polymers-logo

Journal Browser

Journal Browser

Polymer-Based Flexible Materials, 3rd Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Smart and Functional Polymers".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 1590

Special Issue Editors


E-Mail Website
Guest Editor
1. School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China
2. College of Materials and Energy, South China Agricultural University, Guangzhou, China
Interests: flexible electronics; flexible sensors; functional polymer composites; biomass materials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou, China
Interests: flexible sensor; textiles; funtional polymer composites
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Compared to traditional flexible materials, such as metal-, ceramic-, and glass-based materials, polymer-based flexible materials have advantages including low density, easy processing, excellent flexibility, and good environmental stability. Over the past few decades, these materials have received significant attention, due to the rapid development of the electronics, medical treatment, health, and other fields. For instance, flexible electronic technology has great potential in reshaping human lifestyle, but the bottleneck of flexible electronic technology is flexible substrates or flexible conductive materials, which can be solved by modifying or doping polymer-based flexible materials. Moreover, it is possible to synthesize new polymer-based flexible materials or modify them for different purposes to endow them with the corresponding functionality.

This Special Issue of Polymers aims to present full research papers, communications, and review articles on the latest advances in the fields of the synthesis, characterization, and application of polymer-based flexible materials. Topics that will be covered include, but are not limited to, the synthesis of organic elastomers, conductive polymers, and flexible organic networks; structural characterization; modelling; and applications (i.e., sensors, energy harvesting, energy storage, electromagnetic shielding, and biomedical).

Dr. Jiangtao Xu
Dr. Sihang Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer-based flexible materials
  • flexible electronic devices
  • functional polymer composites
  • flexible EMI materials
  • wearable sensors/actuators

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 4996 KiB  
Article
Fabrication of Poly(s-triazine-co-o-aminophenol) Conducting Polymer via Electropolymerization and Its Application in Aqueous Charge Storage
by Xueting Bai, Bo Lan, Xinyang Li, Xinlan Yi, Shaotong Pei and Chao Wang
Polymers 2025, 17(9), 1160; https://doi.org/10.3390/polym17091160 - 24 Apr 2025
Abstract
Designing conducting polymers with novel structures is essential for electrochemical energy storage devices. Here, copolymers of s-triazine and o-aminophenol are electropolymerized from an aqueous solution onto a carbon cloth substrate using the galvanostatic method. The poly(s-triazine-co-o-aminophenol) (PT-co-oAP) [...] Read more.
Designing conducting polymers with novel structures is essential for electrochemical energy storage devices. Here, copolymers of s-triazine and o-aminophenol are electropolymerized from an aqueous solution onto a carbon cloth substrate using the galvanostatic method. The poly(s-triazine-co-o-aminophenol) (PT-co-oAP) is characterized, and its charge storage properties are investigated in 1 M H2SO4 and in 1 M ZnSO4. At 1 A g−1, the specific capacities of PT-co-oAP reach 101.3 mAh g−1 and 84.4 mAh g−1 in 1 M H2SO4 and in 1 M ZnSO4, respectively. The specific capacity of PT-co-oAP maintains 90.3% of its initial value after cycling at 10 A g−1 for 2000 cycles in 1 M H2SO4. The high specific capacity achieved originates from abundant surface active sites, facile ion diffusion, with optimized active site structure achieved by forming copolymer. The charge storage mechanism involves the redox processes of amino/imino groups and hydroxyl/carbonyl groups in the copolymer, together with the insertion of cations. Two electrode devices using two PT-co-oAP and aqueous 1 M H2SO4 are assembled, and the maximum energy density reaches 63 Wh kg−1 at 0.5 A g−1 with a power density of 540 W kg−1. The capacity retention of the device after 3000 cycles at 10 A g−1 reaches 81.2%. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

11 pages, 7712 KiB  
Article
Smart Bacterial Cellulose–Methylacrylated Chitosan Composite Hydrogel: Multifunctional Characterization for Real-Time pH Monitoring
by Zixian Bao, Jiezheng Liu, Yujia Bi and Guang Zhao
Polymers 2025, 17(7), 914; https://doi.org/10.3390/polym17070914 - 28 Mar 2025
Viewed by 251
Abstract
pH is a critical parameter that influences biochemical and environmental processes. Real-time and accurate pH detection is essential for monitoring health and the environment. Herein, a bacterial cellulose and methylacrylated chitosan (BC-MACS) composite hydrogel was prepared to achieve rapid pH detection. The integration [...] Read more.
pH is a critical parameter that influences biochemical and environmental processes. Real-time and accurate pH detection is essential for monitoring health and the environment. Herein, a bacterial cellulose and methylacrylated chitosan (BC-MACS) composite hydrogel was prepared to achieve rapid pH detection. The integration of MACS reduced the crystallinity of pristine BC, with no adverse effects on thermal stability. SEM images validated the fibrous nature of the BC-MACS composite, indicating that MACS was successfully infiltrated into the pores of BC. By incorporating MACS into the BC matrix, the exceptional biocompatibility of BC was maintained, while simultaneously augmenting its mechanical properties. Due to the excellent swelling ability of MACS, the fabricated BC-MACS hydrogel exhibited superior swelling behavior compared to the BC hydrogel, which facilitated the absorption of the solution under test. A BC-MACS pH sensor was fabricated by introducing the pH indicator solution, and the color variation across the pH range (2–12) demonstrated a clear response to pH changes. Therefore, the BC-MACS pH sensor holds potential for use as a visual indicator in a diverse range of applications, especially for health and environmental monitoring. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Graphical abstract

