species but also among different organs, tissues, and cell types in the same organism. During the developmental processes, the main CW components, i.e., cellulose, pectins, hemicelluloses, and different types of CW-glycoproteins, interact constantly with each other and with the environment to maintain cell homeostasis. Differentiation processes are altered by positional effect and are also tightly linked to environmental changes, affecting CW both at the molecular and biochemical levels. The negative effect of climate change on the environment is multifaceted, from high temperatures, altered concentrations of greenhouse gases such as increasing CO2 in the atmosphere, soil salinity, and drought, to increasing frequency of extreme weather events taking place concomitantly, therefore, climate change affects crop productivity in multiple ways. Rising CO2 concentration in the atmosphere is expected to increase photosynthetic rates, especially at high temperatures and under water-limited conditions. This review aims to synthesize current knowledge regarding the effects of climate change on CW biogenesis and modification. We discuss specific cases in crops of interest carrying cell wall modifications that enhance tolerance to climate change-related stresses; from cereals such as rice, wheat, barley, or maize to dicots of interest such as brassica oilseed, cotton, soybean, tomato, or potato. This information could be used for the rational design of genetic engineering traits that aim to increase the stress tolerance in key crops. Future growing conditions expose plants to variable and extreme climate change factors, which negatively impact global agriculture, and therefore further research in this area is critical. Full article
(This article belongs to the Special Issue Photosynthetic Metabolism under Stressful Growth Conditions)
Show Figures

Graphical abstract

18 pages, 4673 KiB  
Article
Profiling of Flavonoid and Antioxidant Activity of Fruit Tissues from 27 Chinese Local Citrus Cultivars
by Qiyang Chen, Dan Wang, Chun Tan, Yan Hu, Balasubramani Sundararajan and Zhiqin Zhou
Plants 2020, 9(2), 196; https://doi.org/10.3390/plants9020196 - 5 Feb 2020
Cited by 91 | Viewed by 6739
Abstract
Flavonoid profile and antioxidant activity of citrus peels, pulps, and juices from 27 local citrus cultivars in China were investigated. Flavonoid composition and content were determined using UPLC-PDA. Total phenolic content (TPC) and total flavonoid content (TFC) were measured using a Folin–Ciocalteau reagent [...] Read more.
Flavonoid profile and antioxidant activity of citrus peels, pulps, and juices from 27 local citrus cultivars in China were investigated. Flavonoid composition and content were determined using UPLC-PDA. Total phenolic content (TPC) and total flavonoid content (TFC) were measured using a Folin–Ciocalteau reagent and Al(NO3)-NaNO2 complexometry, respectively. The antioxidant capacities of the extracts were evaluated by DPPH, ABTS and FRAP method, respectively. Citrus peel not only exhibited better antioxidant potential, but also presented more composition diversity and contained higher concentrations of flavonoids than pulp and juice. Different citrus species were characterized by their individual predominant flavonoids, contributing largely to the antioxidant activity, such as mandarin was characterized by hesperidin, nobiletin and tangeretin, while pummelo and papeda were characterized by naringin. The peel of Guihuadinanfeng (Citrus reticulata) had the highest TPC of 23.46 mg equivalent gallic acid/g DW (dry weight) and TFC of 21.37 mg equivalent rutin/g DW. Shiyueju (C. reticulata) peel showed the highest antioxidant capacity based on the antioxidant potency composite (APC) analysis. Overall, mandarin (C. reticulata) fruits peel contained more TPC and TFC, exhibiting higher antioxidant capacities than other species, and were good natural sources of flavonoids and antioxidants. Full article
Show Figures

Figure 1

20 pages, 2883 KiB  
Article
Transgenerational Effects of Water-Deficit and Heat Stress on Germination and Seedling Vigour—New Insights from Durum Wheat microRNAs
by Haipei Liu, Amanda J. Able and Jason A. Able
Plants 2020, 9(2), 189; https://doi.org/10.3390/plants9020189 - 4 Feb 2020
Cited by 31 | Viewed by 4949
Abstract
Water deficiency and heat stress can severely limit crop production and quality. Stress imposed on the parents during reproduction could have transgenerational effects on their progeny. Seeds with different origins can vary significantly in their germination and early growth. Here, we investigated how [...] Read more.
Water deficiency and heat stress can severely limit crop production and quality. Stress imposed on the parents during reproduction could have transgenerational effects on their progeny. Seeds with different origins can vary significantly in their germination and early growth. Here, we investigated how water-deficit and heat stress on parental durum wheat plants affected seedling establishment of the subsequent generation. One stress-tolerant and one stress-sensitive Australian durum genotype were used. Seeds were collected from parents with or without exposure to stress during reproduction. Generally, stress on the previous generation negatively affected seed germination and seedling vigour, but to a lesser extent in the tolerant variety. Small RNA sequencing utilising the new durum genome assembly revealed significant differences in microRNA (miRNA) expression in the two genotypes. A bioinformatics approach was used to identify multiple miRNA targets which have critical molecular functions in stress adaptation and plant development and could therefore contribute to the phenotypic differences observed. Our data provide the first confirmation of the transgenerational effects of reproductive-stage stress on germination and seedling establishment in durum wheat. New insights gained on the epigenetic level indicate that durum miRNAs could be key factors in optimising seed vigour for breeding superior germplasm and/or varieties. Full article
(This article belongs to the Special Issue Small RNAs in Crop Improvement and Breeding)
Show Figures

Figure 1

19 pages, 3602 KiB  
Article
Cultivar Resistance against Colletotrichum asianum in the World Collection of Mango Germplasm in Southeastern Brazil
by Alessandro Vitale, Acelino Couto Alfenas, Dalmo Lopes de Siqueira, Donato Magistà, Giancarlo Perrone and Giancarlo Polizzi
Plants 2020, 9(2), 182; https://doi.org/10.3390/plants9020182 - 2 Feb 2020
Cited by 15 | Viewed by 5555
Abstract
During the spring of 2014, a wide survey was conducted in one of the most important mango (Mangifera indica) cultivating areas located in Minas Gerais State (Brazil) to ascertain the causal agent of severe anthracnose infections and to evaluate disease susceptibility [...] Read more.
During the spring of 2014, a wide survey was conducted in one of the most important mango (Mangifera indica) cultivating areas located in Minas Gerais State (Brazil) to ascertain the causal agent of severe anthracnose infections and to evaluate disease susceptibility within a world collection of mango germplasm. Overall, 86 cultivars were monitored and 152 fungal isolates recovered from infected samples were identified by morphological characterization, DNA sequencing and phylogenetic analyses. All isolates were identified as Colletotrichum asianum. Under natural disease pressure, it has been possible to ascertain a variable tolerance degree within the germplasm collection. By applying a categorized classification, cultivars were classified as follows: 10 highly sensitive (11.6%), 13 sensitive (15.1%), 18 moderately sensitive (20.9%), 23 moderately tolerant (26.7%), 11 tolerant (12.8%), and 11 highly tolerant (10.4%). The most susceptible cultivars to anthracnose were Ubà, Quinzenga, Amarelinha da Sementeira followed by Aroeira and Correjo, whereas Mallika followed by Ourinho and Lita resulted in the least susceptible cultivars. To the authors’ knowledge, this is the first large-scale evaluation of mango susceptibility to C. asianum infections within a wide number of cultivars. Anthracnose is a serious threat to mango production and assessment of cultivar response to disease could be useful in breeding programs. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Graphical abstract

14 pages, 1130 KiB  
Article
Additive Effect of Botanical Insecticide and Entomopathogenic Fungi on Pest Mortality and the Behavioral Response of Its Natural Enemy
by G. Mandela Fernández-Grandon, Steven J. Harte, Jaspher Ewany, Daniel Bray and Philip C. Stevenson
Plants 2020, 9(2), 173; https://doi.org/10.3390/plants9020173 - 1 Feb 2020
Cited by 29 | Viewed by 5335
Abstract
Sustainable agricultural intensification employs alternatives to synthetic insecticides for pest management, but these are not always a direct replacement. Botanical insecticides, for example, have rapid knockdown but are highly labile and while biological pesticides are more persistent, they are slow acting. To mitigate [...] Read more.
Sustainable agricultural intensification employs alternatives to synthetic insecticides for pest management, but these are not always a direct replacement. Botanical insecticides, for example, have rapid knockdown but are highly labile and while biological pesticides are more persistent, they are slow acting. To mitigate these shortcomings, we combined the entomopathogenic fungus (EPF) Metarhizium anisopliae with pyrethrum and evaluated their efficacy against the bean aphid, Aphis fabae. To ascertain higher trophic effects, we presented these treatments to the parasitoid, Aphidius colemani, on an aphid infested plant in a Y-tube olfactometer and measured their preferences. Aphid mortality was significantly higher than controls when exposed to EPF or pyrethrum but was greater still when exposed to a combination of both treatments, indicating an additive effect. This highlights the potential for applications of pyrethrum at lower doses, or the use of less refined products with lower production costs to achieve control. While parasitoids were deterred by aphid infested plants treated with EPF, no preference was observed with the combination pesticide, which provides insight into the importance that both application technique and timing may play in the success of this new technology. These results indicate the potential for biorational pesticides that combine botanicals with EPF. Full article
(This article belongs to the Special Issue Pesticidal Plants: From Smallholder Use to Commercialisation)
Show Figures

Figure 1

18 pages, 2427 KiB  
Review
Role of the Cytokinin-Activated Type-B Response Regulators in Hormone Crosstalk
by Yan O. Zubo and G. Eric Schaller
Plants 2020, 9(2), 166; https://doi.org/10.3390/plants9020166 - 30 Jan 2020
Cited by 43 | Viewed by 6843
Abstract
Cytokinin is an important phytohormone that employs a multistep phosphorelay to transduce the signal from receptors to the nucleus, culminating in activation of type-B response regulators which function as transcription factors. Recent chromatin immunoprecipitation-sequencing (ChIP-seq) studies have identified targets of type-B ARABIDOPSIS RESPONSE [...] Read more.
Cytokinin is an important phytohormone that employs a multistep phosphorelay to transduce the signal from receptors to the nucleus, culminating in activation of type-B response regulators which function as transcription factors. Recent chromatin immunoprecipitation-sequencing (ChIP-seq) studies have identified targets of type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs) and integrated these into the cytokinin-activated transcriptional network. Primary targets of the type-B ARRs are enriched for genes involved in hormonal regulation, emphasizing the extensive crosstalk that can occur between cytokinin, auxin, abscisic acid, brassinosteroids, gibberellic acid, ethylene, jasmonic acid, and salicylic acid. Examination of hormone-related targets reveals multiple regulatory points including biosynthesis, degradation/inactivation, transport, and signal transduction. Here, we consider this early response to cytokinin in terms of the hormones involved, points of regulatory crosstalk, and physiological significance. Full article
(This article belongs to the Special Issue The Plant Two-Component System)
Show Figures

Figure 1

11 pages, 2535 KiB  
Article
Comparative Seed Morphology of Tropical and Temperate Orchid Species with Different Growth Habits
by Surya Diantina, Craig McGill, James Millner, Jayanthi Nadarajan, Hugh W. Pritchard and Andrea Clavijo McCormick
Plants 2020, 9(2), 161; https://doi.org/10.3390/plants9020161 - 29 Jan 2020
Cited by 17 | Viewed by 8937
Abstract
Seed morphology underpins many critical biological and ecological processes, such as seed dormancy and germination, dispersal, and persistence. It is also a valuable taxonomic trait that can provide information about plant evolution and adaptations to different ecological niches. This study characterised and compared [...] Read more.
Seed morphology underpins many critical biological and ecological processes, such as seed dormancy and germination, dispersal, and persistence. It is also a valuable taxonomic trait that can provide information about plant evolution and adaptations to different ecological niches. This study characterised and compared various seed morphological traits, i.e., seed and pod shape, seed colour and size, embryo size, and air volume for six orchid species; and explored whether taxonomy, biogeographical origin, or growth habit are important determinants of seed morphology. We investigated this on two tropical epiphytic orchid species from Indonesia (Dendrobium strebloceras and D. lineale), and four temperate species from New Zealand, terrestrial Gastrodia cunnninghamii, Pterostylis banksii and Thelymitra nervosa, and epiphytic D. cunninghamii. Our results show some similarities among related species in their pod shape and colour, and seed colouration. All the species studied have scobiform or fusiform seeds and prolate-spheroid embryos. Specifically, D. strebloceras, G. cunninghamii, and P. banksii have an elongated seed shape, while T. nervosa has truncated seeds. Interestingly, we observed high variability in the micro-morphological seed characteristics of these orchid species, unrelated to their taxonomy, biogeographical origin, or growth habit, suggesting different ecological adaptations possibly reflecting their modes of dispersal. Full article
Show Figures

Figure 1

Back to TopTop