water-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1180 KiB  
Article
Small Patches of Riparian Woody Vegetation Enhance Biodiversity of Invertebrates
by Marie Anne Eurie Forio, Niels De Troyer, Koen Lock, Felix Witing, Lotte Baert, Nancy De Saeyer, Geta Rîșnoveanu, Cristina Popescu, Francis J. Burdon, Benjamin Kupilas, Nikolai Friberg, Pieter Boets, Martin Volk, Brendan G. McKie and Peter Goethals
Water 2020, 12(11), 3070; https://doi.org/10.3390/w12113070 - 2 Nov 2020
Cited by 26 | Viewed by 4932
Abstract
Patches of riparian woody vegetation potentially help mitigate environmental impacts of agriculture and safeguard biodiversity. We investigated the effects of riparian forest on invertebrate diversity in coupled stream-riparian networks using a case study in the Zwalm river basin (Flanders, Belgium). Agriculture is one [...] Read more.
Patches of riparian woody vegetation potentially help mitigate environmental impacts of agriculture and safeguard biodiversity. We investigated the effects of riparian forest on invertebrate diversity in coupled stream-riparian networks using a case study in the Zwalm river basin (Flanders, Belgium). Agriculture is one of the main pressures in the basin and riparian forest is limited to a number of isolated patches. Our 32 study sites comprised nine unshaded “unbuffered” sites which were paired with nine shaded “buffered” sites on the same stream reach, along with five ‘least-disturbed’ sites and nine downstream sites. We sampled water chemistry, habitat characteristics and stream and riparian invertebrates (carabid beetles and spiders) at each site. Three methods were used to quantify riparian attributes at different spatial scales: a visually-assessed qualitative index, quantitative estimates of habitat categories in six rectangular plots (10 × 5 m) and geographic information system (GIS)-derived land cover data. We investigated relationships between invertebrates and riparian attributes at different scales with linear regression and redundancy analyses. Spiders and carabids were most associated with local riparian attributes. In contrast, aquatic macroinvertebrates were strongly influenced by the extent of riparian vegetation in a riparian band upstream (100–300 m). These findings demonstrate the value of quantifying GIS-based metrics of riparian cover over larger spatial scales into assessments of the efficacy of riparian management as a complement to more detailed local scale riparian assessments in situ. Our findings highlight the value of even small patches of riparian vegetation in an otherwise extensively disturbed landscape in supporting biodiversity of both terrestrial and freshwater invertebrates and emphasize the need to consider multiple spatial scales in riparian management strategies which aim to mitigate human impacts on biodiversity in stream-riparian networks. Full article
(This article belongs to the Special Issue Ecosystem Functioning in Rivers and Riparian Zones)
Show Figures

Figure 1

16 pages, 1500 KiB  
Article
Comparison of Manganese Dioxide and Permanganate as Amendments with Persulfate for Aqueous 1,4-Dioxane Oxidation
by Logan Bridges, Ruba A. M. Mohamed, Naima A. Khan, Mark L. Brusseau and Kenneth C. Carroll
Water 2020, 12(11), 3061; https://doi.org/10.3390/w12113061 - 1 Nov 2020
Cited by 8 | Viewed by 4186
Abstract
Persulfate (PS) is widely used to degrade emerging organic contaminants in groundwater and soil systems, and various PS activation methods (e.g., energy or chemical inputs) have been considered to increase oxidation strength. This study investigates PS activation through manganese amendment in the form [...] Read more.
Persulfate (PS) is widely used to degrade emerging organic contaminants in groundwater and soil systems, and various PS activation methods (e.g., energy or chemical inputs) have been considered to increase oxidation strength. This study investigates PS activation through manganese amendment in the form of potassium permanganate (KMnO4) and manganese dioxide (MnO2) to subsequently degrade the emerging and recalcitrant groundwater contaminant 1,4-dioxane (1,4-D). The activation of PS by MnO2 was confirmed by radical trap and by product formation. The degradation kinetics of 1,4-D by PS was also compared with varying amendments of KMnO4 and MnO2. The results showed that MnO2 activated PS, which increased the degradation rate constant of 1,4-D. KMnO4 activation of PS was not observed even though the binary oxidant mixture did enhance the degradation of 1,4-D. These results have implications for applying in situ chemical oxidation in subsurface systems, especially for conditions wherein manganese exists naturally in groundwater or aquifer minerals to support possible PS activation. Full article
(This article belongs to the Special Issue Contaminant Transport and Fate)
Show Figures

Graphical abstract

13 pages, 2294 KiB  
Article
Pleistocene Branchiopods (Cladocera, Anostraca) from Transbaikalian Siberia Demonstrate Morphological and Ecological Stasis
by Anton A. Zharov, Anna N. Neretina, D. Christopher Rogers, Svetlana A. Reshetova, Sofia M. Sinitsa and Alexey A. Kotov
Water 2020, 12(11), 3063; https://doi.org/10.3390/w12113063 - 1 Nov 2020
Cited by 14 | Viewed by 2752
Abstract
Pleistocene water bodies have been studied using the paleolimnological approach, which traces environmental changes using particular subfossils as ecological proxies, rather than analysis of the paleocommunities themselves. Within a given taphocoenosis, the presence and quantity of animals are related to environmental conditions rather [...] Read more.
Pleistocene water bodies have been studied using the paleolimnological approach, which traces environmental changes using particular subfossils as ecological proxies, rather than analysis of the paleocommunities themselves. Within a given taphocoenosis, the presence and quantity of animals are related to environmental conditions rather than to community types where relationships between taxa are stabilized during their long-term co-occurrence and are (at least partially) more important than the particular environmental conditions at the time of deposition, which may have experienced significant seasonal and inter-seasonal variations. Here, we analyze Branchiopoda (Crustacea) of two paleolocalities in the Transbaikalian Region of Russia: Urtuy (MIS3) and Nozhiy (older than 1.5 million years). Cladocerans Daphnia (Ctenodaphnia) magna, D. (C.) similis, D. (Daphnia) pulex, Ceriodaphnia pulchella-reticulata, C. laticaudata, Simocephalus sp., Moina cf. brachiata, M. macropopa clade, Chydorus cf. sphaericus, Capmtocercus sp. and anostracans Branchinecta cf. paludosa, and Streptocephalus (Streptocephalus) sp. are found in two localities. With the exception of the last taxon, which now occurs in the southern Holarctic, all other taxa inhabit the Transbaikalian Region. Within Eurasia, the steppe zone has the greatest diversity of large branchiopods and a high diversity of some cladocerans, such as subgenus Daphnia (Ctenodaphnia) and Moina sp. Here we demonstrated that the branchiopod community in shallow steppe water bodies has been unchanged since at least the Pleistocene, demonstrating long-term morphological and ecological stasis. Full article
(This article belongs to the Special Issue Species Richness and Diversity of Aquatic Ecosystems)
Show Figures

Figure 1

18 pages, 3165 KiB  
Article
Structural Characterization of Dissolved Organic Matter in Permafrost Peatland Lakes
by Diogo Folhas, Armando C. Duarte, Martin Pilote, Warwick F. Vincent, Pedro Freitas, Gonçalo Vieira, Artur M. S. Silva, Regina M. B. O. Duarte and João Canário
Water 2020, 12(11), 3059; https://doi.org/10.3390/w12113059 - 31 Oct 2020
Cited by 11 | Viewed by 4368
Abstract
Thermokarst lakes result from the thawing of ice-rich permafrost and are widespread across northern landscapes. These waters are strong emitters of methane, especially in permafrost peatland regions, where they are stained black by high concentrations of dissolved organic matter (DOM). In the present [...] Read more.
Thermokarst lakes result from the thawing of ice-rich permafrost and are widespread across northern landscapes. These waters are strong emitters of methane, especially in permafrost peatland regions, where they are stained black by high concentrations of dissolved organic matter (DOM). In the present study, we aimed to structurally characterize the DOM from a set of peatland thermokarst lakes that are known to be intense sites of microbial decomposition and methane emission. Samples were collected at different depths from three thermokarst lakes in the Sasapimakwananisikw (SAS) River valley near the eastern Hudson Bay community of Kuujjuarapik–Whapmagoostui (Nunavik, Canada). Samples were analyzed by spectrofluorometry, Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and elemental analysis. Fluorescence analyses indicated considerable amounts of autochthonous DOM in the surface waters of one of SAS 1A, indicating a strong bioavailability of labile DOM, and consequently a greater methanogenic potential. The three lakes differed in their chemical composition and diversity, suggesting various DOM transformations phenomena. The usefulness of complementary analytical approaches to characterize the complex mixture of DOM in permafrost peatland waters cannot be overlooked, representing a first step towards greater comprehension of the organic geochemical properties of these permafrost-derived systems. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

14 pages, 1505 KiB  
Article
Experimental Investigation of Chlorella vulgaris and Enterobacter sp. MN17 for Decolorization and Removal of Heavy Metals from Textile Wastewater
by Muhammad Mubashar, Muhammad Naveed, Adnan Mustafa, Sobia Ashraf, Khurram Shehzad Baig, Saud Alamri, Manzer H. Siddiqui, Magdalena Zabochnicka-Świątek, Michał Szota and Hazem M. Kalaji
Water 2020, 12(11), 3034; https://doi.org/10.3390/w12113034 - 29 Oct 2020
Cited by 58 | Viewed by 4873
Abstract
The present study evaluated the performance of microalgae Chlorella vulgaris in an Enterobacter sp. MN17-assisted textile industry wastewater treatment system for decolorization, removal of heavy metals (Cu, Cr, Pb, and Cd), and chemical oxygen demand (COD). Different dilutions (5, 10, and 20%) of [...] Read more.
The present study evaluated the performance of microalgae Chlorella vulgaris in an Enterobacter sp. MN17-assisted textile industry wastewater treatment system for decolorization, removal of heavy metals (Cu, Cr, Pb, and Cd), and chemical oxygen demand (COD). Different dilutions (5, 10, and 20%) of wastewater were prepared to decrease the pollutant toxicity for culturing microalgae and bacteria. Reduction of color, COD, and metal contents by microalgal treatment of wastewater varied greatly, while removal efficiency (RE) was significantly enhanced when endophytic bacterial strain MN17 inoculum was applied. Most notable, results were found at a 5% dilution level by Enterobacter sp. MN17-inoculated C. vulgaris medium, as chromium (Cr), cadmium (Cd), copper (Cu), and lead (Pb) concentrations were decreased from 1.32 to 0.27 mg L−1 (79% decrease), 0.79–0.14 mg L−1 (93% decrease), 1.33–0.36 mg L−1 (72% decrease), and 1.2–0.25 mg L−1 (79% decrease), respectively. The values of COD and color were also significantly decreased by 74% and 70%, respectively, by a C. vulgaris–Enterobacter sp. MN17 consortium. The present investigation revealed that bacterial inoculation of microalgae significantly enhanced the removal of coloring agents and heavy metals from textile wastewater by stimulating the growth of algal biomass. This study manifested the usefulness of microalgae–bacterial mutualism for the remediation of heavy metals, COD, and color in industrial effluents. Microalgae consortia with growth promoting bacteria could be a breakthrough for better bioremediation and bioprocess economy. Thus, further studies are needed for successful integration of microalgae–plant growth promoting bacterial (PGPB) consortium for wastewater treatments. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 2948 KiB  
Article
Overlapping Water and Nutrient Use Efficiencies and Carbon Assimilation between Coexisting Simple- and Compound-Leaved Trees from a Valley Savanna
by Yang-Si-Ding Wang, Da Yang, Huai-Dong Wu, Yun-Bing Zhang, Shu-Bin Zhang, Yong-Jiang Zhang and Jiao-Lin Zhang
Water 2020, 12(11), 3037; https://doi.org/10.3390/w12113037 - 29 Oct 2020
Cited by 3 | Viewed by 2161
Abstract
Identifying differences in ecophysiology between simple and compound leaves can help understand the adaptive significance of the compound leaf form and its response to climate change. However, we still know surprisingly little about differences in water and nutrient use, and photosynthetic capacity between [...] Read more.
Identifying differences in ecophysiology between simple and compound leaves can help understand the adaptive significance of the compound leaf form and its response to climate change. However, we still know surprisingly little about differences in water and nutrient use, and photosynthetic capacity between co-occurring compound-leaved and simple-leaved tree species, especially in savanna ecosystems with dry-hot climate conditions. From July to September in 2015, we investigated 16 functional traits associated with water use, nutrients, and photosynthesis of six deciduous tree species (three simple-leaved and three compound-leaved species) coexisting in a valley-savanna in Southwest China. Our major objective was to test the variation in these functional traits between these two leaf forms. Overall, overlapping leaf mass per area (LMA), photosynthesis, as well as leaf nitrogen and phosphorus concentrations were found between these coexisting valley-savanna simple- and compound-leaved tree species. We didn’t find significant differences in water and photosynthetic nitrogen or phosphorus use efficiency between simple and compound leaves. Across these simple- and compound-leaved tree species, photosynthetic phosphorus use efficiencies were positively related to LMA and negatively correlated with phosphorus concentration per mass or area. Water use efficiency (intrinsic water use efficiency or stable carbon isotopic composition) was independent of all leaf traits. Similar ecophysiology strategies among these coexisting valley-savanna simple- and compound-leaved species suggested a convergence in ecological adaptation to the hot and dry environment. The overlap in traits related to water use, carbon assimilation, and stress tolerance (e.g., LMA) also suggests a similar response of these two leaf forms to a hotter and drier future due to the climate change. Full article
Show Figures

Figure 1

20 pages, 6292 KiB  
Article
Experimental Study at the Reservoir Head of Run-of-River Hydropower Plants in Gravel Bed Rivers. Part II: Effects of Reservoir Flushing on Delta Degradation
by Kevin Reiterer, Thomas Gold, Helmut Habersack, Christoph Hauer and Christine Sindelar
Water 2020, 12(11), 3038; https://doi.org/10.3390/w12113038 - 29 Oct 2020
Cited by 5 | Viewed by 3709
Abstract
Run-of-river hydropower plants (RoR HPPs) are capable of interrupting the sediment connectivity of many alpine rivers. Still, there is a lack of systematical investigations of possible sediment management strategies for small and medium sized RoR HPPs. This study deals with the headwater section [...] Read more.
Run-of-river hydropower plants (RoR HPPs) are capable of interrupting the sediment connectivity of many alpine rivers. Still, there is a lack of systematical investigations of possible sediment management strategies for small and medium sized RoR HPPs. This study deals with the headwater section of an impoundment and the approach of sediment remobilization during drawdown operations. Therefore, a typical medium sized gravel bed river having a width of 20 m, a mean bed slope of 0.005, a mean flow rate of 22 m3/s, and a 1-year flood flow of 104 m3/s is recreated by a 1:20 scaled physical model. Heterogenous sediment mixtures were used under mobile-bed conditions, representing a range of 14–120 mm in nature. During the experiments, the flow rate was set to be 70% of the 1-year flood (HQ1) regarding on the ability to mobilize all sediment fractions. The possibility to remobilize delta depositions by (partial) drawdown flushing within a reasonable period (≈9 h in 1:1 scale) was shown by the results. The erosion of existing headwater delta deposition was found to be retrogressive and twice as fast as the preceding delta formation process. A spatiotemporal erosion scheme points out these findings. This supports the strategy of a reservoir drawdown at flood events of high reoccurrence rate. Full article
(This article belongs to the Special Issue Sediment Management: Hydropower Improvement and Habitat Evaluation)
Show Figures

Figure 1

13 pages, 2105 KiB  
Article
Nitrogen Retention in Mesocosm Sediments Received Rural Wastewater Associated with Microbial Community Response to Plant Species
by Zhixin Dong, Lei Hu, Jianmei Li, Mathieu Nsenga Kumwimba, Jialiang Tang and Bo Zhu
Water 2020, 12(11), 3035; https://doi.org/10.3390/w12113035 - 29 Oct 2020
Cited by 4 | Viewed by 2108
Abstract
Vegetated drainage ditches (eco-ditches) have drawn much attention in recent years for the ability to remediate diffuse contaminants in rural wastewater through sediment retention, plant uptake and interception, and microbial metabolic activities. However, the effect of plant species on microbial community structure and [...] Read more.
Vegetated drainage ditches (eco-ditches) have drawn much attention in recent years for the ability to remediate diffuse contaminants in rural wastewater through sediment retention, plant uptake and interception, and microbial metabolic activities. However, the effect of plant species on microbial community structure and nitrogen (N) retention in ditch sediment remains poorly understood. In this study, mesocosm plastic drums were planted with eight plant species commonly found in ditches and nurtured with wastewater for 150 days. Sediment total nitrogen (TN) was greatly increased after 150-day nurturing with rural wastewater, from 296.03 mg∙kg−1 (Iris japonica Thunb) to 607.88 mg∙kg−1 (Acorus gramineusO). This study also presents the effect of different plant species on sediment microbial communities, thus providing insight into N removal mechanisms in eco-ditch. Fifty-eight differentially abundant taxa were identified, and sediment microbial community structure for no plant (CK), Acg, Canna indica (Cai), and Typha latifolia L. (Tyl) was primarily linked to sediment NH4+-N and TN. Extremely small proportions of ammonia oxidizing bacteria (AOB) and nitrifying bacteria were detected for all treatments, but large proportions of Crenarchaeota, which comprises the widely existent ammonium oxidized archaea (AOA), were found in CK, Acg and Cai. The abundance of Nitrosotalea from Crenarchaeota presented positive correlations with sediment NH4+-N contents and ammonia oxidation function predicted by Faprotax, indicating Nitrosotalea might be the dominant ammonium-oxidizing microbes in sediment samples. The probable NH4+-N removal pathway in wastewater sediment was through a combined effect of AOA, nitrifying bacteria, and anammox. Full article
(This article belongs to the Section Water and One Health)
Show Figures