30 pages, 8086 KiB  
Article
Effect of Mechanical Interlocking Damage on Bond Durability of Ribbed and Sand-Coated GFRP Bars Embedded in Concrete Under Chloride Dry–Wet Exposure
by Zhennan Yang, Chunhua Lu, Siqi Yuan and Hao Ge
Polymers 2025, 17(6), 733; https://doi.org/10.3390/polym17060733 - 11 Mar 2025
Viewed by 432
Abstract
The substitution conventional steel reinforcement with glass fiber-reinforced polymer (GFRP) bars is a widely adopted strategy used to improve the durability of concrete structures in chloride environments, offering benefits such as enhanced corrosion resistance, reduced maintenance needs, and increased service life. This study [...] Read more.
The substitution conventional steel reinforcement with glass fiber-reinforced polymer (GFRP) bars is a widely adopted strategy used to improve the durability of concrete structures in chloride environments, offering benefits such as enhanced corrosion resistance, reduced maintenance needs, and increased service life. This study investigates the bond behavior between glass fiber-reinforced polymer (GFRP) bars and concrete under long-term chloride dry–wet cycling exposure. Pull-out tests were conducted on various specimens subjected to exposure durations of 0, 3, 6, 9, and 12 months. The experimental results indicate that, after 12 months of chloride dry–wet cycling, the bond strength retention rates of threaded ribbed GFRP with a bond length of 5d, sand-coated GFRP with a bond length of 5d, and threaded ribbed GFRP with a bond length of 7d were 57.9%, 62.2%, and 63.8%, respectively. To predict the GFRP–concrete bond performance after chloride exposure, a novel bond strength model for GFRP bars embedded in concrete, considering the mechanical interlocking effect of ribs, was proposed and validated by the test results. The overall prediction errors for RG-5d, SG-5d, and RG-7d specimens were 0.98, 0.81, and 0.93, respectively. Additionally, a sensitivity analysis was conducted on the main parameters in the model. Finally, the long-term GFRP–concrete bond performance deterioration was estimated using the proposed model. These findings are expected to provide valuable insights into the long-term bond performance and service life prediction of GFRP–concrete members in chloride environments. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

17 pages, 7524 KiB  
Article
Bicomponent Electrospinning of PVDF-Based Nanofiber Membranes for Air Filtration and Oil–Water Separation
by Tianxue Feng, Lin Fu, Zhimei Mu, Wenhui Wei, Wenwen Li, Xiu Liang, Liang Ma, Yitian Wu, Xiaoyu Wang, Tao Wu, Meng Gao, Guanchen Xu and Xingshuang Zhang
Polymers 2025, 17(5), 703; https://doi.org/10.3390/polym17050703 - 6 Mar 2025
Cited by 1 | Viewed by 715
Abstract
Particulate matter (PM) and water pollution have posed serious hazards to human health. Nanofiber membranes (NFMs) have emerged as promising candidates for the elimination of PMs and the separation of oil–water mixtures. In this study, a polyvinylidene difluoride (PVDF)-based nanofiber membrane with an [...] Read more.
Particulate matter (PM) and water pollution have posed serious hazards to human health. Nanofiber membranes (NFMs) have emerged as promising candidates for the elimination of PMs and the separation of oil–water mixtures. In this study, a polyvinylidene difluoride (PVDF)-based nanofiber membrane with an average diameter of approximately 150 nm was prepared via a double-nozzle electrospinning technology, demonstrating high-efficiency PM filtration and oil–water separation. The finer fiber diameter not only enhances PM filtration efficiency but also reduces air resistance. The high-voltage electric field and mechanical stretching during electrospinning promote high crystallization of β-phase PVDF. Additionally, the electrostatic charges generated on the surface of β-phase PVDF facilitate the adsorption of PM from the atmosphere. The introduction of polydopamine (PDA) in PVDF produces abundant adsorption sites, enabling outstanding filtration performance. PVDF-PVDF/PDA NFMs can achieve remarkable PM0.3 filtration efficiency (99.967%) while maintaining a low pressure drop (144 Pa). PVDF-PVDF/PDA NFMs are hydrophobic, and its water contact angle (WCA) is 125.9°. It also shows excellent resistance to both acidic and alkaline environments, along with notable flame retardancy, as it can self-extinguish within 3 s. This nanofiber membrane holds significant promise for applications in personal protection, indoor air filtration, oily wastewater treatment, and environmental protection. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop