Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 692 KiB  
Review
Towards Mass Spectrometry-Based Chemical Exposome: Current Approaches, Challenges, and Future Directions
by Jingchuan Xue, Yunjia Lai, Chih-Wei Liu and Hongyu Ru
Toxics 2019, 7(3), 41; https://doi.org/10.3390/toxics7030041 - 18 Aug 2019
Cited by 27 | Viewed by 5875
Abstract
The proposal of the “exposome” concept represents a shift of the research paradigm in studying exposure-disease relationships from an isolated and partial way to a systematic and agnostic approach. Nevertheless, exposome implementation is facing a variety of challenges including measurement techniques and data [...] Read more.
The proposal of the “exposome” concept represents a shift of the research paradigm in studying exposure-disease relationships from an isolated and partial way to a systematic and agnostic approach. Nevertheless, exposome implementation is facing a variety of challenges including measurement techniques and data analysis. Here we focus on the chemical exposome, which refers to the mixtures of chemical pollutants people are exposed to from embryo onwards. We review the current chemical exposome measurement approaches with a focus on those based on the mass spectrometry. We further explore the strategies in implementing the concept of chemical exposome and discuss the available chemical exposome studies. Early progresses in the chemical exposome research are outlined, and major challenges are highlighted. In conclusion, efforts towards chemical exposome have only uncovered the tip of the iceberg, and further advancement in measurement techniques, computational tools, high-throughput data analysis, and standardization may allow more exciting discoveries concerning the role of exposome in human health and disease. Full article
(This article belongs to the Special Issue Biomarkers of Environmental Toxicants)
Show Figures

Figure 1

8 pages, 1286 KiB  
Article
Consumption of Minerals, Toxic Metals and Hydroxymethylfurfural: Analysis of Infant Foods and Formulae
by Christian Vella and Everaldo Attard
Toxics 2019, 7(2), 33; https://doi.org/10.3390/toxics7020033 - 8 Jun 2019
Cited by 20 | Viewed by 4819
Abstract
Infant foods and formulae may contain toxic substances and elements which can be neo-formed contaminants or derived from raw materials or processing. The content of minerals, toxic elements, and hydroxymethylfurfural (HMF) in infant foods and formulae were evaluated. The effect of storage temperature [...] Read more.
Infant foods and formulae may contain toxic substances and elements which can be neo-formed contaminants or derived from raw materials or processing. The content of minerals, toxic elements, and hydroxymethylfurfural (HMF) in infant foods and formulae were evaluated. The effect of storage temperature on HMF formation in infant formulae and its potential as a quality parameter was also evaluated. Prune-based foods contained the highest HMF content. HMF significantly increased when the storage temperature was elevated to 30 °C for 21 days. All trace elements were present in adequate amounts, while the concentration of nickel was higher when compared to those of other studies. The study indicates that HMF can be used as a quality indicator for product shelf-life and that the concentrations of minerals and toxic elements vary greatly due to the diverse compositions of foods and formulae. Such contaminants need to be monitored as infants represent a vulnerable group compared to adults. Full article
(This article belongs to the Special Issue Analysis of Chemical Contaminants in Food)
Show Figures

Graphical abstract

35 pages, 3057 KiB  
Review
Bioanalytical and Mass Spectrometric Methods for Aldehyde Profiling in Biological Fluids
by Romel P. Dator, Morwena J. Solivio, Peter W. Villalta and Silvia Balbo
Toxics 2019, 7(2), 32; https://doi.org/10.3390/toxics7020032 - 4 Jun 2019
Cited by 36 | Viewed by 8874
Abstract
Human exposure to aldehydes is implicated in multiple diseases including diabetes, cardiovascular diseases, neurodegenerative disorders (i.e., Alzheimer’s and Parkinson’s Diseases), and cancer. Because these compounds are strong electrophiles, they can react with nucleophilic sites in DNA and proteins to form reversible and irreversible [...] Read more.
Human exposure to aldehydes is implicated in multiple diseases including diabetes, cardiovascular diseases, neurodegenerative disorders (i.e., Alzheimer’s and Parkinson’s Diseases), and cancer. Because these compounds are strong electrophiles, they can react with nucleophilic sites in DNA and proteins to form reversible and irreversible modifications. These modifications, if not eliminated or repaired, can lead to alteration in cellular homeostasis, cell death and ultimately contribute to disease pathogenesis. This review provides an overview of the current knowledge of the methods and applications of aldehyde exposure measurements, with a particular focus on bioanalytical and mass spectrometric techniques, including recent advances in mass spectrometry (MS)-based profiling methods for identifying potential biomarkers of aldehyde exposure. We discuss the various derivatization reagents used to capture small polar aldehydes and methods to quantify these compounds in biological matrices. In addition, we present emerging mass spectrometry-based methods, which use high-resolution accurate mass (HR/AM) analysis for characterizing carbonyl compounds and their potential applications in molecular epidemiology studies. With the availability of diverse bioanalytical methods presented here including simple and rapid techniques allowing remote monitoring of aldehydes, real-time imaging of aldehydic load in cells, advances in MS instrumentation, high performance chromatographic separation, and improved bioinformatics tools, the data acquired enable increased sensitivity for identifying specific aldehydes and new biomarkers of aldehyde exposure. Finally, the combination of these techniques with exciting new methods for single cell analysis provides the potential for detection and profiling of aldehydes at a cellular level, opening up the opportunity to minutely dissect their roles and biological consequences in cellular metabolism and diseases pathogenesis. Full article
(This article belongs to the Special Issue Biomarkers of Environmental Toxicants)
Show Figures

Graphical abstract

3 pages, 186 KiB  
Editorial
Cadmium Sources and Toxicity
by Soisungwan Satarug
Toxics 2019, 7(2), 25; https://doi.org/10.3390/toxics7020025 - 6 May 2019
Cited by 47 | Viewed by 6848
Abstract
This special issue of Toxics, Cadmium (Cd) sources and toxicity, consists of one comprehensive review [...] Full article
(This article belongs to the Special Issue Cadmium Sources and Toxicity)
28 pages, 2752 KiB  
Review
A Review of Biomonitoring of Phthalate Exposures
by Yu Wang, Hongkai Zhu and Kurunthachalam Kannan
Toxics 2019, 7(2), 21; https://doi.org/10.3390/toxics7020021 - 5 Apr 2019
Cited by 441 | Viewed by 22330
Abstract
Phthalates (diesters of phthalic acid) are widely used as plasticizers and additives in many consumer products. Laboratory animal studies have reported the endocrine-disrupting and reproductive effects of phthalates, and human exposure to this class of chemicals is a concern. Several phthalates have been [...] Read more.
Phthalates (diesters of phthalic acid) are widely used as plasticizers and additives in many consumer products. Laboratory animal studies have reported the endocrine-disrupting and reproductive effects of phthalates, and human exposure to this class of chemicals is a concern. Several phthalates have been recognized as substances of high concern. Human exposure to phthalates occurs mainly via dietary sources, dermal absorption, and air inhalation. Phthalates are excreted as conjugated monoesters in urine, and some phthalates, such as di-2-ethylhexyl phthalate (DEHP), undergo secondary metabolism, including oxidative transformation, prior to urinary excretion. The occurrence of phthalates and their metabolites in urine, serum, breast milk, and semen has been widely reported. Urine has been the preferred matrix in human biomonitoring studies, and concentrations on the order of several tens to hundreds of nanograms per milliliter have been reported for several phthalate metabolites. Metabolites of diethyl phthalate (DEP), dibutyl- (DBP) and diisobutyl- (DiBP) phthalates, and DEHP were the most abundant compounds measured in urine. Temporal trends in phthalate exposures varied among countries. In the United States (US), DEHP exposure has declined since 2005, whereas DiNP exposure has increased. In China, DEHP exposure has increased since 2000. For many phthalates, exposures in children are higher than those in adults. Human epidemiological studies have shown a significant association between phthalate exposures and adverse reproductive outcomes in women and men, type II diabetes and insulin resistance, overweight/obesity, allergy, and asthma. This review compiles biomonitoring studies of phthalates and exposure doses to assess health risks from phthalate exposures in populations across the globe. Full article
(This article belongs to the Special Issue Biomarkers of Environmental Toxicants)
Show Figures