Figure 1

23 pages, 5837 KiB  
Article
Geochemical Composition of the Lomé Lagoon Sediments, Togo: Seasonal and Spatial Variations of Major, Trace and Rare Earth Element Concentrations
by Tchaa Esso-Essinam Badassan, Akouvi Massan Duanyawo Avumadi, Kamilou Ouro-Sama, Kissao Gnandi, Séverine Jean-Dupuy and Jean-Luc Probst
Water 2020, 12(11), 3026; https://doi.org/10.3390/w12113026 - 28 Oct 2020
Cited by 9 | Viewed by 2955
Abstract
The concentrations of major, trace (TE), and rare earth (REE) elements and their seasonal and spatial distribution were studied on the fine fraction (<63 µm) of the sediments of the Lomé lagoons (West Lake, East Lake, and Lake Bè). The sediments were collected [...] Read more.
The concentrations of major, trace (TE), and rare earth (REE) elements and their seasonal and spatial distribution were studied on the fine fraction (<63 µm) of the sediments of the Lomé lagoons (West Lake, East Lake, and Lake Bè). The sediments were collected on a total of nine sampling sites (three per Lake) during two campaigns (dry season and rainy season). The quality of the sediments was assessed on the basis of the enrichment factor (EF) and the labile or non-residual fraction (NRF) in relation to the values recommended for the quality of the sediments (Sediment Quality Guidelines, SQG). The distribution of rare earth elements shows enrichments in light rare earths superior to those of heavy rare earth elements during any season. Positive Ce anomalies are less noticeable and less variable between seasons than Eu anomalies. La/Yb ratios are positively correlated with the percentage of Al and Fe oxides and with the percentage of fine fractions. The main bearing phases of rare earth elements are, therefore, Al and Fe oxides and the finest fractions of the sediments. The concentrations of trace elements vary little, according to the seasons, but show strong variations from one element to another. The degrees of enrichment obtained are moderate for Bi, Cr, Ga, Mo, Pb, Sn, and Zn (1.5 < EF < 5) to significant for As, Cd, and Sb (5 < EF < 20) for all sites of Lake Bè. For the sites of West Lake, the degrees of enrichment obtained are moderate for As, Cd, Cu, Mo, and Pb (1.5 < EF < 5) to a significance for As, Bi, Cd, Pb, Sb, Sn, and Zn (5 < EF < 20). Only the East Lake sites show high degrees of enrichment for elements such as Sb and Sn (20 < EF < 40). Trace elements (TE) such as As, Cd, Cu, and Ni have total concentrations within the range of variation of the SQG concentrations (particularly Probable Effect Level (PEL) and Effect Range Median (ERM)), whereas Cr, Pb, and Zn total concentrations are higher. The ranking of priority sites with respect to the sediment contamination is determined according to ERM and PEL quotients in relation to the probability of toxicity for benthic organisms. For almost all the sites, the priority is lowest to medium-low with regard to As, Cd, and Cu and medium-high (Cr and Ni) to highest (Pb and Zn), particularly for the East and West Lakes. Moreover, the NRF can represent significant percentages of the total TE concentrations: 5% to 15% for As, Bi, Ni, V, Mo, and Sc, 15% to 25% for Co, Cu, and Sr, 25% to 40% for Pb and Zn and, lastly, 47% to 55% for Cd. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 7247 KiB  
Article
Simulation of Titicaca Lake Water Level Fluctuations Using Hybrid Machine Learning Technique Integrated with Grey Wolf Optimizer Algorithm
by Babak Mohammadi, Yiqing Guan, Pouya Aghelpour, Samad Emamgholizadeh, Ramiro Pillco Zolá and Danrong Zhang
Water 2020, 12(11), 3015; https://doi.org/10.3390/w12113015 - 27 Oct 2020
Cited by 53 | Viewed by 4689
Abstract
Lakes have an important role in storing water for drinking, producing hydroelectric power, and environmental, agricultural, and industrial uses. In order to optimize the use of lakes, precise prediction of the lake water level (LWL) is a main issue in water resources management. [...] Read more.
Lakes have an important role in storing water for drinking, producing hydroelectric power, and environmental, agricultural, and industrial uses. In order to optimize the use of lakes, precise prediction of the lake water level (LWL) is a main issue in water resources management. Due to the existence of nonlinear relations, uncertainty, and characteristics of the time series variables, the exact prediction of the lake water level is difficult. In this study the hybrid support vector regression (SVR) and the grey wolf algorithm (GWO) are used to predict lake water level fluctuations. Also, three types of data preprocessing methods, namely Principal component analysis, Random forest, and Relief algorithm were used for finding the best input variables for prediction LWL by the SVR and SVR-GWO models. Before the LWL simulation on monthly time step using the hybrid model, an evolutionary approach based on different monthly lags was conducted for determining the best mask of the input variables. Results showed that based on the random forest method, the best scenario of the inputs was Xt1, Xt2, Xt3, Xt4 for the SVR-GWO model. Also, the performance of the SVR-GWO model indicated that it could simulate the LWL with acceptable accuracy (with RMSE = 0.08 m, MAE = 0.06 m, and R2 = 0.96). Full article
Show Figures

Figure 1

19 pages, 2355 KiB  
Article
Groundwater Governance in Pakistan: From Colossal Development to Neglected Management
by Asad Sarwar Qureshi
Water 2020, 12(11), 3017; https://doi.org/10.3390/w12113017 - 27 Oct 2020
Cited by 88 | Viewed by 17145
Abstract
Groundwater is playing an essential role in expanding irrigated agriculture in many parts of the world. Pakistan is the third-largest user of groundwater for irrigation in the world. The surface water supplies are sufficient to irrigate 27% of the area, whereas the remaining [...] Read more.
Groundwater is playing an essential role in expanding irrigated agriculture in many parts of the world. Pakistan is the third-largest user of groundwater for irrigation in the world. The surface water supplies are sufficient to irrigate 27% of the area, whereas the remaining 73% is directly or indirectly irrigated using groundwater. The Punjab province uses more than 90% of the total groundwater abstraction. Currently, 1.2 million private tubewells are working in the country, out of which 85% are in Punjab, 6.4% are in Sindh, 3.8% are in Khyber-Pakhtunkhwa, and 4.8% are in Baluchistan. The total groundwater extraction in Pakistan is about 60 billion m3. The access to groundwater has helped farmers in securing food for the increasing population. However, unchecked groundwater exploitation has created severe environmental problems. These include rapidly falling groundwater levels in the irrigated areas and increased soil salinization problems. The groundwater levels in more than 50% of the irrigated areas of Punjab have dropped below 6 m, resulting in increased pumping cost and degraded groundwater quality. Despite hectic efforts, about 21% of the irrigated area is affected by different levels of salinity. The country has introduced numerous laws and regulations for the sustainable use and management of groundwater resources, but the success has so far been limited. Besides less respect for the law, unavailability of needed data and information, lack of political will and institutional arrangements are the primary reasons for poor groundwater management. Pakistan needs to revisit its strategies to make them adaptable to local conditions. An integrated water resource management approach that brings together relevant government departments, political leadership, knowledge institutions, and other stakeholders could be an attractive option. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

21 pages, 7798 KiB  
Article
Dynamic Monitoring of Surface Water Area during 1989–2019 in the Hetao Plain Using Landsat Data in Google Earth Engine
by Ruimeng Wang, Haoming Xia, Yaochen Qin, Wenhui Niu, Li Pan, Rumeng Li, Xiaoyang Zhao, Xiqing Bian and Pinde Fu
Water 2020, 12(11), 3010; https://doi.org/10.3390/w12113010 - 27 Oct 2020
Cited by 42 | Viewed by 3808
Abstract
The spatio-temporal change of the surface water is very important to agricultural, economic, and social development in the Hetao Plain, as well as the structure and function of the ecosystem. To understand the long-term changes of the surface water area in the Hetao [...] Read more.
The spatio-temporal change of the surface water is very important to agricultural, economic, and social development in the Hetao Plain, as well as the structure and function of the ecosystem. To understand the long-term changes of the surface water area in the Hetao Plain, we used all available Landsat images (7534 scenes) and adopted the modified Normalized Difference Water Index (mNDWI), Enhanced Vegetation Index (EVI), and Normalized Difference Vegetation Index (NDVI) to map the open-surface water from 1989 to 2019 in the Google Earth Engine (GEE) cloud platform. We further analyzed precipitation, temperature, and irrigated area, revealing the impact of climate change and human activities on long-term surface water changes. The results show the following. (1) In the last 31 years, the maximum, seasonal, and annual average water body area values in the Hetao Plain have exhibited a downward trend. Meanwhile, the number of maximum, seasonal, and permanent water bodies displayed a significant upward trend. (2) The variation of the surface water area in the Hetao Plain is mainly affected by the maximum water body area, while the variation of the water body number is mainly affected by the number of minimum water bodies. (3) Precipitation has statistically significant positive effects on the water body area and water body number, which has statistically significant negative effects with temperature and irrigation. The findings of this study can be used to help the policy-makers and farmers understand changing water resources and its driving mechanism and provide a reference for water resources management, agricultural irrigation, and ecological protection. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

18 pages, 4494 KiB  
Article
Are the Financial Markets Sensitive to Hydrological Risk? Evidence from the Bovespa
by José Manuel Feria-Domínguez, Pilar Paneque and Fanny de la Piedra
Water 2020, 12(11), 3011; https://doi.org/10.3390/w12113011 - 27 Oct 2020
Cited by 3 | Viewed by 2542
Abstract
This research analyzes the BOVESPA stock market response to the worst drought occurred in the last 100 years in Brazil. For this purpose, we conducted a standard event study analysis in order to assess the financial response to such hydrological risk on a [...] Read more.
This research analyzes the BOVESPA stock market response to the worst drought occurred in the last 100 years in Brazil. For this purpose, we conducted a standard event study analysis in order to assess the financial response to such hydrological risk on a sample of seven Brazilian agri-food firms. We found statistically significant negative cumulative average abnormal returns (CAARs) around the drought official announcement for different event windows used. Particularly, the highest impact was obtained for the narrowest temporary window, five days around the event disclosure. Moreover, we also found the drought announcement affects even more negatively those companies that sell perishable products, five out of seven in our sample, versus those selling nonperishable ones by running a two-sample t-test on CAARs. This study brings awareness to the climate change impact into the emerging financial markets and the risk faced by shareholders when investing in the agri-food sector, not only in Brazil but also in other Latin American countries, due to the increasing probability to suffer from droughts. Full article
(This article belongs to the Special Issue Water Resources Management Models for Policy Assessment)
Show Figures

