sustainability-logo

Journal Browser

Journal Browser

Research and Application in Sustainable Asphalt Pavements and Road Construction

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Sustainable Transportation".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 1107

Special Issue Editors


E-Mail Website
Guest Editor
Department of Construction Engineering and Engineering Project, University of Granada, 18071 Granada, Spain
Interests: asphalt; pavement; road and railway; construction materials and technologies; sustainability; testing and monitoring
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Construction Engineering and Engineering Project, University of Granada, 18071 Granada, Spain
Interests: asphalt; pavement; road and railway; construction materials and technologies; sustainability; testing and monitoring
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Asphalt pavements are widely utilized in roads all around the world, as this type of infrastructure is a key means of communication for the development of society. However, the large quantity of natural resources associated with its construction, conservation and rehabilitation demands for the research of more sustainable materials and technologies to be applied in this field. In this sense, most institutions and companies are seeking innovative solutions to reduce the consumption of energy and natural resources, while using alternative materials or reusing wastes or by-products to minimize economic, environmental and social impacts. In this context, this Special Issue aims to gather papers that address the research and application of innovative materials and technologies for sustainable asphalt pavements and road construction. This Special Issue will provide a collection of noteworthy investigations and case studies related to sustainable solutions for asphalt pavements and road construction.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Asphalt mixtures at low temperatures;
  • Reclaimed asphalt;
  • Recycled polymer-modified binders;
  • Recycled materials for road construction;
  • Life cycle assessment;
  • Circular economy;
  • Testing and monitoring road construction.
  • I look forward to receiving your contributions.

Dr. Miguel Sol-Sánchez
Prof. Dr. Fernando Moreno-Navarro
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • asphalt
  • pavement
  • road
  • recycled materials
  • low carbon emissions
  • circular economy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

30 pages, 6958 KiB  
Article
Predicting the Influence of Pulverized Oil Palm Clinker as a Sustainable Modifier on Bituminous Concrete Fatigue Life: Advancing Sustainable Development Goals through Statistical and Predictive Analysis
by Nura Shehu Aliyu Yaro, Muslich Hartadi Sutanto, Noor Zainab Habib, Aliyu Usman, Liza Evianti Tanjung, Muhammad Sani Bello, Azmatullah Noor, Abdullahi Haruna Birniwa and Ahmad Hussaini Jagaba
Sustainability 2024, 16(16), 7078; https://doi.org/10.3390/su16167078 - 18 Aug 2024
Viewed by 721
Abstract
Currently, the viscoelastic properties of conventional asphalt cement need to be improved to meet the increasing demands caused by larger traffic loads, increased stress, and changing environmental conditions. Thus, using modifiers is suggested. Furthermore, the Sustainable Development Goals (SDGs) promote using waste materials [...] Read more.
Currently, the viscoelastic properties of conventional asphalt cement need to be improved to meet the increasing demands caused by larger traffic loads, increased stress, and changing environmental conditions. Thus, using modifiers is suggested. Furthermore, the Sustainable Development Goals (SDGs) promote using waste materials and new technologies in asphalt pavement technology. The present study aims to fill this gap by investigating the use of pulverized oil palm industry clinker (POPIC) as an asphalt–cement modifier to improve the fatigue life of bituminous concrete using an innovative prediction approach. Thus, this study proposes an approach that integrates statistically based machine learning approaches and investigates the effects of applied stress and temperature on the fatigue life of POPIC-modified bituminous concrete. POPIC-modified bituminous concrete (POPIC-MBC) is produced from a standard Marshall mix. The interactions between POPIC concentration, stress, and temperature were optimized using response surface methodology (RSM), resulting in 7.5% POPIC, 11.7 °C, and 0.2 MPa as the optimum parameters for fatigue life. To improve the prediction accuracy and robustness of the results, RSM and ANN models were used and analyzed using MATLAB and JMP Pro, respectively. The performance of the developed model was assessed using the coefficient of determination (R2), root mean square error (RMSE), and mean relative error (MRE). The study found that using RSM, MATLAB, and JMP Pro resulted in a comprehensive analysis. MATLAB achieved an R² value of 0.9844, RMSE of 3.094, and MRE of 312.427, and JMP Pro achieved an R² value of 0.998, RMSE of 1.245, and MRE of 126.243, demonstrating higher prediction accuracy and superior performance than RSM, which had an R² value of 0.979, RMSE of 3.757, and MRE of 357.846. Further validation with parity, Taylor, and violin plots demonstrates that both models have good prediction accuracy, with the JMP Pro ANN model outperforming in terms of accuracy and alignment. This demonstrates the machine learning approach’s efficiency in analyzing the fatigue life of POPIC-MBC, revealing it to be a useful tool for future research and practical applications. Furthermore, the study reveals that the innovative approach adopted and POPIC modifier, obtained from biomass waste, meets zero-waste and circular bioeconomy goals, contributing to the UN’s SDGs 9, 11, 12, and 13. Full article
Show Figures

Figure 1

Back to TopTop