Figure 1

19 pages, 2816 KiB  
Article
Protective Effects of Centella asiatica on Cognitive Deficits Induced by D-gal/AlCl3 via Inhibition of Oxidative Stress and Attenuation of Acetylcholinesterase Level
by Samaila Musa Chiroma, Mohamad Taufik Hidayat Baharuldin, Che Norma Mat Taib, Zulkhairi Amom, Saravanan Jagadeesan, Mohd Ilham Adenan, Onesimus Mahdi and Mohamad Aris Mohd Moklas
Toxics 2019, 7(2), 19; https://doi.org/10.3390/toxics7020019 - 30 Mar 2019
Cited by 29 | Viewed by 5251
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with cholinergic dysfunctions and impaired redox homeostasis. The plant Centella asiatica (CA) is renowned for its nutritional benefits and herbal formulas for promoting health, enhancing cognition, and its neuroprotective effects. The present study aims to [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with cholinergic dysfunctions and impaired redox homeostasis. The plant Centella asiatica (CA) is renowned for its nutritional benefits and herbal formulas for promoting health, enhancing cognition, and its neuroprotective effects. The present study aims to investigate the protective role of CA on D-gal/AlCl3-induced cognitive deficits in rats. The rats were divided into six groups and administered with donepezil 1 mg/kg/day, CA (200, 400, and 800 mg/kg/day) and D-gal 60 mg/kg/day + AlCl3 200 mg/kg/day for 10 weeks. The ethology of the rats was evaluated by the Morris water maze test. The levels of acetylcholinesterase (AChE), phosphorylated tau (P-tau), malondialdehyde (MDA) and activities of superoxide dismutase (SOD), in the hippocampus and cerebral cortex were estimated by enzyme-linked immunosorbent assay (ELISA). Additionally, the ultrastructure of the prefrontal cortex of the rats’ was observed using transmission electron microscopy (TEM). Rats administered with D-gal/AlCl3 exhibited cognitive deficits, decreased activities of SOD, and marked increase in AChE and MDA levels. Further, prominent alterations in the ultrastructure of the prefrontal cortex were observed. Conversely, co-administration of CA with D-gal/AlCl3 improved cognitive impairment, decreased AChE levels, attenuated the oxidative stress in hippocampus and cerebral cortex, and prevented ultrastructural alteration of neurons in the prefrontal cortex. Irrespective of the dose of CA administered, the protective effects were comparable to donepezil. In conclusion, this study suggests that CA attenuated the cognitive deficits in rats by restoring cholinergic function, attenuating oxidative stress, and preventing the morphological aberrations. Full article
(This article belongs to the Special Issue Toxicity of Chemical Mixtures)
Show Figures

Figure 1

18 pages, 4745 KiB  
Review
The Versatile Roles of the tRNA Epitranscriptome during Cellular Responses to Toxic Exposures and Environmental Stress
by Sabrina M. Huber, Andrea Leonardi, Peter C. Dedon and Thomas J. Begley
Toxics 2019, 7(1), 17; https://doi.org/10.3390/toxics7010017 - 25 Mar 2019
Cited by 45 | Viewed by 6189
Abstract
Living organisms respond to environmental changes and xenobiotic exposures by regulating gene expression. While heat shock, unfolded protein, and DNA damage stress responses are well-studied at the levels of the transcriptome and proteome, tRNA-mediated mechanisms are only recently emerging as important modulators of [...] Read more.
Living organisms respond to environmental changes and xenobiotic exposures by regulating gene expression. While heat shock, unfolded protein, and DNA damage stress responses are well-studied at the levels of the transcriptome and proteome, tRNA-mediated mechanisms are only recently emerging as important modulators of cellular stress responses. Regulation of the stress response by tRNA shows a high functional diversity, ranging from the control of tRNA maturation and translation initiation, to translational enhancement through modification-mediated codon-biased translation of mRNAs encoding stress response proteins, and translational repression by stress-induced tRNA fragments. tRNAs need to be heavily modified post-transcriptionally for full activity, and it is becoming increasingly clear that many aspects of tRNA metabolism and function are regulated through the dynamic introduction and removal of modifications. This review will discuss the many ways that nucleoside modifications confer high functional diversity to tRNAs, with a focus on tRNA modification-mediated regulation of the eukaryotic response to environmental stress and toxicant exposures. Additionally, the potential applications of tRNA modification biology in the development of early biomarkers of pathology will be highlighted. Full article
(This article belongs to the Special Issue Biomarkers of Environmental Toxicants)
Show Figures

Figure 1

28 pages, 2619 KiB  
Review
Recent Studies on DNA Adducts Resulting from Human Exposure to Tobacco Smoke
by Bin Ma, Irina Stepanov and Stephen S. Hecht
Toxics 2019, 7(1), 16; https://doi.org/10.3390/toxics7010016 - 19 Mar 2019
Cited by 58 | Viewed by 7948
Abstract
DNA adducts are believed to play a central role in the induction of cancer in cigarette smokers and are proposed as being potential biomarkers of cancer risk. We have summarized research conducted since 2012 on DNA adduct formation in smokers. A variety of [...] Read more.
DNA adducts are believed to play a central role in the induction of cancer in cigarette smokers and are proposed as being potential biomarkers of cancer risk. We have summarized research conducted since 2012 on DNA adduct formation in smokers. A variety of DNA adducts derived from various classes of carcinogens, including aromatic amines, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, alkylating agents, aldehydes, volatile carcinogens, as well as oxidative damage have been reported. The results are discussed with particular attention to the analytical methods used in those studies. Mass spectrometry-based methods that have higher selectivity and specificity compared to 32P-postlabeling or immunochemical approaches are preferred. Multiple DNA adducts specific to tobacco constituents have also been characterized for the first time in vitro or detected in vivo since 2012, and descriptions of those adducts are included. We also discuss common issues related to measuring DNA adducts in humans, including the development and validation of analytical methods and prevention of artifact formation. Full article
(This article belongs to the Special Issue Biomarkers of Environmental Toxicants)
Show Figures

Figure 1

14 pages, 5671 KiB  
Perspective
Aristolochic Acids: Newly Identified Exposure Pathways of this Class of Environmental and Food-Borne Contaminants and its Potential Link to Chronic Kidney Diseases
by Chi-Kong Chan, Yushuo Liu, Nikola M. Pavlović and Wan Chan
Toxics 2019, 7(1), 14; https://doi.org/10.3390/toxics7010014 - 19 Mar 2019
Cited by 24 | Viewed by 5768
Abstract
Aristolochic acids (AAs) are nitrophenanthrene carboxylic acids naturally produced by Aristolochia plants. These plants were widely used to prepare herbal remedies until AAs were observed to be highly nephrotoxic and carcinogenic to humans. Although the use of AA-containing Aristolochia plants in herbal medicine [...] Read more.
Aristolochic acids (AAs) are nitrophenanthrene carboxylic acids naturally produced by Aristolochia plants. These plants were widely used to prepare herbal remedies until AAs were observed to be highly nephrotoxic and carcinogenic to humans. Although the use of AA-containing Aristolochia plants in herbal medicine is prohibited in countries worldwide, emerging evidence nevertheless has indicated that AAs are the causative agents of Balkan endemic nephropathy (BEN), an environmentally derived disease threatening numerous residents of rural farming villages along the Danube River in countries of the Balkan Peninsula. This perspective updates recent findings on the identification of AAs in food as a result of the root uptake of free AAs released from the decayed seeds of Aristolochia clematitis L., in combination with their presence and fate in the environment. The potential link between AAs and the high prevalence of chronic kidney diseases in China is also discussed. Full article
(This article belongs to the Special Issue Biomarkers of Environmental Toxicants)
Show Figures

