Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8571 KiB  
Article
Comparative Study on Kinetics of Ethylene and Propylene Polymerizations with Supported Ziegler–Natta Catalyst: Catalyst Fragmentation Promoted by Polymer Crystalline Lamellae
by Zhen Zhang, Baiyu Jiang, Feng He, Zhisheng Fu, Junting Xu and Zhiqiang Fan
Polymers 2019, 11(2), 358; https://doi.org/10.3390/polym11020358 - 19 Feb 2019
Cited by 21 | Viewed by 6212
Abstract
The kinetic behaviors of ethylene and propylene polymerizations with the same MgCl2-supported Ziegler–Natta (Z–N) catalyst containing an internal electron donor were compared. Changes of polymerization activity and active center concentration ([C*]) with time in the first 10 min were determined. Activity [...] Read more.
The kinetic behaviors of ethylene and propylene polymerizations with the same MgCl2-supported Ziegler–Natta (Z–N) catalyst containing an internal electron donor were compared. Changes of polymerization activity and active center concentration ([C*]) with time in the first 10 min were determined. Activity of ethylene polymerization was only 25% of that of propylene, and the polymerization rate (Rp) quickly decayed with time (tp) in the former system, in contrast to stable Rp in the latter. The ethylene system showed a very low [C*]/[Ti] ratio (<0.6%), in contrast to a much higher [C*]/[Ti] ratio (1.5%–4.9%) in propylene polymerization. The two systems showed noticeably different morphologies of the nascent polymer/catalyst particles, with the PP/catalyst particles being more compact and homogeneous than the PE/catalyst particles. The different kinetic behaviors of the two systems were explained by faster and more sufficient catalyst fragmentation in propylene polymerization than the ethylene system. The smaller lamellar thickness (<20 nm) in nascent polypropylene compared with the size of nanopores (15–25 nm) in the catalyst was considered the key factor for efficient catalyst fragmentation in propylene polymerization, as the PP lamellae may grow inside the nanopores and break up the catalyst particles. Full article
(This article belongs to the Special Issue Catalytic Polymerization)
Show Figures

Graphical abstract

12 pages, 4094 KiB  
Article
Study on Soy-Based Adhesives Enhanced by Phenol Formaldehyde Cross-Linker
by Zhigang Wu, Xuedong Xi, Hong Lei, Jiankun Liang, Jingjing Liao and Guanben Du
Polymers 2019, 11(2), 365; https://doi.org/10.3390/polym11020365 - 19 Feb 2019
Cited by 39 | Viewed by 3359
Abstract
To find the effects of cross-linker phenol-formaldehyde (PF) resin on the performance of soy-based adhesives, the reaction between model compounds hydroxymethyl phenol (HPF) and glutamic acid were studied in this paper. HPF prepared in laboratory conditions showed higher content of hydroxymethyl groups than [...] Read more.
To find the effects of cross-linker phenol-formaldehyde (PF) resin on the performance of soy-based adhesives, the reaction between model compounds hydroxymethyl phenol (HPF) and glutamic acid were studied in this paper. HPF prepared in laboratory conditions showed higher content of hydroxymethyl groups than normal PF resin, which was proved by the results of Electrospray Ionization Mass Spectrometry (ESI-MS) and 13C Nuclear Magnetic Resonance (13C-NMR). The results of ESI-MS, Fourier transform infrared spectroscopy (FT-IR), and 13C-NMR based on resultant products obtained from model compounds showed better water resistance of the soy protein-based adhesive modified by PF-based resin, which indicated the reaction between PF resin and soy protein. However, it seemed that the soy-based adhesive cross-linked by HPF with the maximum content of hydroxymethyl groups did not show the best water resistance. Full article
(This article belongs to the Special Issue Renewable Phenolics for Innovative Composites)
Show Figures

Graphical abstract

14 pages, 4151 KiB  
Article
Antimony Removal from Water by a Chitosan-Iron(III)[ChiFer(III)] Biocomposite
by Byron Lapo, Hary Demey, Tanya Carchi and Ana María Sastre
Polymers 2019, 11(2), 351; https://doi.org/10.3390/polym11020351 - 18 Feb 2019
Cited by 25 | Viewed by 4781
Abstract
The presence of antimony(III) in water represents a worldwide concern, mainly due to its high toxicity and carcinogenicity potential. It can be separated from water by the use of sustainable biopolymers such as chitosan or its derivatives. The present study applied chitosan modified [...] Read more.
The presence of antimony(III) in water represents a worldwide concern, mainly due to its high toxicity and carcinogenicity potential. It can be separated from water by the use of sustainable biopolymers such as chitosan or its derivatives. The present study applied chitosan modified with iron(III) beads to Sb(III) removal from aqueous solutions. The resulting material performed with a high adsorption capacity of 98.68 mg/g. Material characterization consisted of Raman spectroscopy (RS), X-ray diffraction (XRD), scanning electron microscope observations (SEM-EDX), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc). The adsorption study included pH study, effect of initial concentration, kinetics, ion effect, and reusability assessment. The RS, XRD, and FTIR results indicated that the main functional groups in the composite were related to hydroxyl and amino groups, and iron oxyhydroxide species of α-FeO(OH). The pHpzc was found to be 7.41. The best adsorption efficiency was set at pH 6. The equilibrium isotherms were better fitted with a non-linear Langmuir model, and the kinetics data were fitted with a pseudo-second order rate equation. The incorporation of iron into the chitosan matrix improved the Sb(III) uptake by 47.9%, compared with neat chitosan (CS). The material did not exhibit an impact in its performance in the presence of other ions, and it could be reused for up to three adsorption–desorption cycles. Full article
(This article belongs to the Special Issue Polysaccharides)
Show Figures

Graphical abstract

13 pages, 2739 KiB  
Article
3D-Printable PP/SEBS Thermoplastic Elastomeric Blends: Preparation and Properties
by Shib Shankar Banerjee, Stephen Burbine, Nischay Kodihalli Shivaprakash and Joey Mead
Polymers 2019, 11(2), 347; https://doi.org/10.3390/polym11020347 - 17 Feb 2019
Cited by 88 | Viewed by 10484
Abstract
Currently, material extrusion 3D printing (ME3DP) based on fused deposition modeling (FDM) is considered a highly adaptable and efficient additive manufacturing technique to develop components with complex geometries using computer-aided design. While the 3D printing process for a number of thermoplastic materials using [...] Read more.
Currently, material extrusion 3D printing (ME3DP) based on fused deposition modeling (FDM) is considered a highly adaptable and efficient additive manufacturing technique to develop components with complex geometries using computer-aided design. While the 3D printing process for a number of thermoplastic materials using FDM technology has been well demonstrated, there still exists a significant challenge to develop new polymeric materials compatible with ME3DP. The present work reports the development of ME3DP compatible thermoplastic elastomeric (TPE) materials from polypropylene (PP) and styrene-(ethylene-butylene)-styrene (SEBS) block copolymers using a straightforward blending approach, which enables the creation of tailorable materials. Properties of the 3D printed TPEs were compared with traditional injection molded samples. The tensile strength and Young’s modulus of the 3D printed sample were lower than the injection molded samples. However, no significant differences could be found in the melt rheological properties at higher frequency ranges or in the dynamic mechanical behavior. The phase morphologies of the 3D printed and injection molded TPEs were correlated with their respective properties. Reinforcing carbon black was used to increase the mechanical performance of the 3D printed TPE, and the balancing of thermoplastic elastomeric and mechanical properties were achieved at a lower carbon black loading. The preferential location of carbon black in the blend phases was theoretically predicted from wetting parameters. This study was made in order to get an insight to the relationship between morphology and properties of the ME3DP compatible PP/SEBS blends. Full article
(This article belongs to the Special Issue Polymer Matrix Composites for Advanced Applications)
Show Figures

Graphical abstract

36 pages, 4158 KiB  
Review
Conducting Polymers, Hydrogels and Their Composites: Preparation, Properties and Bioapplications
by Monika Tomczykowa and Marta Eliza Plonska-Brzezinska
Polymers 2019, 11(2), 350; https://doi.org/10.3390/polym11020350 - 17 Feb 2019
Cited by 131 | Viewed by 18983
Abstract
This review is focused on current state-of-the-art research on electroactive-based materials and their synthesis, as well as their physicochemical and biological properties. Special attention is paid to pristine intrinsically conducting polymers (ICPs) and their composites with other organic and inorganic components, well-defined micro- [...] Read more.
This review is focused on current state-of-the-art research on electroactive-based materials and their synthesis, as well as their physicochemical and biological properties. Special attention is paid to pristine intrinsically conducting polymers (ICPs) and their composites with other organic and inorganic components, well-defined micro- and nanostructures, and enhanced surface areas compared with those of conventionally prepared ICPs. Hydrogels, due to their defined porous structures and being filled with aqueous solution, offer the ability to increase the amount of immobilized chemical, biological or biochemical molecules. When other components are incorporated into ICPs, the materials form composites; in this particular case, they form conductive composites. The design and synthesis of conductive composites result in the inheritance of the advantages of each component and offer new features because of the synergistic effects between the components. The resulting structures of ICPs, conducting polymer hydrogels and their composites, as well as the unusual physicochemical properties, biocompatibility and multi-functionality of these materials, facilitate their bioapplications. The synergistic effects between constituents have made these materials particularly attractive as sensing elements for biological agents, and they also enable the immobilization of bioreceptors such as enzymes, antigen-antibodies, and nucleic acids onto their surfaces for the detection of an array of biological agents. Currently, these materials have unlimited applicability in biomedicine. In this review, we have limited discussion to three areas in which it seems that the use of ICPs and materials, including their different forms, are particularly interesting, namely, biosensors, delivery of drugs and tissue engineering. Full article
Show Figures

Graphical abstract

18 pages, 2266 KiB  
Article
Sorption and Desorption Studies of Pb(II) and Ni(II) from Aqueous Solutions by a New Composite Based on Alginate and Magadiite Materials
by Keltoum Attar, Hary Demey, Djamila Bouazza and Ana Maria Sastre
Polymers 2019, 11(2), 340; https://doi.org/10.3390/polym11020340 - 15 Feb 2019
Cited by 48 | Viewed by 4579
Abstract
A new composite material based on alginate and magadiite/Di-(2-ethylhexyl) phosphoric acid (CAM-D2EHPA) was successfully prepared by previous impregnation of layered magadiite with D2EHPA extractant, and then immobilized into the alginate matrix. Air dried beads of CAM-D2EHPA were characterized by FTIR and SEM–EDX techniques. [...] Read more.
A new composite material based on alginate and magadiite/Di-(2-ethylhexyl) phosphoric acid (CAM-D2EHPA) was successfully prepared by previous impregnation of layered magadiite with D2EHPA extractant, and then immobilized into the alginate matrix. Air dried beads of CAM-D2EHPA were characterized by FTIR and SEM–EDX techniques. The sorbent was used for the separation of lead and nickel from nitrate solutions; the main parameters of sorption such as contact time, pH of the solution, and initial metal concentration were studied. The beads recovered 94% of Pb(II) and 65% of Ni(II) at pH 4 from dilute solutions containing 10 mg L−1 of metal (sorbent dosage, S.D. 1 g L−1). The equilibrium data gave a better fit using the Langmuir model, and kinetic profiles were fitted using a pseudo-second order rate equation. The maximum sorption capacities obtained (at pH 4) were 197 mg g−1 and 44 mg g−1 for lead and nickel, respectively. The regeneration of the sorbent was efficiently carried out with a dilute solution of HNO3 (0.5 M). The composite material was reused in 10 sorption–elution cycles with no significant differences on sorption uptake. A study with synthetic effluents containing an equimolar concentration of both metals indicated a better selectivity towards lead ions. Full article
(This article belongs to the Special Issue Polysaccharides)
Show Figures

Graphical abstract

11 pages, 7414 KiB  
Article
Controlled Self-Assembly of Conjugated Polymers via a Solvent Vapor Pre-Treatment for Use in Organic Field-Effect Transistors
by Gyounglyul Jo, Jaehan Jung and Mincheol Chang
Polymers 2019, 11(2), 332; https://doi.org/10.3390/polym11020332 - 14 Feb 2019
Cited by 37 | Viewed by 5438
Abstract
A facile solution-processing strategy toward well-ordered one-dimensional nanostructures of conjugated polymers via a non-solvent vapor treatment was demonstrated, which resulted in enhancements to the charge transport characteristics of the polymers. The amount of crystalline poly(3-hexylthiophene) (P3HT) nanofibers was precisely controlled by simply varying [...] Read more.
A facile solution-processing strategy toward well-ordered one-dimensional nanostructures of conjugated polymers via a non-solvent vapor treatment was demonstrated, which resulted in enhancements to the charge transport characteristics of the polymers. The amount of crystalline poly(3-hexylthiophene) (P3HT) nanofibers was precisely controlled by simply varying the exposure time of solutions of P3HT solutions to non-solvent vapor. The effects of non-solvent vapor exposure on the molecular ordering and morphologies of the resultant P3HT films were systematically investigated using ultraviolet-visible (UV-vis) spectroscopy, polarized optical microscopy (POM), grazing incidence X-ray diffraction (GIXRD), and atomic force microscopy (AFM). The non-solvent vapor facilitates the π–π stacking in P3HT to minimize unfavorable interactions between the poor solvent molecules and P3HT chains. P3HT films deposited from the non-solvent vapor-treated P3HT solutions exhibited an approximately 5.6-fold improvement in charge carrier mobility as compared to that of pristine P3HT films (7.8 × 10−2 cm2 V−1 s−1 vs. 1.4 × 10−2 cm2 V−1 s−1). The robust and facile strategy presented herein would be applicable in various opto-electronics applications requiring precise control of the molecular assembly, such as organic photovoltaic cells, field-effect transistors, light-emitting diodes, and sensors. Full article
(This article belongs to the Special Issue Conductive Polymers III)
Show Figures

Graphical abstract

19 pages, 7871 KiB  
Article
Composites of Rigid Polyurethane Foams Reinforced with POSS
by Sylwia Członka, Anna Strąkowska, Krzysztof Strzelec, Agnieszka Adamus-Włodarczyk, Agnė Kairytė and Saulius Vaitkus
Polymers 2019, 11(2), 336; https://doi.org/10.3390/polym11020336 - 14 Feb 2019
Cited by 40 | Viewed by 4591
Abstract
Rigid polyurethane foams (RPUFs) were successfully modified with different weight ratios (0.5 wt%, 1.5 wt% and 5 wt%) of APIB-POSS and AEAPIB-POSS. The resulting foams were evaluated by their processing parameters, morphology (Scanning Electron Microscopy analysis, SEM), mechanical properties (compressive test, three-point bending [...] Read more.
Rigid polyurethane foams (RPUFs) were successfully modified with different weight ratios (0.5 wt%, 1.5 wt% and 5 wt%) of APIB-POSS and AEAPIB-POSS. The resulting foams were evaluated by their processing parameters, morphology (Scanning Electron Microscopy analysis, SEM), mechanical properties (compressive test, three-point bending test and impact strength), viscoelastic behavior (Dynamic Mechanical Analysis, DMA), thermal properties (Thermogravimetric Analysis, TGA, and thermal conductivity) and application properties (contact angle, water absorption and dimensional analysis). The results showed that the morphology of modified foams is significantly affected by the type of the filler and filler content, which resulted in inhomogeneous, irregular, large cell shapes and further affected the physical and mechanical properties of resulting materials. RPUFs modified with APIB-POSS represent better mechanical and thermal properties compared to the RPUFs modified with AEAPIB-POSS. The results showed that the best results were obtained for RPUFs modified with 0.5 wt% of APIB-POSS. For example, in comparison with unfilled foam, compositions modified with 0.5 wt% of APIB-POSS provide greater compression strength, better flexural strength and lower water absorption. Full article
(This article belongs to the Special Issue POSS-Based Polymers)
Show Figures

Graphical abstract

17 pages, 3658 KiB  
Article
Anti-Fouling and Anti-Bacterial Modification of Poly(vinylidene fluoride) Membrane by Blending with the Capsaicin-Based Copolymer
by Xiang Shen, Peng Liu, Shubiao Xia, Jianjun Liu, Rui Wang, Hua Zhao, Qiuju Liu, Jiao Xu and Fan Wang
Polymers 2019, 11(2), 323; https://doi.org/10.3390/polym11020323 - 13 Feb 2019
Cited by 27 | Viewed by 3978
Abstract
Membrane fouling induced by the adsorption of organic matter, and adhesion and propagation of bacteria onto the surfaces, is the major obstacle for the wide application of membrane technology. In this work, the capsaicin-based copolymer (PMMA-PACMO-Capsaicin) was synthesized via radical copolymerization using methyl [...] Read more.
Membrane fouling induced by the adsorption of organic matter, and adhesion and propagation of bacteria onto the surfaces, is the major obstacle for the wide application of membrane technology. In this work, the capsaicin-based copolymer (PMMA-PACMO-Capsaicin) was synthesized via radical copolymerization using methyl methacrylate (MMA), N-acrylomorpholine (ACMO) and 8-methyl-N-vanillyl-6-nonenamide (capsaicin) as monomers. Subsequently, the capsaicin-based copolymer was readily blended with PVDF to fabricate PVDF/PMMA-PACMO-Capsaicin flat sheet membrane via immersed phase inversion method. The effects of copolymer concentration on the structure and performance of resultant membranes were evaluated systematically. With increase of PMMA-PACMO-Capsaicin copolymer concentration in the casting solution, the sponge-like layer at the membrane cross-section transfers to macroviod, and the pore size and porosity of membranes increase remarkably. The adsorbed bovine serum albumin protein (BSA) amounts to PVDF/PMMA-PACMO-Capsaicin membranes decrease significantly because of the enhanced surface hydrophilicty. During the cycle filtration of pure water and BSA solution, the prepared PVDF/PMMA-PACMO-Capsaicin membranes have a higher flux recovery ratio (FFR) and lower irreversible membrane fouling ratio (Rir), as compared with pristine PVDF membrane. PVDF/PMMA-PACMO-Capsaicin membrane is found to suppress the growth and propagation of Staphylococcus aureus bacteria, achieving an anti-bacterial efficiency of 88.5%. These results confirm that the anti-fouling and anti-bacterial properties of PVDF membrane are enhanced obviously by blending with the PMMA-PACMO-Capsaicin copolymer. Full article
(This article belongs to the Special Issue Advanced Engineering Plastics)
Show Figures

Graphical abstract

16 pages, 5060 KiB  
Article
Lightweight High-Performance Polymer Composite for Automotive Applications
by Valentina Volpe, Sofia Lanzillo, Giovanni Affinita, Beniamino Villacci, Innocenzo Macchiarolo and Roberto Pantani
Polymers 2019, 11(2), 326; https://doi.org/10.3390/polym11020326 - 13 Feb 2019
Cited by 62 | Viewed by 6841
Abstract
The automotive industry needs to produce plastic products with high dimensional accuracy and reduced weight, and this need drives the research toward less conventional industrial processes. The material that was adopted in this work is a glass-fiber-reinforced polyamide 66 (PA66), a material of [...] Read more.
The automotive industry needs to produce plastic products with high dimensional accuracy and reduced weight, and this need drives the research toward less conventional industrial processes. The material that was adopted in this work is a glass-fiber-reinforced polyamide 66 (PA66), a material of great interest for the automotive industry because of its excellent properties, although being limited in application because of its relatively high cost. In order to reduce the cost of the produced parts, still preserving the main properties of the material, the possibility of applying microcellular injection molding process was explored in this work. In particular, the influence of the main processing parameters on morphology and performance of PA66 + 30% glass-fiber foamed parts was investigated. An analysis of variance (ANOVA) was employed to identify the significant factors that influence the morphology of the molded parts. According to ANOVA results, in order to obtain homogeneous foamed parts with good mechanical properties, an injection temperature of 300 °C, a high gas injection pressure, and a large thickness of the parts should be adopted. Full article
(This article belongs to the Special Issue Foaming and Injection Moulding in Polymer Processing)
Show Figures

Graphical abstract

10 pages, 2001 KiB  
Article
Effect of Ultrasonic Vibration on Interlayer Adhesion in Fused Filament Fabrication 3D Printed ABS
by Alireza Tofangchi, Pu Han, Julio Izquierdo, Adithya Iyengar and Keng Hsu
Polymers 2019, 11(2), 315; https://doi.org/10.3390/polym11020315 - 13 Feb 2019
Cited by 58 | Viewed by 9415
Abstract
One of the fundamental issues in the Fused Filament Fabrication (FFF) additive manufacturing process lies in the mechanical property anisotropy where the strength of the FFF-3D printed part in the build-direction can be significantly lower than that in other directions. The physical phenomenon [...] Read more.
One of the fundamental issues in the Fused Filament Fabrication (FFF) additive manufacturing process lies in the mechanical property anisotropy where the strength of the FFF-3D printed part in the build-direction can be significantly lower than that in other directions. The physical phenomenon that governs this issue is the coupled effect of macroscopic thermal mechanical issues associated with the thermal history of the interface, and the microscopic effect of the polymer microstructure and mass transfer across interfaces. In this study it was found that the use of 34.4 kHz ultrasonic vibrations during FFF-3D printing results in an increase of up to 10% in the interlayer adhesion in Acrylonitrile Butadiene Styrene (ABS), comparing the printing in identical thermal conditions to that in conventional FFF printing. This increase in the interlayer adhesion strength is attributed to the increase in polymer reptation due to ultrasonic vibration-induced relaxation of the polymer chains from secondary interactions in the interface regions. Full article
(This article belongs to the Special Issue Materials and Methods for New Technologies in Polymer Processing)
Show Figures

Graphical abstract

14 pages, 1163 KiB  
Article
Study Rheological Behavior of Polymer Solution in Different-Medium-Injection-Tools
by Bin Huang, Xiaohui Li, Cheng Fu, Ying Wang and Haoran Cheng
Polymers 2019, 11(2), 319; https://doi.org/10.3390/polym11020319 - 13 Feb 2019
Cited by 18 | Viewed by 4062
Abstract
Previous studies showed the difficulty during polymer flooding and the low producing degree for the low permeability layer. To solve the problem, Daqing, the first oil company, puts forward the polymer-separate-layer-injection-technology which separates mass and pressure in a single pipe. This technology mainly [...] Read more.
Previous studies showed the difficulty during polymer flooding and the low producing degree for the low permeability layer. To solve the problem, Daqing, the first oil company, puts forward the polymer-separate-layer-injection-technology which separates mass and pressure in a single pipe. This technology mainly increases the control range of injection pressure of fluid by using the annular de-pressure tool, and reasonably distributes the molecular weight of the polymer injected into the thin and poor layers through the shearing of the different-medium-injection-tools. This occurs, in order to take advantage of the shearing thinning property of polymer solution and avoid the energy loss caused by the turbulent flow of polymer solution due to excessive injection rate in different injection tools. Combining rheological property of polymer and local perturbation theory, a rheological model of polymer solution in different-medium-injection-tools is derived and the maximum injection velocity is determined. The ranges of polymer viscosity in different injection tools are mainly determined by the structures of the different injection tools. However, the value of polymer viscosity is mainly determined by the concentration of polymer solution. So, the relation between the molecular weight of polymer and the permeability of layers should be firstly determined, and then the structural parameter combination of the different-medium-injection-tool should be optimized. The results of the study are important for regulating polymer injection parameters in the oilfield which enhances the oil recovery with reduced the cost. Full article
Show Figures

Graphical abstract

14 pages, 4623 KiB  
Article
Chitosan-Modified PLGA Nanoparticles for Control-Released Drug Delivery
by Boting Lu, Xikun Lv and Yuan Le
Polymers 2019, 11(2), 304; https://doi.org/10.3390/polym11020304 - 12 Feb 2019
Cited by 210 | Viewed by 15931
Abstract
Poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) are well recognized as an ideal drug delivery carrier for their biocompatibility and biodegradability. In order to overcome the disadvantage of drug burst release, chitosan (CS) was used to modify the PLGA nanoparticles. In this [...] Read more.
Poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) are well recognized as an ideal drug delivery carrier for their biocompatibility and biodegradability. In order to overcome the disadvantage of drug burst release, chitosan (CS) was used to modify the PLGA nanoparticles. In this work, CS-PLGA nanoparticles with different ratio of CS to PLGA were prepared using high-gravity rotating packed bed (RPB). With the increase of amount of CS, the particle size increased from 132.8 ± 1.5 nm to 172.7 ± 3.2 nm, zeta potential increased from −20.8 ± 1.1 mV to 25.6 ± 0.6 mV, and drug encapsulation efficiency increased from 65.8% to 87.1%. The initial burst release of PLGA NPs reduced after being modified by CS, and the cumulative release was 66.9%, 41.9%, 23.8%, and 14.3%, after 2 h, respectively. The drug release of CS-modified PLGA NPs was faster at pH5.5 than that at pH 7.4. The cellular uptake of CS-modified PLGA NPs increased compared with PLGA NPs, while cell viability was reduced. In conclusion, these results indicated that CS-modified, PTX-loaded PLGA NPs have the advantages of sustained drug release and enhanced drug toxicity, suggesting that CS-modified NPs can be used as carriers of anticancer drugs. Full article
Show Figures

Graphical abstract

18 pages, 3753 KiB  
Article
Hydrolyzable Additive-Based Silicone Elastomers: A New Approach for Antifouling Coatings
by Laure Gevaux, Marlène Lejars, André Margaillan, Jean-François Briand, Robert Bunet and Christine Bressy
Polymers 2019, 11(2), 305; https://doi.org/10.3390/polym11020305 - 12 Feb 2019
Cited by 33 | Viewed by 5988
Abstract
Fouling Release Coatings are marine antifouling coatings based on silicone elastomers. Contrary to commonly used biocide-based antifouling coatings, they do not release biocides into the marine environment, however, they suffer from poor antifouling efficacy during idle periods. To improve their antifouling performances in [...] Read more.
Fouling Release Coatings are marine antifouling coatings based on silicone elastomers. Contrary to commonly used biocide-based antifouling coatings, they do not release biocides into the marine environment, however, they suffer from poor antifouling efficacy during idle periods. To improve their antifouling performances in static conditions, various amounts of hydrolyzable polymers were incorporated within a silicone matrix. These hydrolyzable polymers were chosen for the well-known hydrolytic degradation mechanism of their main chain, e.g. poly(ε-caprolactone) (PCL), or of their ester pending groups, e.g. poly(bis(trimethylsilyloxy)methylsilyl methacrylate) (PMATM2). The degradation kinetics of such hydrolyzable silicone coatings were assessed by mass loss measurements during immersion in deionized water. Coatings containing PMATM2 exhibited a maximum mass loss after 12 weeks, whereas PCL-based coatings showed no significant mass loss after 24 weeks. Dynamic contact angle measurements revealed the modifications of the coatings surface chemistry with an amphiphilic behavior after water exposure. The attachment of macrofoulers on these coatings were evaluated by field tests in the Mediterranean Sea, demonstrating the short or long-term antifouling effect of these hydrolyzable polymers embedded in the silicone matrix. The settlement of A. amphitrite barnacles on the different coatings indicated inhospitable behaviors towards larval barnacles for coatings with at least 15 wt % of additives. Full article
(This article belongs to the Collection Silicon-Containing Polymeric Materials)
Show Figures

Graphical abstract

39 pages, 9641 KiB  
Review
Chemical Modification and Foam Processing of Polylactide (PLA)
by Tobias Standau, Chunjing Zhao, Svenja Murillo Castellón, Christian Bonten and Volker Altstädt
Polymers 2019, 11(2), 306; https://doi.org/10.3390/polym11020306 - 12 Feb 2019
Cited by 129 | Viewed by 22346
Abstract
Polylactide (PLA) is known as one of the most promising biopolymers as it is derived from renewable feedstock and can be biodegraded. During the last two decades, it moved more and more into the focus of scientific research and industrial use. It is [...] Read more.
Polylactide (PLA) is known as one of the most promising biopolymers as it is derived from renewable feedstock and can be biodegraded. During the last two decades, it moved more and more into the focus of scientific research and industrial use. It is even considered as a suitable replacement for standard petroleum-based polymers, such as polystyrene (PS), which can be found in a wide range of applications—amongst others in foams for packaging and insulation applications—but cause strong environmental issues. PLA has comparable mechanical properties to PS. However, the lack of melt strength is often referred to as a drawback for most foaming processes. One way to overcome this issue is the incorporation of chemical modifiers which can induce chain extension, branching, or cross-linking. As such, a wide variety of substances were studied in the literature. This work should give an overview of the most commonly used chemical modifiers and their effects on rheological, thermal, and foaming behavior. Therefore, this review article summarizes the research conducted on neat and chemically modified PLA foamed with the conventional foaming methods (i.e., batch foaming, foam extrusion, foam injection molding, and bead foaming). Full article
(This article belongs to the Special Issue Foaming and Injection Moulding in Polymer Processing)
Show Figures

Graphical abstract

31 pages, 2775 KiB  
Review
Grubbs’ and Schrock’s Catalysts, Ring Opening Metathesis Polymerization and Molecular Brushes—Synthesis, Characterization, Properties and Applications
by Ioannis Choinopoulos
Polymers 2019, 11(2), 298; https://doi.org/10.3390/polym11020298 - 11 Feb 2019
Cited by 58 | Viewed by 11092
Abstract
In this review, molecular brushes and other macromolecular architectures bearing a bottlebrush segment where the main chain is synthesized by ring opening metathesis polymerization (ROMP) mediated by Mo or Ru metal complexes are considered. A brief review of metathesis and ROMP is presented [...] Read more.
In this review, molecular brushes and other macromolecular architectures bearing a bottlebrush segment where the main chain is synthesized by ring opening metathesis polymerization (ROMP) mediated by Mo or Ru metal complexes are considered. A brief review of metathesis and ROMP is presented in order to understand the problems and the solutions provided through the years. The synthetic strategies towards bottlebrush copolymers are demonstrated and each one discussed separately. The initiators/catalysts for the synthesis of the backbone with ROMP are discussed. Syntheses of molecular brushes are presented. The most interesting properties of the bottlebrushes are detailed. Finally, the applications studied by different groups are presented. Full article
(This article belongs to the Special Issue Polymerizations Promoted by Metal Complexes)
Show Figures

Graphical abstract

13 pages, 4121 KiB  
Article
Thermal Healing, Reshaping and Ecofriendly Recycling of Epoxy Resin Crosslinked with Schiff Base of Vanillin and Hexane-1,6-Diamine
by Van-Dung Mai, Se-Ra Shin, Dai-Soo Lee and Ilho Kang
Polymers 2019, 11(2), 293; https://doi.org/10.3390/polym11020293 - 10 Feb 2019
Cited by 70 | Viewed by 9324
Abstract
A bio-derived dihydroxylimine hardener, Van2HMDA, for the curing of epoxy resin was prepared from vanillin (Van) and hexamethylene-1,6-diamine (HMDA) by Schiff base formation. The epoxy resin of diglycidyl ether of bisphenol A was cured with Van2HMDA in the presence of the catalyst, 2-ethyl-4-methylimidazole [...] Read more.
A bio-derived dihydroxylimine hardener, Van2HMDA, for the curing of epoxy resin was prepared from vanillin (Van) and hexamethylene-1,6-diamine (HMDA) by Schiff base formation. The epoxy resin of diglycidyl ether of bisphenol A was cured with Van2HMDA in the presence of the catalyst, 2-ethyl-4-methylimidazole (EMI). The crosslinked epoxy resin showed thermal-healing properties at elevated temperatures. Moreover, the crosslinked epoxy resin can be reshaped by heating via imine metathesis of the hardener units. The imine metathesis of Van2HMDA was confirmed experimentally. Stress-relaxation properties of the epoxy resin crosslinked with Van2HMDA were investigated, and the activation energy obtained from Arrhenius plots of the relaxation times was 44 kJ/mol. The imine bonds in the epoxy polymer matrix did not undergo hydrolysis after immersing in water at room temperature for one week. However, in the presence of acid, the crosslinked polymer was easily decomposed due to the hydrolysis of imine bonds. The hydrolysis of imine bonds was used for the ecofriendly recycling of crosslinked polymer. It is inferred that thermal-healing, reshaping, and reprocessing properties can be implemented in the various crosslinked epoxy resins with the bio-derived dihydroxylimine hardener, albeit the recycled epoxy resin is of inevitably lower quality than the original material. Full article
(This article belongs to the Special Issue Dynamic Chemistry in Polymer Science)
Show Figures

Graphical abstract

25 pages, 6339 KiB  
Article
Phosphorus Containing Polyacrylamides as Flame Retardants for Epoxy-Based Composites in Aviation
by Lara Greiner, Philipp Kukla, Sebastian Eibl and Manfred Döring
Polymers 2019, 11(2), 284; https://doi.org/10.3390/polym11020284 - 8 Feb 2019
Cited by 30 | Viewed by 4957
Abstract
Novel polymeric flame retardants based on two acrylamides and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) or 5,5-dimethyl-[1,3,2]dioxaphosphinane-2-oxide (DDPO) are described for several applications in HexFlow® RTM6, a high-performance epoxy resin. Neat resin samples and carbon fiber-reinforced composites were tested for their glass transition temperatures (dynamic mechanical [...] Read more.
Novel polymeric flame retardants based on two acrylamides and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) or 5,5-dimethyl-[1,3,2]dioxaphosphinane-2-oxide (DDPO) are described for several applications in HexFlow® RTM6, a high-performance epoxy resin. Neat resin samples and carbon fiber-reinforced composites were tested for their glass transition temperatures (dynamic mechanical analysis), thermal stability (thermogravimetric analyses), flammability (UL94) and flame-retardant performance (Cone Calorimetry). Additionally, the fiber degradation occurring during combustion of carbon fiber-reinforced epoxy resins was observed by scanning electron microscopy to show the fiber protecting effect of these flame retardants. Whereas DOPO-containing polyacrylamides acting mainly in the gas phase showed the best flame retardant efficiency, DDPO-containing polyacrylamides acting mainly in the condensed phase showed the best fiber protection. A mixed polyacrylamide was synthesized to combine these effects. This thermoplastic is soluble in the resin and, therefore, suitable for injection molding processes. Interlaminar shear strength measurements showed no negative effect of the flame retardant. The versatility of these flame retardants is shown by investigations dealing with boehmite as synergist in neat resin samples. Full article
(This article belongs to the Special Issue Flame Retardancy of Polymeric Materials)
Show Figures

Graphical abstract

18 pages, 3061 KiB  
Review
Transparent to Black Electrochromism—The “Holy Grail” of Organic Optoelectronics
by Tomasz Jarosz, Karolina Gebka, Agnieszka Stolarczyk and Wojciech Domagala
Polymers 2019, 11(2), 273; https://doi.org/10.3390/polym11020273 - 6 Feb 2019
Cited by 36 | Viewed by 5619
Abstract
In the rapidly developing field of conjugated polymer science, the attribute of electrochromism these materials exhibit provides for a multitude of innovative application opportunities. Featuring low electric potential driven colour change, complemented by favourable mechanical and processing properties, an array of non-emissive electrochromic [...] Read more.
In the rapidly developing field of conjugated polymer science, the attribute of electrochromism these materials exhibit provides for a multitude of innovative application opportunities. Featuring low electric potential driven colour change, complemented by favourable mechanical and processing properties, an array of non-emissive electrochromic device (ECD) applications lays open ahead of them. Building up from the simplest two-colour cell, multielectrochromic arrangements are being devised, taking advantage of new electrochromic materials emerging at a fast pace. The ultimate device goal encompasses full control over the intensity and spectrum of passing light, including the two extremes of complete and null transmittance. With numerous electrochromic device architectures being explored and their operating parameters constantly ameliorated to pursue this target, a summary and overview of developments in the field is presented. Discussing the attributes of reported electrochromic systems, key research points and challenges are identified, providing an outlook for this exciting topic of polymer material science. Full article
(This article belongs to the Special Issue Electrochromic Polymers)
Show Figures

Graphical abstract

15 pages, 3738 KiB  
Article
Enhanced Formaldehyde Removal from Air Using Fully Biodegradable Chitosan Grafted β-Cyclodextrin Adsorbent with Weak Chemical Interaction
by Zujin Yang, Hongchen Miao, Zebao Rui and Hongbing Ji
Polymers 2019, 11(2), 276; https://doi.org/10.3390/polym11020276 - 6 Feb 2019
Cited by 35 | Viewed by 5027
Abstract
Formaldehyde (HCHO) is an important indoor air pollutant. Herein, a fully biodegradable adsorbent was synthesized by the crosslinking reaction of β-cyclodextrin (β-CD) and chitosan via glutaraldehyde (CGC). The as-prepared CGC showed large adsorption capacities for gaseous formaldehyde. To clarify the adsorption performance of [...] Read more.
Formaldehyde (HCHO) is an important indoor air pollutant. Herein, a fully biodegradable adsorbent was synthesized by the crosslinking reaction of β-cyclodextrin (β-CD) and chitosan via glutaraldehyde (CGC). The as-prepared CGC showed large adsorption capacities for gaseous formaldehyde. To clarify the adsorption performance of the as-synthesized HCHO adsorbents, changing the adsorption parameters performed various continuous flow adsorption tests. It was found that the adsorption data agreed best with the Freundlich isotherm, and the HCHO adsorption kinetic data fitted well with the pseudo second order model. The breakthrough curves indicated that the HCHO adsorbing capacity of CGC was up to 15.5 mg/g, with the inlet HCHO concentration of 46.1 mg/m3, GHSV of 28 mL/min, and temperature of 20 °C. The regeneration and reusability of the adsorbent were evaluated and CGC was found to retain its adsorptive capacity after four cycles. The introduction of β-CD was a key factor for the satisfied HCHO adsorption performance of CGC. A plausible HCHO adsorption mechanism by CGC with the consideration of the synergistic effects of Schiff base reaction and the hydrogen bonding interaction was proposed based on in situ DRIFTS studies. The present study suggests that CGC is a promising adsorbent for the indoor formaldehyde treatment. Full article
(This article belongs to the Special Issue Cyclodextrin-Containing Polymers)
Show Figures

Graphical abstract

35 pages, 5121 KiB  
Review
Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior
by Corinna Dannert, Bjørn Torger Stokke and Rita S. Dias
Polymers 2019, 11(2), 275; https://doi.org/10.3390/polym11020275 - 6 Feb 2019
Cited by 156 | Viewed by 14768
Abstract
Hydrogels are materials used in a variety of applications, ranging from tissue engineering to drug delivery. The incorporation of nanoparticles to yield composite hydrogels has gained substantial momentum over the years since these afford tailor-making and extend material mechanical properties far beyond those [...] Read more.
Hydrogels are materials used in a variety of applications, ranging from tissue engineering to drug delivery. The incorporation of nanoparticles to yield composite hydrogels has gained substantial momentum over the years since these afford tailor-making and extend material mechanical properties far beyond those achievable through molecular design of the network component. Here, we review different procedures that have been used to integrate nanoparticles into hydrogels; the types of interactions acting between polymers and nanoparticles; and how these underpin the improved mechanical and optical properties of the gels, including the self-healing ability of these composite gels, as well as serving as the basis for future development. In a less explored approach, hydrogels have been used as dispersants of nanomaterials, allowing a larger exposure of the surface of the nanomaterial and thus a better performance in catalytic and sensor applications. Furthermore, the reporting capacity of integrated nanoparticles in hydrogels to assess hydrogel properties, such as equilibrium swelling and elasticity, is highlighted. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Show Figures

Graphical abstract

10 pages, 1681 KiB  
Article
Extruded Polystyrene Foams with Enhanced Insulation and Mechanical Properties by a Benzene-Trisamide-Based Additive
by Merve Aksit, Chunjing Zhao, Bastian Klose, Klaus Kreger, Hans-Werner Schmidt and Volker Altstädt
Polymers 2019, 11(2), 268; https://doi.org/10.3390/polym11020268 - 5 Feb 2019
Cited by 27 | Viewed by 8018
Abstract
Low thermal conductivity and adequate mechanical strength are desired for extruded polystyrene foams when they are applied as insulation materials. In this study, we improved the thermal insulation behavior and mechanical properties of extruded polystyrene foams through morphology control with the foam nucleating [...] Read more.
Low thermal conductivity and adequate mechanical strength are desired for extruded polystyrene foams when they are applied as insulation materials. In this study, we improved the thermal insulation behavior and mechanical properties of extruded polystyrene foams through morphology control with the foam nucleating agent 1,3,5-benzene-trisamide. Furthermore, the structure–property relationships of extruded polystyrene foams were established. Extruded polystyrene foams with selected concentrations of benzene-trisamide were used to evaluate the influence of cell size and foam density on the thermal conductivity. It was shown that the addition of benzene-trisamide reduces the thermal conductivity by up to 17%. An increase in foam density led to a higher compression modulus of the foams. With 0.2 wt % benzene-trisamide, the compression modulus increased by a factor of 4 from 11.7 ± 2.7 MPa for the neat polystyrene (PS) to 46.3 ± 4.3 MPa with 0.2 wt % benzene-trisamide. The increase in modulus was found to follow a power law relationship with respect to the foam density. Furthermore, the compression moduli were normalized by the foam density in order to evaluate the effect of benzene-trisamide alone. A 0.2 wt % benzene-trisamide increased the normalized compression modulus by about 23%, which could be attributed to the additional stress contribution of nanofibers, and might also retard the face stretching and edge bending of the foams. Full article
Show Figures

Figure 1

10 pages, 2094 KiB  
Article
Green Polyurethanes from Renewable Isocyanates and Biobased White Dextrins
by Jakob Konieczny and Katja Loos
Polymers 2019, 11(2), 256; https://doi.org/10.3390/polym11020256 - 3 Feb 2019
Cited by 45 | Viewed by 12127
Abstract
Polyurethanes (PUs) are an important class of polymers due to their low density and thermal conductivity combined with their interesting mechanical properties—they are extensively used as thermal and sound insulators, as well as structural and comfort materials. Despite the broad range of applications, [...] Read more.
Polyurethanes (PUs) are an important class of polymers due to their low density and thermal conductivity combined with their interesting mechanical properties—they are extensively used as thermal and sound insulators, as well as structural and comfort materials. Despite the broad range of applications, the production of PUs is still highly petroleum-dependent. The use of carbohydrates in PU synthesis has not yet been studied extensively, even though, as multihydroxyl compounds, they can easily serve as crosslinkers in PU synthesis. Partially or potentially biobased di-, tri- or poly-isocyanates can further be used to increase the renewable content of PUs. In our research, PU films could be easily produced using two bio-based isocyanates—ethyl ester L-lysine diisocyanate (LLDI] and ethyl ester l-lysine triisocyanate (LLTI)—, one commercial isocyanate—isophorone diisocyanate (IPDI), and a bio-based white dextrin (AVEDEX W80) as a crosslinker. The thermal and mechanical properties are evaluated and compared as well as the stability against solvents. Full article
(This article belongs to the Special Issue Polymers: Design, Function and Application)
Show Figures

Graphical abstract

11 pages, 2992 KiB  
Article
Rheological Characterization of Hydrogels from Alginate-Based Nanodispersion
by Francesca Cuomo, Martina Cofelice and Francesco Lopez
Polymers 2019, 11(2), 259; https://doi.org/10.3390/polym11020259 - 3 Feb 2019
Cited by 88 | Viewed by 13500
Abstract
The interest toward alginate and nanoemulsion-based hydrogels is driven by the wide potential of application. These systems have been noticed in several areas, ranging from pharmaceutical, medical, coating, and food industries. In this investigation, hydrogels prepared through in situ calcium ion release, starting [...] Read more.
The interest toward alginate and nanoemulsion-based hydrogels is driven by the wide potential of application. These systems have been noticed in several areas, ranging from pharmaceutical, medical, coating, and food industries. In this investigation, hydrogels prepared through in situ calcium ion release, starting from lemongrass essential oil nanodispersions stabilized in alginate aqueous suspensions in the presence of the nonionic surfactant Tween 80, were evaluated. The hydrogels prepared at different concentrations of oil, alginate, and calcium were characterized through rheological tests. Flow curves demonstrate that the hydrogels share shear thinning behavior. Oscillatory tests showed that the strength of the hydrogel network increases with the crosslinker increase, and decreases at low polymer concentrations. The hydrogels were thixotropic materials with a slow time of structural restoration after breakage. Finally, by analyzing the creep recovery data, the hydrogel responses were all fitted to the Burger model. Overall, it was demonstrated that the presence of essential oil in the proposed hydrogels does not affect the mechanical characteristics of the materials, which are mainly influenced by the concentration of polymer and calcium as a crosslinker. Full article
(This article belongs to the Special Issue Hydrophilic Polymers)
Show Figures

Figure 1

18 pages, 6870 KiB  
Article
Effect of Cellulose Nanofiber (CNF) Surface Treatment on Cellular Structures and Mechanical Properties of Polypropylene/CNF Nanocomposite Foams via Core-Back Foam Injection Molding
by Long Wang, Kiyomi Okada, Yuta Hikima, Masahiro Ohshima, Takafumi Sekiguchi and Hiroyuki Yano
Polymers 2019, 11(2), 249; https://doi.org/10.3390/polym11020249 - 2 Feb 2019
Cited by 56 | Viewed by 6974
Abstract
Herein, lightweight nanocomposite foams with expansion ratios ranging from 2–10-fold were fabricated using an isotactic polypropylene (iPP) matrix and cellulose nanofiber (CNF) as the reinforcing agent via core-back foam injection molding (FIM). Both the native and modified CNFs, including the different degrees of [...] Read more.
Herein, lightweight nanocomposite foams with expansion ratios ranging from 2–10-fold were fabricated using an isotactic polypropylene (iPP) matrix and cellulose nanofiber (CNF) as the reinforcing agent via core-back foam injection molding (FIM). Both the native and modified CNFs, including the different degrees of substitution (DS) of 0.2 and 0.4, were melt-prepared and used for producing the polypropylene (PP)/CNF composites. Foaming results revealed that the addition of CNF greatly improved the foamability of PP, reaching 2–3 orders of magnitude increases in cell density, in comparison to those of the neat iPP foams. Moreover, tensile test results showed that the incorporation of CNF increased the tensile modulus and yield stress of both solid and 2-fold foamed PP, and a greater reinforcing effect was achieved in composites containing modified CNF. In the compression test, PP/CNF composite foams prepared with a DS of 0.4 exhibited dramatic improvements in mechanical performance for 10-fold foams, in comparison to iPP, with increases in the elastic modulus and collapse stress of PP foams of 486% and 468%, respectively. These results demonstrate that CNF is extraordinarily helpful in enhancing the foamability of PP and reinforcing PP foams, which has importance for the development of lightweight polymer composite foams containing a natural nanofiber. Full article
(This article belongs to the Special Issue Polymeric Foams)
Show Figures

Graphical abstract

21 pages, 3134 KiB  
Article
Adsorption Properties of β- and Hydroxypropyl-β-Cyclodextrins Cross-Linked with Epichlorohydrin in Aqueous Solution. A Sustainable Recycling Strategy in Textile Dyeing Process
by José A. Pellicer, María I. Rodríguez-López, María I. Fortea, Carmen Lucas-Abellán, María T. Mercader-Ros, Santiago López-Miranda, Vicente M. Gómez-López, Paola Semeraro, Pinalysa Cosma, Paola Fini, Esther Franco, Marcela Ferrándiz, Enrique Pérez, Miguel Ferrándiz, Estrella Núñez-Delicado and José A. Gabaldón
Polymers 2019, 11(2), 252; https://doi.org/10.3390/polym11020252 - 2 Feb 2019
Cited by 45 | Viewed by 4462
Abstract
β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) were used to prepare insoluble polymers using epichlorohydrin as a cross-linking agent and the azo dye Direct Red 83:1 was used as target adsorbate. The preliminary study related to adsorbent dosage, pH, agitation or dye concentration allowed us [...] Read more.
β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) were used to prepare insoluble polymers using epichlorohydrin as a cross-linking agent and the azo dye Direct Red 83:1 was used as target adsorbate. The preliminary study related to adsorbent dosage, pH, agitation or dye concentration allowed us to select the best conditions to carry out the rest of experiments. The kinetics was evaluated by Elovich, pseudo first order, pseudo second order, and intra-particle diffusion models. The results indicated that the pseudo second order model presented the best fit to the experimental data, indicating that chemisorption is controlling the process. The results were also evaluated by Freundlich, Langmuir and Temkin isotherms. According to the determination coefficient (R2), Freunlich gave the best results, which indicates that the adsorption process is happening on heterogeneous surfaces. One interesting parameter obtained from Langmuir isotherm is qmax (maximum adsorption capacity). This value was six times higher when a β-CDs-EPI polymer was employed. The cross-linked polymers were fully characterized by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA). Also, morphology and particle size distribution were both assessed. Under optimized conditions, the β-CDs-EPI polymer seems to be a useful device for removing Direct Red 83:1 (close 90%), from aqueous solutions and industrial effluents. Complementarily, non-adsorbed dye was photolyzed by a pulsed light driven advanced oxidation process. The proposed methodology is environmental and economically advantageous, considering the point of view of a sustainable recycling economy in the textile dyeing process. Full article
Show Figures

Graphical abstract

15 pages, 2129 KiB  
Article
Eco-Innovation in Reusing Food By-Products: Separation of Ovalbumin from Salted Egg White Using Aqueous Two-Phase System of PEG 1000/(NH4)2SO4
by Bin Jiang, Jiaxin Na, Lele Wang, Dongmei Li, Chunhong Liu and Zhibiao Feng
Polymers 2019, 11(2), 238; https://doi.org/10.3390/polym11020238 - 1 Feb 2019
Cited by 14 | Viewed by 9021
Abstract
For the purpose of reducing pollution and the rational use of salted egg white, which is a byproduct of the manufacturing process of salted egg yolk, an aqueous two-phase system (ATPS) composed of polyethylene glycols (PEG 1000) and (NH4)2SO [...] Read more.
For the purpose of reducing pollution and the rational use of salted egg white, which is a byproduct of the manufacturing process of salted egg yolk, an aqueous two-phase system (ATPS) composed of polyethylene glycols (PEG 1000) and (NH4)2SO4 was investigated to selectively separate ovalbumin (OVA) from salted egg white. With the aim of optimizing the selective separation of OVA using ATPS, a response surface method (RSM) experiment was carried out on the basis of a single-factor experiment. The OVA was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE), reversed-phase high-performance liquid chromatography (RP-HPLC), liquid chromatography-nano electrospray ionization mass spectrometry (Nano LC-ESI-MS/MS), and Fourier transform infrared spectroscopy (FT-IR). Under the optimal conditions, the recovery yield of OVA through ATPS (Y) and the purity of OVA (P) could reach 89.25% and 96.28%, respectively. In conclusion, OVA was successfully separated from the salted egg white by PEG/(NH4)2SO4 ATPS. Full article
(This article belongs to the Special Issue Food Polymers: Chemistry, Structure, Function and Application)
Show Figures

Graphical abstract

15 pages, 4655 KiB  
Article
A Novel POSS-Based Copolymer Functionalized Graphene: An Effective Flame Retardant for Reducing the Flammability of Epoxy Resin
by Min Li, Hong Zhang, Wenqian Wu, Meng Li, Yiting Xu, Guorong Chen and Lizong Dai
Polymers 2019, 11(2), 241; https://doi.org/10.3390/polym11020241 - 1 Feb 2019
Cited by 24 | Viewed by 4016
Abstract
In this study, a novel copolymer, PbisDOPOMA-POSSMA-GMA (PDPG), containing methacryloisobutyl polyhedral oligomeric silsesquioxane (POSSMA), reactive glycidyl methacrylate (GMA), and bis-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide methacrylate (bisDOPOMA) and derivative functionalized graphene oxide (GO) were synthesized by a one-step grafting reaction to create a hybrid flame retardant (GO-MD-MP). GO-MD-MP [...] Read more.
In this study, a novel copolymer, PbisDOPOMA-POSSMA-GMA (PDPG), containing methacryloisobutyl polyhedral oligomeric silsesquioxane (POSSMA), reactive glycidyl methacrylate (GMA), and bis-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide methacrylate (bisDOPOMA) and derivative functionalized graphene oxide (GO) were synthesized by a one-step grafting reaction to create a hybrid flame retardant (GO-MD-MP). GO-MD-MP was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). Flame-retardant epoxy resin (EP) composites were prepared by adding various amounts of GO-MD-MP to the thermal-curing epoxy resin of diglycidyl ether of bisphenol A (DGEBA, trade name E-51). The thermal properties of the EP composites were remarkably enhanced by adding the GO-MD-MP, and the residue char of the epoxy resin also increased greatly. With the incorporation of 4 wt % GO-MD-MP, the limiting oxygen index (LOI) value was enhanced to 31.1% and the UL-94 V-0 rating was easily achieved. In addition, the mechanical strength of the epoxy resin was also improved. Full article
(This article belongs to the Special Issue POSS-Based Polymers)
Show Figures

Figure 1

18 pages, 3325 KiB  
Article
Modeling the Optimal Conditions for Improved Efficacy and Crosslink Depth of Photo-Initiated Polymerization
by Jui-Teng Lin, Hsia-Wei Liu, Kuo-Ti Chen and Da-Chuan Cheng
Polymers 2019, 11(2), 217; https://doi.org/10.3390/polym11020217 - 27 Jan 2019
Cited by 18 | Viewed by 3405
Abstract
Optimal conditions for maximum efficacy of photoinitiated polymerization are theoretically presented. Analytic formulas are shown for the crosslink time, crosslink depth, and efficacy function. The roles of photoinitiator (PI) concentration, diffusion depth, and light intensity on the polymerization spatial and temporal profiles are [...] Read more.
Optimal conditions for maximum efficacy of photoinitiated polymerization are theoretically presented. Analytic formulas are shown for the crosslink time, crosslink depth, and efficacy function. The roles of photoinitiator (PI) concentration, diffusion depth, and light intensity on the polymerization spatial and temporal profiles are presented for both uniform and non-uniform cases. For the type I mechanism, higher intensity may accelerate the polymer action process, but it suffers a lower steady-state efficacy. This may be overcome by a controlled re-supply of PI concentration during the light exposure. In challenging the conventional Beer–Lambert law (BLL), a generalized, time-dependent BLL (a Lin-law) is derived. This study, for the first time, presents analytic formulas for curing depth and crosslink time without the assumption of thin-film or spatial average. Various optimal conditions are developed for maximum efficacy based on a numerically-fit A-factor. Experimental data are analyzed for the role of PI concentration and light intensity on the gelation (crosslink) time and efficacy. Full article
(This article belongs to the Special Issue Stimuli Responsive Polymers II)
Show Figures

Graphical abstract

15 pages, 3146 KiB  
Article
Improved Mechanical and Electrochemical Properties of XNBR Dielectric Elastomer Actuator by Poly(dopamine) Functionalized Graphene Nano-Sheets
by Dan Yang, Xinxin Kong, Yufeng Ni, Mengnan Ruan, Shuo Huang, Puzhen Shao, Wenli Guo and Liqun Zhang
Polymers 2019, 11(2), 218; https://doi.org/10.3390/polym11020218 - 27 Jan 2019
Cited by 38 | Viewed by 4864
Abstract
In this work, graphene nano-sheets (GNS) functionalized with poly(dopamine) (PDA) (denoted as GNS-PDA) were dispersed in a carboxylated nitrile butadiene rubber (XNBR) matrix to obtain excellent dielectric composites via latex mixing. Because hydrogen bonds were formed between –COOH groups of XNBR and phenolic [...] Read more.
In this work, graphene nano-sheets (GNS) functionalized with poly(dopamine) (PDA) (denoted as GNS-PDA) were dispersed in a carboxylated nitrile butadiene rubber (XNBR) matrix to obtain excellent dielectric composites via latex mixing. Because hydrogen bonds were formed between –COOH groups of XNBR and phenolic hydroxyl groups of PDA, the encapsulation of GNS-PDA around XNBR latex particles was achieved, and led to a segregated network structure of filler formed in the GNS-PDA/XNBR composite. Thus, the XNBR composite filled with GNS-PDA showed improved filler dispersion, enhanced dielectric constant and dielectric strength, and decreased conductivity compared with the XNBR composite filled with pristine GNS. Finally, the GNS-PDA/XNBR composite displayed an actuated strain of 2.4% at 18 kV/mm, and this actuated strain was much larger than that of pure XNBR (1.3%) at the same electric field. This simple, environmentally friendly, low-cost, and effective method provides a promising route for obtaining a high-performance dielectric elastomer with improved mechanical and electrochemical properties. Full article
Show Figures

Graphical abstract

21 pages, 3081 KiB  
Article
Extraction Optimization and Effects of Extraction Methods on the Chemical Structures and Antioxidant Activities of Polysaccharides from Snow Chrysanthemum (Coreopsis Tinctoria)
by Huan Guo, Qin Yuan, Yuan Fu, Wen Liu, Ya-Hong Su, Hui Liu, Chao-Yi Wu, Li Zhao, Qing Zhang, De-Rong Lin, Hong Chen, Wen Qin and Ding-Tao Wu
Polymers 2019, 11(2), 215; https://doi.org/10.3390/polym11020215 - 26 Jan 2019
Cited by 63 | Viewed by 5238
Abstract
In order to explore snow chrysanthemum polysaccharides (SCPs) as functional food ingredients and natural antioxidants for industrial applications, both microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) were firstly optimized for the extraction of SCPs. Furthermore, the effects of conventional hot water extraction, UAE, [...] Read more.
In order to explore snow chrysanthemum polysaccharides (SCPs) as functional food ingredients and natural antioxidants for industrial applications, both microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) were firstly optimized for the extraction of SCPs. Furthermore, the effects of conventional hot water extraction, UAE, and MAE on the chemical structures and antioxidant activities of SCPs were investigated. The maximum extraction yields of SCPs extracted by UAE (4.13 ± 0.24%) and MAE (4.26 ± 0.21%) were achieved at the optimized extraction parameters as follows: ultrasound amplitude (68%) and microwave power (500 W), ultrasound extraction time (21 min) and microwave extraction time (6.5 min), and ratio of liquid to raw material (42.0 mL/g for UAE and 59.0 mL/g for MAE). In addition, different extraction methods significantly affected the contents of uronic acids, the molecular weights, the molar ratio of constituent monosaccharides, and the degree of esterification of SCPs. SCPs exhibited remarkable DPPH (IC50 ≤ 1.702 mg/mL), ABTS (IC50 ≤ 1.121 mg/mL), and nitric oxide (IC50 ≤ 0.277 mg/mL) radical scavenging activities, as well as reducing power (≥ 80.17 ± 4.8 μg Trolox/mg), which suggested that SCPs might be one of the major contributors toward the antioxidant activities of snow chrysanthemum tea. The high antioxidant activities (DPPH, IC50 = 0.693 mg/mL; ABTS, IC50 = 0.299 mg/mL; nitric oxide, IC50 = 0.105 mg/mL; and reducing power, 127.79 ± 2.57 μg Trolox/mg) observed in SCP-M extracted by the MAE method might be partially attributed to its low molecular weight and high content of unmethylated galacturonic acids. Results suggested that the MAE method could be an efficient technique for the extraction of SCPs with high antioxidant activity, and SCPs could be further explored as natural antioxidants for industrial application. Full article
(This article belongs to the Special Issue Food Polymers: Chemistry, Structure, Function and Application)
Show Figures

Graphical abstract

11 pages, 2654 KiB  
Article
Flame Retardant Behavior of Ternary Synergistic Systems in Rigid Polyurethane Foams
by Wang Xi, Lijun Qian and Linjie Li
Polymers 2019, 11(2), 207; https://doi.org/10.3390/polym11020207 - 24 Jan 2019
Cited by 41 | Viewed by 4550
Abstract
In order to explore flame retardant systems with higher efficiency in rigid polyurethane foams (RPUFs), aluminum hydroxide (ATH), [bis(2-hydroxyethyl)amino]-methyl-phosphonic acid dimethyl ester (BH) and expandable graphite (EG) were employed in RPUF for constructing ternary synergistic flame retardant systems. Compared with binary BH/EG systems [...] Read more.
In order to explore flame retardant systems with higher efficiency in rigid polyurethane foams (RPUFs), aluminum hydroxide (ATH), [bis(2-hydroxyethyl)amino]-methyl-phosphonic acid dimethyl ester (BH) and expandable graphite (EG) were employed in RPUF for constructing ternary synergistic flame retardant systems. Compared with binary BH/EG systems and aluminum oxide (AO)/BH/EG, ATH/BH/EG with the same fractions in RPUFs demonstrated an increase in the limited oxygen index value, a decreased peak value of heat release rate, and a decreased mass loss rate. In particular, it inhibited smoke release. During combustion, ATH in ternary systems decomposed and released water, which captured the phosphorus-containing products from pyrolyzed BH to generate polyphosphate. The polyphosphate combined with AO from ATH and the expanded char layer from EG, forming a char layer with a better barrier effect. In ternary systems, ATH, BH, and EG can work together to generate an excellent condensed-phase synergistic flame retardant effect. Full article
Show Figures

Graphical abstract

13 pages, 2983 KiB  
Article
Functionalization of Neutral Polypropylene by Using Low Pressure Plasma Treatment: Effects on Surface Characteristics and Adhesion Properties
by Chiara Mandolfino, Enrico Lertora, Carla Gambaro and Marco Pizzorni
Polymers 2019, 11(2), 202; https://doi.org/10.3390/polym11020202 - 24 Jan 2019
Cited by 40 | Viewed by 5379
Abstract
Polyolefins are considered among the most difficult polymeric materials to treat because they have poor adhesive properties and high chemical barrier responses. In this paper, an in-depth study is reported for the low pressure plasma (LPP) treatment of neutral polypropylene to improve adhesion [...] Read more.
Polyolefins are considered among the most difficult polymeric materials to treat because they have poor adhesive properties and high chemical barrier responses. In this paper, an in-depth study is reported for the low pressure plasma (LPP) treatment of neutral polypropylene to improve adhesion properties. Changes in wettability, chemical species, surface morphology and roughness of the polypropylene surfaces were evaluated by water contact angle measurement, X-ray photoelectron spectroscopy and, furthermore, atomic force microscopy (AFM). Finally, the bonded joints were subjected to tensile tests, in order to evaluate the practical effect of changes in adhesion properties. The results indicate that plasma is an effective treatment for the surface preparation of polypropylene for the creation of bonded joints: contact angles decreased significantly depending on the plasma-parameter setup, surface morphology was also found to vary with plasma power, exposure time and working gas. Full article
Show Figures

Graphical abstract

11 pages, 6925 KiB  
Article
Enhanced Proton Conductivity in Sulfonated Poly(ether ether ketone) Membranes by Incorporating Sodium Dodecyl Benzene Sulfonate
by Shaoxiong Zhai, Wenxu Dai, Jun Lin, Shaojian He, Bing Zhang and Lin Chen
Polymers 2019, 11(2), 203; https://doi.org/10.3390/polym11020203 - 24 Jan 2019
Cited by 32 | Viewed by 6304
Abstract
It is of great importance to improve the proton conductivity of proton exchange membranes by easy-handling and cost-efficient approaches. In this work, we incorporated a commercially obtained surfactant, sodium dodecyl benzene sulfonate (SDBS), into sulfonated poly(ether ether ketone) (SPEEK) through solution casting to [...] Read more.
It is of great importance to improve the proton conductivity of proton exchange membranes by easy-handling and cost-efficient approaches. In this work, we incorporated a commercially obtained surfactant, sodium dodecyl benzene sulfonate (SDBS), into sulfonated poly(ether ether ketone) (SPEEK) through solution casting to prepare SPEEK/SDBS membranes. When no more than 10 wt % SDBS was added, the SDBS was well dissolved into the SPEEK matrix, and the activation energy for the proton transfer in the SPEEK/SDBS membranes was greatly reduced, leading to significant enhancement of the membrane proton conductivity. Compared with the SPEEK control membrane, the SPEEK/SDBS membrane with 10 wt % SDBS showed a 78% increase in proton conductivity, up from 0.051 S cm−1 to 0.091 S cm−1, while the water uptake increased from 38% to 62%. Moreover, the SPEEK/SDBS membrane exhibited constant proton conductivity under a long-term water immersion test. Full article
(This article belongs to the Special Issue Conducting Polymers)
Show Figures

Figure 1

21 pages, 3112 KiB  
Review
Recent Developments about Conductive Polymer Based Composite Photocatalysts
by Sher Ling Lee and Chi-Jung Chang
Polymers 2019, 11(2), 206; https://doi.org/10.3390/polym11020206 - 24 Jan 2019
Cited by 129 | Viewed by 9907
Abstract
Conductive polymers have been widely investigated in various applications. Several conductive polymers, such as polyaniline (PANI), polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT)), and polythiophene (PTh) have been loaded with various semiconductor nanomaterials to prepare the composite photocatalysts. However, a critical review of conductive polymer-based composite [...] Read more.
Conductive polymers have been widely investigated in various applications. Several conductive polymers, such as polyaniline (PANI), polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT)), and polythiophene (PTh) have been loaded with various semiconductor nanomaterials to prepare the composite photocatalysts. However, a critical review of conductive polymer-based composite photocatalysts has not been available yet. Therefore, in this review, we summarized the applications of conductive polymers in the preparation of composite photocatalysts for photocatalytic degradation of hazardous chemicals, antibacterial, and photocatalytic hydrogen production. Various materials were systematically surveyed to illustrate their preparation methods, morphologies, and photocatalytic performances. The synergic effect between conductive polymers and semiconductor nanomaterials were observed for a lot of composite photocatalysts. The band structures of the composite photocatalysts can be analyzed to explain the mechanism of their enhanced photocatalytic activity. The incorporation of conductive polymers can result in significantly improved visible-light driven photocatalytic activity by enhancing the separation of photoexcited charge carriers, extending the light absorption range, increasing the adsorption of reactants, inhibiting photo-corrosion, and reducing the formation of large aggregates. This review provides a systematic concept about how conductive polymers can improve the performance of composite photocatalysts. Full article
(This article belongs to the Special Issue Polymeric Photocatalysts and Gas Sensors)
Show Figures

Graphical abstract

13 pages, 3193 KiB  
Article
Melt-Mixed PP/MWCNT Composites: Influence of CNT Incorporation Strategy and Matrix Viscosity on Filler Dispersion and Electrical Resistivity
by Petra Pötschke, Fanny Mothes, Beate Krause and Brigitte Voit
Polymers 2019, 11(2), 189; https://doi.org/10.3390/polym11020189 - 22 Jan 2019
Cited by 38 | Viewed by 5356
Abstract
Small-scale melt mixing was performed for composites based on polypropylene (PP) and 0.5–7.5 wt % multiwalled carbon nanotubes (MWCNT) to determine if masterbatch (MB) dilution is a more effective form of nanofiller dispersion than direct nanotube incorporation. The methods were compared using composites [...] Read more.
Small-scale melt mixing was performed for composites based on polypropylene (PP) and 0.5–7.5 wt % multiwalled carbon nanotubes (MWCNT) to determine if masterbatch (MB) dilution is a more effective form of nanofiller dispersion than direct nanotube incorporation. The methods were compared using composites of five different PP types, each filled with 2 wt % MWCNTs. After the determination of the specific mechanical energy (SME) input in the MB dilution process, the direct-incorporation mixing time was adjusted to achieve comparable SME values. Interestingly, the electrical resistivity of MB-prepared samples with 2 wt % MWCNTs was higher than that of those prepared using direct incorporation—despite their better dispersion—suggesting more pronounced MWCNT shortening in the two-step procedure. In summary, this study on PP suggests that the masterbatch approach is suitable for the dispersion of MWCNTs and holds advantages in nanotube dispersion, albeit at the cost of slightly increased electrical resistivity. Full article
(This article belongs to the Special Issue Polymer-CNT Nanocomposites)
Show Figures

Graphical abstract

32 pages, 2801 KiB  
Review
Conductive Polymer Composites from Renewable Resources: An Overview of Preparation, Properties, and Applications
by Yao Huang, Semen Kormakov, Xiaoxiang He, Xiaolong Gao, Xiuting Zheng, Ying Liu, Jingyao Sun and Daming Wu
Polymers 2019, 11(2), 187; https://doi.org/10.3390/polym11020187 - 22 Jan 2019
Cited by 115 | Viewed by 15364
Abstract
This article reviews recent advances in conductive polymer composites from renewable resources, and introduces a number of potential applications for this material class. In order to overcome disadvantages such as poor mechanical properties of polymers from renewable resources, and give renewable polymer composites [...] Read more.
This article reviews recent advances in conductive polymer composites from renewable resources, and introduces a number of potential applications for this material class. In order to overcome disadvantages such as poor mechanical properties of polymers from renewable resources, and give renewable polymer composites better electrical and thermal conductive properties, various filling contents and matrix polymers have been developed over the last decade. These natural or reusable filling contents, polymers, and their composites are expected to greatly reduce the tremendous pressure of industrial development on the natural environment while offering acceptable conductive properties. The unique characteristics, such as electrical/thermal conductivity, mechanical strength, biodegradability and recyclability of renewable conductive polymer composites has enabled them to be implemented in many novel and exciting applications including chemical sensors, light-emitting diode, batteries, fuel cells, heat exchangers, biosensors etc. In this article, the progress of conductive composites from natural or reusable filling contents and polymer matrices, including (1) natural polymers, such as starch and cellulose, (2) conductive filler, and (3) preparation approaches, are described, with an emphasis on potential applications of these bio-based conductive polymer composites. Moreover, several commonly-used and innovative methods for the preparation of conductive polymer composites are also introduced and compared systematically. Full article
(This article belongs to the Special Issue Renewable Polymer Composites)
Show Figures

Figure 1

14 pages, 2389 KiB  
Article
Photocatalytic Dye and Cr(VI) Degradation Using a Metal-Free Polymeric g-C3N4 Synthesized from Solvent-Treated Urea
by Chechia Hu, Yi-Ching Chu, Yan-Ru Lin, Hung-Chun Yang and Ke-Hsuan Wang
Polymers 2019, 11(1), 182; https://doi.org/10.3390/polym11010182 - 21 Jan 2019
Cited by 36 | Viewed by 6885
Abstract
The development of visible-light-driven polymeric g-C3N4 is in response to an emerging demand for the photocatalytic dye degradation and reduction of hexavalent chromium ions. We report the synthesis of g-C3N4 from urea treated with various solvents such [...] Read more.
The development of visible-light-driven polymeric g-C3N4 is in response to an emerging demand for the photocatalytic dye degradation and reduction of hexavalent chromium ions. We report the synthesis of g-C3N4 from urea treated with various solvents such as methanol, ethanol, and ethylene glycol. The samples were characterized and the Williamson–Hall method was applied to investigate the lattice strain of the samples. The activity of the samples was evaluated by observing the degradation of methyl orange and K2Cr2O7 solution under light irradiation. Photocatalytic reaction kinetics were determined as pseudo-first-order and zero-order for the degradation of methyl orange and reduction of hexavalent chromium, respectively. Due to the inhibited charge separation resulting from the small lattice strain, reduced crystal imperfection, and sheet-like structure, g-C3N4 obtained from ethanol-treated urea exhibited the highest activity among the evaluated samples. Full article
(This article belongs to the Special Issue Polymeric Photocatalysts and Gas Sensors)
Show Figures

Graphical abstract

16 pages, 6428 KiB  
Article
High Response CO Sensor Based on a Polyaniline/SnO2 Nanocomposite
by Kai-Syuan Jian, Chi-Jung Chang, Jerry J. Wu, Yu-Cheng Chang, Chien-Yie Tsay, Jing-Heng Chen, Tzyy-Leng Horng, Gang-Juan Lee, Lakshmanan Karuppasamy, Sambandam Anandan and Chin-Yi Chen
Polymers 2019, 11(1), 184; https://doi.org/10.3390/polym11010184 - 21 Jan 2019
Cited by 48 | Viewed by 5656
Abstract
A polyaniline (PANI)/tin oxide (SnO2) composite for a CO sensor was fabricated using a composite film composed of SnO2 nanoparticles and PANI deposition in the present study. Tin oxide nanoparticles were synthesized by the sol-gel method. The SnO2 nanoparticles [...] Read more.
A polyaniline (PANI)/tin oxide (SnO2) composite for a CO sensor was fabricated using a composite film composed of SnO2 nanoparticles and PANI deposition in the present study. Tin oxide nanoparticles were synthesized by the sol-gel method. The SnO2 nanoparticles provided a high surface area to significantly enhance the response to the change in CO concentration at low operating temperature (<75 °C). The excellent sensor response was mainly attributed to the relatively good properties of PANI in the redox reaction during sensing, which produced a great resistance difference between the air and CO gas at low operating temperature. Therefore, the combination of n-type SnO2 nanoparticles with a high surface area and a thick film of conductive PANI is an effective strategy to design a high-performance CO gas sensor. Full article
(This article belongs to the Special Issue Polymeric Photocatalysts and Gas Sensors)
Show Figures

Figure 1

11 pages, 2726 KiB  
Article
A Parallel Bicomponent TPU/PI Membrane with Mechanical Strength Enhanced Isotropic Interfaces Used as Polymer Electrolyte for Lithium-Ion Battery
by Ming Cai, Jianwei Zhu, Chaochao Yang, Ruoyang Gao, Chuan Shi and Jinbao Zhao
Polymers 2019, 11(1), 185; https://doi.org/10.3390/polym11010185 - 21 Jan 2019
Cited by 49 | Viewed by 7916
Abstract
In this work, a side-by-side bicomponent thermoplastic polyurethane/polyimide (TPU/PI) polymer electrolyte prepared with side-by-side electrospinning method is reported for the first time. Symmetrical TPU and PI co-occur on one fiber, and are connected by an interface transition layer formed by the interdiffusion of [...] Read more.
In this work, a side-by-side bicomponent thermoplastic polyurethane/polyimide (TPU/PI) polymer electrolyte prepared with side-by-side electrospinning method is reported for the first time. Symmetrical TPU and PI co-occur on one fiber, and are connected by an interface transition layer formed by the interdiffusion of two solutions. This structure of the as-prepared TPU/PI polymer electrolyte can integrate the advantages of high thermal stable PI and good mechanical strength TPU, and mechanical strength is further increased by those isotropic interface transition layers. Moreover, benefiting from micro-nano pores and the high porosity of the structure, TPU/PI polymer electrolyte presents high electrolyte uptake (665%) and excellent ionic conductivity (5.06 mS·cm−1) at room temperature. Compared with PE separator, TPU/PI polymer electrolyte exhibited better electrochemical stability, and using it as the electrolyte and separator, the assembled Li/LiMn2O4 cell exhibits low inner resistance, stable cyclic and notably high rate performance. Our study indicates that the TPU/PI membrane is a promising polymer electrolyte for high safety lithium-ion batteries. Full article
(This article belongs to the Special Issue Electrospun Nanofibers: Theory and Its Applications)
Show Figures

Graphical abstract

14 pages, 3104 KiB  
Article
Design and Compressive Behavior of a Photosensitive Resin-Based 2-D Lattice Structure with Variable Cross-Section Core
by Shuai Li, Jiankun Qin, Bing Wang, Tengteng Zheng and Yingcheng Hu
Polymers 2019, 11(1), 186; https://doi.org/10.3390/polym11010186 - 21 Jan 2019
Cited by 28 | Viewed by 4612
Abstract
This paper designed and manufactured photosensitive resin-based 2-D lattice structures with different types of variable cross-section cores by stereolithography 3D printing technology (SLA 3DP). An analytical model was employed to predict the structural compressive response and failure types. A theoretical calculation was performed [...] Read more.
This paper designed and manufactured photosensitive resin-based 2-D lattice structures with different types of variable cross-section cores by stereolithography 3D printing technology (SLA 3DP). An analytical model was employed to predict the structural compressive response and failure types. A theoretical calculation was performed to obtain the most efficient material utilization of the 2-D lattice core. A flatwise compressive experiment was performed to verify the theoretical conclusions. A comparison of theoretical and experimental results showed good agreement for structural compressive response. Results from the analytical model and experiments showed that when the 2-D lattice core was designed so that R/r = 1.167 (R and r represent the core radius at the ends and in the middle), the material utilization of the 2-D lattice core improved by 13.227%, 19.068%, and 22.143% when n = 1, n = 2, and n = 3 (n represents the highest power of the core cross-section function). Full article
Show Figures

Figure 1

18 pages, 6363 KiB  
Article
Biocompatibility of Small-Diameter Vascular Grafts in Different Modes of RGD Modification
by Larisa V. Antonova, Vladimir N. Silnikov, Victoria V. Sevostyanova, Arseniy E. Yuzhalin, Lyudmila S. Koroleva, Elena A. Velikanova, Andrey V. Mironov, Tatyana S. Godovikova, Anton G. Kutikhin, Tatiana V. Glushkova, Inna Yu. Serpokrylova, Evgeniya A. Senokosova, Vera G. Matveeva, Mariam Yu. Khanova, Tatiana N. Akentyeva, Evgeniya O. Krivkina, Yulia A. Kudryavtseva and Leonid S. Barbarash
Polymers 2019, 11(1), 174; https://doi.org/10.3390/polym11010174 - 18 Jan 2019
Cited by 22 | Viewed by 5011
Abstract
Modification with Arg-Gly-Asp (RGD) peptides is a promising approach to improve biocompatibility of small-calibre vascular grafts but it is unknown how different RGD sequence composition impacts graft performance. Here we manufactured 1.5 mm poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) grafts modified by distinct linear or cyclic [...] Read more.
Modification with Arg-Gly-Asp (RGD) peptides is a promising approach to improve biocompatibility of small-calibre vascular grafts but it is unknown how different RGD sequence composition impacts graft performance. Here we manufactured 1.5 mm poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) grafts modified by distinct linear or cyclic RGD peptides immobilized by short or long amine linker arms. Modified vascular prostheses were tested in vitro to assess their mechanical properties, hemocompatibility, thrombogenicity and endothelialisation. We also implanted these grafts into rat abdominal aortas with the following histological examination at 1 and 3 months to evaluate their primary patency, cellular composition and detect possible calcification. Our results demonstrated that all modes of RGD modification reduce ultimate tensile strength of the grafts. Modification of prostheses does not cause haemolysis upon the contact with modified grafts, yet all the RGD-treated grafts display a tendency to promote platelet aggregation in comparison with unmodified counterparts. In vivo findings identify that cyclic Arg-Gly-Asp-Phe-Lys peptide in combination with trioxa-1,13-tridecanediamine linker group substantially improve graft biocompatibility. To conclude, here we for the first time compared synthetic small-diameter vascular prostheses with different modes of RGD modification. We suggest our graft modification regimen as enhancing graft performance and thus recommend it for future use in tissue engineering. Full article
(This article belongs to the Special Issue Functional Polymers for Biomedicine)
Show Figures

Graphical abstract

22 pages, 7284 KiB  
Review
Recent Advances in Organic Thermoelectric Materials: Principle Mechanisms and Emerging Carbon-Based Green Energy Materials
by Yinhang Zhang, Young-Jung Heo, Mira Park and Soo-Jin Park
Polymers 2019, 11(1), 167; https://doi.org/10.3390/polym11010167 - 18 Jan 2019
Cited by 90 | Viewed by 13967
Abstract
Thermoelectric devices have recently attracted considerable interest owing to their unique ability of converting heat to electrical energy in an environmentally efficient manner. These devices are promising as alternative power generators for harvesting electrical energy compared to conventional batteries. Inorganic crystalline semiconductors have [...] Read more.
Thermoelectric devices have recently attracted considerable interest owing to their unique ability of converting heat to electrical energy in an environmentally efficient manner. These devices are promising as alternative power generators for harvesting electrical energy compared to conventional batteries. Inorganic crystalline semiconductors have dominated the thermoelectric material fields; however, their application has been restricted by their intrinsic high toxicity, fragility, and high cost. In contrast, organic thermoelectric materials with low cost, low thermal conductivity, easy processing, and good flexibility are more suitable for fabricating thermoelectric devices. In this review, we briefly introduce the parameters affecting the thermoelectric performance and summarize the most recently developed carbon-material-based organic thermoelectric composites along with their preparation technologies, thermoelectric performance, and future applications. In addition, the p- and n-type carbon nanotube conversion and existing challenges are discussed. This review can help researchers in elucidating the recent studies on carbon-based organic thermoelectric materials, thus inspiring them to develop more efficient thermoelectric devices. Full article
Show Figures

Graphical abstract

15 pages, 5699 KiB  
Article
Mechanical and Water-Resistant Properties of Eco-Friendly Chitosan Membrane Reinforced with Cellulose Nanocrystals
by Haiquan Mao, Chun Wei, Yongyang Gong, Shiqi Wang and Wenwen Ding
Polymers 2019, 11(1), 166; https://doi.org/10.3390/polym11010166 - 18 Jan 2019
Cited by 66 | Viewed by 8575
Abstract
Environmentally benign and biodegradable chitosan (CS) membranes have disadvantages such as low mechanical strength, high brittleness, poor heat resistance and poor water resistance, which limit their applications. In this paper, home-made cellulose nanocrystals (CNC) were added to CS to prepare CNC/CS composite membranes [...] Read more.
Environmentally benign and biodegradable chitosan (CS) membranes have disadvantages such as low mechanical strength, high brittleness, poor heat resistance and poor water resistance, which limit their applications. In this paper, home-made cellulose nanocrystals (CNC) were added to CS to prepare CNC/CS composite membranes through mechanical mixing and solution casting approaches. The effects of CNC dispersion patterns and CNC contents on the properties of composite membranes were studied. The analysis of the surface and cross-section morphology of the membranes showed that the dispersion performance of the composite membrane was better in the case that CNC was dissolved in an acetic acid solution and then mixed with chitosan by a homogenizer (Method 2). CNC had a great length-diameter ratio and CNC intensely interacted with CS. The mechanical properties of the composite membrane prepared with Method 2 were better. With a CNC content of 3%, the tensile strength of the composite membrane reached 43.0 MPa, 13.2% higher than that of the CNC-free membrane. The elongation at break was 41.6%, 56.4% higher than that of the CNC-free membrane. Thermogravimetric, contact angle and swelling analysis results showed that the addition of CNC could improve the heat and water resistance of the chitosan membrane. Full article
(This article belongs to the Special Issue Processing and Molding of Polymers)
Show Figures

Graphical abstract

12 pages, 3206 KiB  
Article
Patterned Polyvinyl Alcohol Hydrogel Dressings with Stem Cells Seeded for Wound Healing
by Tianlin Gao, Menghui Jiang, Xiaoqian Liu, Guoju You, Wenyu Wang, Zhaohui Sun, Aiguo Ma and Jie Chen
Polymers 2019, 11(1), 171; https://doi.org/10.3390/polym11010171 - 18 Jan 2019
Cited by 56 | Viewed by 7200
Abstract
Polyvinyl alcohol (PVA) hydrogel and stem cell therapy have been widely used in wound healing. However, the lack of bioactivity for PVA and security of stem therapy limited their application. In this study, an adipose-derived stem cells (ADSCs)-seeded PVA dressing (ADSCs/PVA) was prepared [...] Read more.
Polyvinyl alcohol (PVA) hydrogel and stem cell therapy have been widely used in wound healing. However, the lack of bioactivity for PVA and security of stem therapy limited their application. In this study, an adipose-derived stem cells (ADSCs)-seeded PVA dressing (ADSCs/PVA) was prepared for wound healing. One side of the PVA dressing was modified with photo-reactive gelatin (Az-Gel) via ultraviolet (UV) irradiation (Az-Gel@PVA), and thus ADSCs could adhere, proliferate on the PVA dressings and keep the other side of the dressings without adhering to the wound. The structure and mechanics of Az-Gel@PVA were determined by scanning electron microscopy (SEM) and material testing instruments. Then, the adhesion and proliferation of ADSCs were observed via cell counts and live-dead staining. Finally, in vitro and in vivo experiments were utilized to confirm the effect of ADSCs/PVA dressing for wound healing. The results showed that Az-Gel was immobilized on the PVA and showed little effect on the mechanical properties of PVA hydrogels. The surface-modified PVA could facilitate ADSCs adhesion and proliferation. Protein released tests indicated that the bioactive factors secreted from ADSCs could penetrated to the wound. Finally, in vitro and in vivo experiments both suggested the ADSCs/PVA could promote the wound healing via secreting bioactive factors from ADSCs. It was speculated that the ADSCs/PVA dressing could not only promote the wound healing, but also provide a new way for the safe application of stem cells, which would be of great potential for skin tissue engineering. Full article
(This article belongs to the Special Issue Functional Polymers for Biomedicine)
Show Figures

Graphical abstract

9 pages, 2895 KiB  
Article
Orientation and Dispersion Evolution of Carbon Nanotubes in Ultra High Molecular Weight Polyethylene Composites under Extensional-Shear Coupled Flow: A Dissipative Particle Dynamics Study
by Junxia Wang, Changlin Cao, Xiaochuan Chen, Shijie Ren, Yu Chen, Dingshan Yu and Xudong Chen
Polymers 2019, 11(1), 154; https://doi.org/10.3390/polym11010154 - 17 Jan 2019
Cited by 17 | Viewed by 3645
Abstract
The property of carbon nanotubes (CNTs)-based composites are significantly dependent on the orientation and dispersion evolution of CNTs in the polymer matrix. In this work, the dissipative particle dynamics (DPD) simulations are employed to discover the orientation and dispersion evolution of CNTs in [...] Read more.
The property of carbon nanotubes (CNTs)-based composites are significantly dependent on the orientation and dispersion evolution of CNTs in the polymer matrix. In this work, the dissipative particle dynamics (DPD) simulations are employed to discover the orientation and dispersion evolution of CNTs in ultra–high molecular weight polyethylene (UHMWPE) under extensional–shear coupled flow conditions for the first time. In this paper, we investigate the roles of the increasing extensional-shear coupled rate in morphology of CNTs/UHMWPE composites by varying CNTs concentration and observe that the system under consideration lies in the same evolution morphologies. When comparing our results for various morphologies, we notice that the orientation is affected more significantly by changing the extensional-shear coupled rates. A good alignment appears with an increase of extensional-shear coupled rates, which transform it into ordered morphology. In addition, a higher extensional-shear coupled rate does not necessarily contribute to better dispersion even though CNTs concentration varies, as shown by the mean square displacement (MSD) and the relative concentration distribution functions of CNTs in CNTs/UHMWPE composites. Full article
(This article belongs to the Special Issue Polymer-CNT Nanocomposites)
Show Figures

Graphical abstract

15 pages, 5808 KiB  
Article
Effect of Thermal Ageing on the Impact Damage Resistance and Tolerance of Carbon-Fibre-Reinforced Epoxy Laminates
by Irene García-Moreno, Miguel Ángel Caminero, Gloria Patricia Rodríguez and Juan José López-Cela
Polymers 2019, 11(1), 160; https://doi.org/10.3390/polym11010160 - 17 Jan 2019
Cited by 35 | Viewed by 5373
Abstract
Composite structures are particularly vulnerable to impact, which drastically reduces their residual strength, in particular, at high temperatures. The glass-transition temperature (Tg) of a polymer is a critical factor that can modify the mechanical properties of the material, affecting its [...] Read more.
Composite structures are particularly vulnerable to impact, which drastically reduces their residual strength, in particular, at high temperatures. The glass-transition temperature (Tg) of a polymer is a critical factor that can modify the mechanical properties of the material, affecting its density, hardness and rigidity. In this work, the influence of thermal ageing on the low-velocity impact resistance and tolerance of composites is investigated by means of compression after impact (CAI) tests. Carbon-fibre-reinforced polymer (CFRP) laminates with a Tg of 195 °C were manufactured and subjected to thermal ageing treatments at 190 and 210 °C for 10 and 20 days. Drop-weight impact tests were carried out to determine the impact response of the different composite laminates. Compression after impact tests were performed in a non-standard CAI device in order to obtain the compression residual strength. Ultrasonic C-scanning of impacted samples were examined to assess the failure mechanisms of the different configurations as a function of temperature. It was observed that damage tolerance decreases as temperature increases. Nevertheless, a post-curing process was found at temperatures below the Tg that enhances the adhesion between matrix and fibres and improves the impact resistance. Finally, the results obtained demonstrate that temperature can cause significant changes to the impact behaviour of composites and must be taken to account when designing for structural applications. Full article
(This article belongs to the Collection Assessment of the Ageing and Durability of Polymers)
Show Figures

Graphical abstract

11 pages, 5212 KiB  
Article
Improving the Performances of Perovskite Solar Cells via Modification of Electron Transport Layer
by Mao Jiang, Qiaoli Niu, Xiao Tang, Heyi Zhang, Haowen Xu, Wentao Huang, Jizhong Yao, Buyi Yan and Ruidong Xia
Polymers 2019, 11(1), 147; https://doi.org/10.3390/polym11010147 - 16 Jan 2019
Cited by 32 | Viewed by 6250
Abstract
The commonly used electron transport material (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) for perovskite solar cells (PSC) with inverted planar structures suffers from properties such as poor film-forming. In this manuscript, we demonstrate a simple method to improve the film-forming properties of PCBM [...] Read more.
The commonly used electron transport material (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) for perovskite solar cells (PSC) with inverted planar structures suffers from properties such as poor film-forming. In this manuscript, we demonstrate a simple method to improve the film-forming properties of PCBM by doping PCBM with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as the electron transport layer (ETL), which effectively enhances the performance of CH3NH3PbI3 based solar cells. With 5 wt % F8BT in PCBM, the short circuit current (JSC) and fill factor (FF) of PSC both significantly increased from 17.21 ± 0.15 mA·cm−2 and 71.1 ± 0.07% to 19.28 ± 0.22 mA·cm−2 and 74.7 ± 0.21%, respectively, which led to a power conversion efficiency (PCE) improvement from 12.6 ± 0.24% to 15 ± 0.26%. The morphology investigation suggested that doping with F8BT facilitated the formation of a smooth and uniform ETL, which was favorable for the separation of electron-hole pairs, and therefore, an improved performance of PSC. Full article
(This article belongs to the Special Issue Synthesis and Application of Conjugated Polymers)
Show Figures

Graphical abstract

15 pages, 3272 KiB  
Article
Surface Modification of Aluminum Nitride to Fabricate Thermally Conductive poly(Butylene Succinate) Nanocomposite
by Zelalem Lule and Jooheon Kim
Polymers 2019, 11(1), 148; https://doi.org/10.3390/polym11010148 - 16 Jan 2019
Cited by 51 | Viewed by 5314
Abstract
Biodegradable polymers and their composites are considered promising materials for replacing conventional polymer plastics in various engineering fields. In this study, poly(butylene succinate) (PBS) composites filled with 5% aluminum nitride nanoparticles were successfully fabricated. The aluminum nitride nanoparticles were surface-modified to improve their [...] Read more.
Biodegradable polymers and their composites are considered promising materials for replacing conventional polymer plastics in various engineering fields. In this study, poly(butylene succinate) (PBS) composites filled with 5% aluminum nitride nanoparticles were successfully fabricated. The aluminum nitride nanoparticles were surface-modified to improve their interaction with the PBS matrix. Field-emission scanning electron microscopy revealed that the nanocomposites with surface-modified nanoparticles had better interface interaction and dispersion in the polymer matrix than those with untreated nanoparticles. The PBS/modified AlN nanocomposites exhibited maximal thermal conductivity enhancement, 63.7%, compared to the neat PBS. In addition, other thermomechanical properties of the PBS nanocomposites were investigated in this study. The nanocomposites also showed a superior storage modulus compared to the neat PBS matrix. In this work, a PBS nanocomposite with suitable thermal conductivity that can be used in various electronic fields was fabricated. Full article
(This article belongs to the Special Issue Advanced Engineering Plastics)
Show Figures

Graphical abstract

46 pages, 9175 KiB  
Review
The Applications of Polymers in Solar Cells: A Review
by Wenjing Hou, Yaoming Xiao, Gaoyi Han and Jeng-Yu Lin
Polymers 2019, 11(1), 143; https://doi.org/10.3390/polym11010143 - 15 Jan 2019
Cited by 135 | Viewed by 17506
Abstract
The emerging dye-sensitized solar cells, perovskite solar cells, and organic solar cells have been regarded as promising photovoltaic technologies. The device structures and components of these solar cells are imperative to the device’s efficiency and stability. Polymers can be used to adjust the [...] Read more.
The emerging dye-sensitized solar cells, perovskite solar cells, and organic solar cells have been regarded as promising photovoltaic technologies. The device structures and components of these solar cells are imperative to the device’s efficiency and stability. Polymers can be used to adjust the device components and structures of these solar cells purposefully, due to their diversified properties. In dye-sensitized solar cells, polymers can be used as flexible substrates, pore- and film-forming agents of photoanode films, platinum-free counter electrodes, and the frameworks of quasi-solid-state electrolytes. In perovskite solar cells, polymers can be used as the additives to adjust the nucleation and crystallization processes in perovskite films. The polymers can also be used as hole transfer materials, electron transfer materials, and interface layer to enhance the carrier separation efficiency and reduce the recombination. In organic solar cells, polymers are often used as donor layers, buffer layers, and other polymer-based micro/nanostructures in binary or ternary devices to influence device performances. The current achievements about the applications of polymers in solar cells are reviewed and analyzed. In addition, the benefits of polymers for solar cells, the challenges for practical application, and possible solutions are also assessed. Full article
Show Figures

Figure 1

Back to TopTop