Figure 1

18 pages, 3476 KiB  
Review
Exploration of Computational Approaches to Predict the Toxicity of Chemical Mixtures
by Supratik Kar and Jerzy Leszczynski
Toxics 2019, 7(1), 15; https://doi.org/10.3390/toxics7010015 - 19 Mar 2019
Cited by 81 | Viewed by 8557
Abstract
Industrial advances have led to generation of multi-component chemicals, materials and pharmaceuticals which are directly or indirectly affecting the environment. Although toxicity data are available for individual chemicals, generally there is no toxicity data of chemical mixtures. Most importantly, the nature of toxicity [...] Read more.
Industrial advances have led to generation of multi-component chemicals, materials and pharmaceuticals which are directly or indirectly affecting the environment. Although toxicity data are available for individual chemicals, generally there is no toxicity data of chemical mixtures. Most importantly, the nature of toxicity of these studied mixtures is completely different to the single components, which makes the toxicity evaluation of mixtures more critical and challenging. Interactions of individual chemicals in a mixture can result in multifaceted and considerable deviations in the apparent properties of its ingredients. It results in synergistic or antagonistic effects as opposed to the ideal case of additive behavior i.e., concentration addition (CA) and independent action (IA). The CA and IA are leading models for the assessment of joint activity supported by pharmacology literature. Animal models for toxicity testing are time- and money-consuming as well as unethical. Thus, computational approaches are already proven efficient alternatives for assessing the toxicity of chemicals by regulatory authorities followed by industries. In silico methods are capable of predicting toxicity, prioritizing chemicals, identifying risk and assessing, followed by managing, the risk. In many cases, the mechanism behind the toxicity from species to species can be understood by in silico methods. Until today most of the computational approaches have been employed for single chemical’s toxicity. Thus, only a handful of works in the literature and methods are available for a mixture’s toxicity prediction employing computational or in silico approaches. Therefore, the present review explains the importance of evaluation of a mixture’s toxicity, the role of computational approaches to assess the toxicity, followed by types of in silico methods. Additionally, successful application of in silico tools in a mixture’s toxicity predictions is explained in detail. Finally, future avenues towards the role and application of computational approaches in a mixture’s toxicity are discussed. Full article
(This article belongs to the Special Issue Toxicity of Chemical Mixtures)
Show Figures

Figure 1

16 pages, 394 KiB  
Review
Environmental Contaminants Exposure and Preterm Birth: A Systematic Review
by Maria Grazia Porpora, Ilaria Piacenti, Sara Scaramuzzino, Luisa Masciullo, Francesco Rech and Pierluigi Benedetti Panici
Toxics 2019, 7(1), 11; https://doi.org/10.3390/toxics7010011 - 1 Mar 2019
Cited by 42 | Viewed by 7190
Abstract
Preterm birth is an obstetric condition associated with a high risk of infant mortality and morbidities in both the neonatal period and later in life, which has also a significant public health impact because it carries an important societal economic burden. As in [...] Read more.
Preterm birth is an obstetric condition associated with a high risk of infant mortality and morbidities in both the neonatal period and later in life, which has also a significant public health impact because it carries an important societal economic burden. As in many cases the etiology is unknown, it is important to identify environmental factors that may be involved in the occurrence of this condition. In this review, we report all the studies published in PubMed and Scopus databases from January 1992 to January 2019, accessible as full-text articles, written in English, including clinical studies, original studies, and reviews. We excluded articles not written in English, duplicates, considering inappropriate populations and/or exposures or irrelevant outcomes and patients with known risk factors for preterm birth (PTB). The aim of this article is to identify and summarize the studies that examine environmental toxicants exposure associated with preterm birth. This knowledge will strengthen the possibility to develop strategies to reduce the exposure to these toxicants and apply clinical measures for preterm birth prevention. Full article
(This article belongs to the Special Issue Prenatal Exposure to Toxics and Risks in Infants)
8 pages, 1575 KiB  
Article
Effects of AgNPs on the Snail Biomphalaria glabrata: Survival, Reproduction and Silver Accumulation
by Eduardo Cyrino Oliveira-Filho, Daphne Heloísa de Freitas Muniz, Esther Lima de Carvalho, Paolin Rocio Cáceres-Velez, Maria Luiza Fascineli, Ricardo Bentes Azevedo and Cesar Koppe Grisolia
Toxics 2019, 7(1), 12; https://doi.org/10.3390/toxics7010012 - 1 Mar 2019
Cited by 21 | Viewed by 3971
Abstract
Silver nanoparticles (AgNPs) are used intensively in medical and industrial applications. Environmental concerns have arisen from the potential release of this material into aquatic ecosystems. The aims of this research were to evaluate the potential accumulation of silver in the whole body of [...] Read more.
Silver nanoparticles (AgNPs) are used intensively in medical and industrial applications. Environmental concerns have arisen from the potential release of this material into aquatic ecosystems. The aims of this research were to evaluate the potential accumulation of silver in the whole body of organisms and analyze the effects of AgNPs on the survival and reproduction of the snail Biomphalaria glabrata. Results show slow acute toxicity with a 10-day LC50 of 18.57 mg/L and an effective decrease in the eggs and egg clutches per organism exposed to tested concentrations. Based on these data, the No Observed Effect Concentration (NOEC) observed was <1 mg/L for snail reproduction. For silver accumulation, we observed that uptake was faster than elimination, which was very slow and still incomplete 35 days after the end of the experiment. However, the observed accumulation was not connected with a concentration/response relationship, since the amount of silver was not equivalent to a higher reproductive effect. The data observed show that AgNPs are toxic to B. glabrata, and suggest that the snail has internal mechanisms to combat the presence of Ag in its body, ensuring survival and reduced reproduction and showing that the species seems to be a potential indicator for Ag presence in contaminated aquatic ecosystems. Full article
(This article belongs to the Special Issue Nanoparticles Toxicity and Impacts on Biodiversity)
Show Figures

Figure 1

13 pages, 752 KiB  
Review
Metabolic Syndrome and Air Pollution: A Narrative Review of Their Cardiopulmonary Effects
by Emily A. Clementi, Angela Talusan, Sandhya Vaidyanathan, Arul Veerappan, Mena Mikhail, Dean Ostrofsky, George Crowley, James S. Kim, Sophia Kwon and Anna Nolan
Toxics 2019, 7(1), 6; https://doi.org/10.3390/toxics7010006 - 30 Jan 2019
Cited by 33 | Viewed by 5657
Abstract
Particulate matter (PM) exposure and metabolic syndrome (MetSyn) are both significant global health burdens. PM exposure has been implicated in the pathogenesis of MetSyn and cardiopulmonary diseases. Individuals with pre-existing MetSyn may be more susceptible to the detrimental effects of PM exposure. Our [...] Read more.
Particulate matter (PM) exposure and metabolic syndrome (MetSyn) are both significant global health burdens. PM exposure has been implicated in the pathogenesis of MetSyn and cardiopulmonary diseases. Individuals with pre-existing MetSyn may be more susceptible to the detrimental effects of PM exposure. Our aim was to provide a narrative review of MetSyn/PM-induced systemic inflammation in cardiopulmonary disease, with a focus on prior studies of the World Trade Center (WTC)-exposed Fire Department of New York (FDNY). We included studies (1) published within the last 16-years; (2) described the epidemiology of MetSyn, obstructive airway disease (OAD), and vascular disease in PM-exposed individuals; (3) detailed the known mechanisms of PM-induced inflammation, MetSyn and cardiopulmonary disease; and (4) focused on the effects of PM exposure in WTC-exposed FDNY firefighters. Several investigations support that inhalation of PM elicits pulmonary and systemic inflammation resulting in MetSyn and cardiopulmonary disease. Furthermore, individuals with these preexisting conditions are more sensitive to PM exposure-related inflammation, which can exacerbate their conditions and increase their risk for hospitalization and chronic disease. Mechanistic research is required to elucidate biologically plausible therapeutic targets of MetSyn- and PM-induced cardiopulmonary disease. Full article
(This article belongs to the Section Toxicology)
Show Figures

Graphical abstract

11 pages, 921 KiB  
Review
Comparative Overview of the Mechanisms of Action of Hormones and Endocrine Disruptor Compounds
by Yves Combarnous and Thi Mong Diep Nguyen
Toxics 2019, 7(1), 5; https://doi.org/10.3390/toxics7010005 - 24 Jan 2019
Cited by 78 | Viewed by 8024
Abstract
Endocrine Disruptor Compounds (EDCs) are synthetic or natural molecules in the environment that promote adverse modifications of endogenous hormone regulation in humans and/or in wildlife animals. In the present paper, we review the potential mechanisms of EDCs and point out the similarities and [...] Read more.
Endocrine Disruptor Compounds (EDCs) are synthetic or natural molecules in the environment that promote adverse modifications of endogenous hormone regulation in humans and/or in wildlife animals. In the present paper, we review the potential mechanisms of EDCs and point out the similarities and differences between EDCs and hormones. There was only one mechanism, out of nine identified, in which EDCs acted like hormones (i.e., binding and stimulated hormone receptor activity). In the other eight identified mechanisms of action, EDCs exerted their effects either by affecting endogenous hormone concentration, or its availability, or by modifying hormone receptor turn over. This overview is intended to classify the various EDC mechanisms of action in order to better appreciate when in vitro tests would be valid to assess their risks towards humans and wildlife. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

9 pages, 601 KiB  
Case Report
Trends in the Use of Glyphosate Herbicide and Its Relevant Regulations in Taiwan: A Water Contaminant of Increasing Concern
by Wen-Tien Tsai
Toxics 2019, 7(1), 4; https://doi.org/10.3390/toxics7010004 - 22 Jan 2019
Cited by 17 | Viewed by 5519
Abstract
In Taiwan and other countries, glyphosate has been used widely as a non-selective herbicide over 40 years in crop lands and non-crop lands. However, public concerns about its environmental and health risks have increased rapidly because the International Agency for Research on Cancer [...] Read more.
In Taiwan and other countries, glyphosate has been used widely as a non-selective herbicide over 40 years in crop lands and non-crop lands. However, public concerns about its environmental and health risks have increased rapidly because the International Agency for Research on Cancer (IARC) reclassified it as Group 2A (probably carcinogenic to humans) in 2015. From the viewpoints of environmental quality, food security and human health, it is necessary to regulate the release of glyphosate into the environment due to its massive use. The purpose of this case study was to analyze the historical consumption of glyphosate in Taiwan and also summarize its current regulatory measures through multi-ministerial levels. It showed that the sales quantities of glyphosate in Taiwan can be grouped into three stages, which include a ramping period (1984–1992), a stable period (1992–2007), and a declining period (2007–2016). These variations can be correlated with the annual price, manufacturers’ promotion and other non-selective herbicide competitors (i.e., paraquat and glufosinate), as well as the excellent action features of glyphosate. It should be noted that its sales quantities significantly increased from 3200 metric tons in 2015 to 4535 metric tons in 2016 mainly due to the official announcement of paraquat ban effective in February 2019. The core regulations for protecting food security and water quality from the use of glyphosate are based on its residual limits and standards under the authorization of the Food Sanitation Management Act (FSMA) and the Water Pollution Control Act (WPCA), respectively. More importantly, there are occasional reports of contamination by herbicides (including glyphosate) in drinking water sources. Unfortunately, glyphosate is not yet considered among chemical items when evaluating drinking water quality standards in Taiwan. Full article
Show Figures

Figure 1

14 pages, 1132 KiB  
Article
Trace Element Uptake by Herbaceous Plants from the Soils at a Multiple Trace Element-Contaminated Site
by Obinna Elijah Nworie, Junhao Qin and Chuxia Lin
Toxics 2019, 7(1), 3; https://doi.org/10.3390/toxics7010003 - 17 Jan 2019
Cited by 25 | Viewed by 6324
Abstract
The uptake of trace elements by wild herbaceous plants in a multiple trace element-contaminated site was investigated. The bioaccumulation factor (BF) of trace elements was markedly variable among the different plant species. On average, the BF for various trace elements was in the [...] Read more.
The uptake of trace elements by wild herbaceous plants in a multiple trace element-contaminated site was investigated. The bioaccumulation factor (BF) of trace elements was markedly variable among the different plant species. On average, the BF for various trace elements was in the following decreasing order: Zn > Cu > Mn > Ni > As > Pb > Cr. The translocation factor among the investigated plant species was also considerably variable and showed the following decreasing order: Mn > Zn > Ni > Cu > Cr > As > Pb. Several hyperaccumulating plants were identified: Artemisia vulgaris for As, Mn and Zn, Phalaris arundinacea for Mn and Ni, Heracleum sphondylium for Cr and Zn, and Bistorta officinalis for Mn and Zn. The marked accumulation of trace elements in the plant tissue suggests that the site may not be suitable for urban agricultural production. The plant tissue-borne trace elements could affect microbial activities and consequently interfere with the ecosystem functioning in the affected areas. Full article
Show Figures

Figure 1

Back to TopTop