Figure 1

19 pages, 3583 KiB  
Article
Screening and Distribution of Contaminants of Emerging Concern and Regulated Organic Pollutants in the Heavily Modified Guadalhorce River Basin, Southern Spain
by Marta Llamas, Iñaki Vadillo-Pérez, Lucila Candela, Pablo Jiménez-Gavilán, Carmen Corada-Fernández and Antonio F. Castro-Gámez
Water 2020, 12(11), 3012; https://doi.org/10.3390/w12113012 - 27 Oct 2020
Cited by 14 | Viewed by 3346
Abstract
Emerging pollutants have aroused an increasing concern due to their ubiquitous presence in the environment and harmful potential. Both emerging (e.g., pharmaceuticals and personal care products) and regulated organic pollutants pose a serious threat to water quality and their presence and spatial distribution [...] Read more.
Emerging pollutants have aroused an increasing concern due to their ubiquitous presence in the environment and harmful potential. Both emerging (e.g., pharmaceuticals and personal care products) and regulated organic pollutants pose a serious threat to water quality and their presence and spatial distribution are complicated to address as they can derive from several factors: distribution of point and diffuse sources, environmental conditions, hydrogeological features of the region and inherent properties of the considered contaminants. In this study, a ground and surface water monitoring campaign was conducted in the three main detritic groundwater bodies of an extensive and heavily modified river basin in order to draft an initial description of the occurrence and distribution of a wide range of organic contaminants. In total, 63 out of 185 target pollutants were detected. An attempt to understand the importance of different factors governing the distribution of some of the most frequently found pollutants was made. Antibiotics spatial distribution is potentially influenced by the hydrogeological functioning of the basin modified by hydraulic infrastructures (reflected by hydrochemistry and environmental tracers δ2H and δ18O), not directly related to the distribution of potential sources. The presence of other organic pollutants does not reflect an evident correlation with flow pathways. Differences in contaminant occurrence are potentially attributed to the way pollutants are released into the environment as well as physico-chemical properties. Full article
(This article belongs to the Special Issue Groundwater and Contaminant Transport)
Show Figures

Figure 1

24 pages, 1768 KiB  
Review
A Review on Mariculture Effluent: Characterization and Management Tools
by Xinyan Wang, Alan Cuthbertson, Carlo Gualtieri and Dongdong Shao
Water 2020, 12(11), 2991; https://doi.org/10.3390/w12112991 - 25 Oct 2020
Cited by 30 | Viewed by 7387
Abstract
While marine aquaculture, or mariculture, has been growing rapidly and globally in recent decades, many environmental concerns remain to be fully addressed to achieve its long-term goal of sustainable development. This paper aims to provide a synthesized perspective on these issues by reviewing [...] Read more.
While marine aquaculture, or mariculture, has been growing rapidly and globally in recent decades, many environmental concerns remain to be fully addressed to achieve its long-term goal of sustainable development. This paper aims to provide a synthesized perspective on these issues by reviewing and discussing the characterization, transport, and current modelling and management tools associated with effluents released from mariculture sites. Specifically, we examined the effluent characteristics and behavior from source-to-sink, including the composition and load of effluent discharge, its transport and transformation processes in the water column and at the seabed, and its impacts on the pelagic and benthic environments. We then focused on management-related issues, including the setting of the regulatory mixing zone, the establishment of environmental standards, monitoring measures, and modelling techniques to depict the current state-of-the-art modes in a global context. Our study shows that while substantial progress has been made in understanding the nature of the mariculture effluent, as well as in monitoring and modelling its transport and fate, the regulatory framework still lags behind in many countries where the mariculture industry is relevant. This is particularly evident in the lack of consistent criteria for the definition of regulatory mixing zones and the associated environmental standards for water quality and benthic impacts. Besides, as new predictive models are emerging quickly, their proper evaluation and validation are imperative in view of their increasing application in regulatory practices. This review is intended to provide references for advancing regulatory management of mariculture effluents, as well as for promoting sustainable mariculture development. Full article
(This article belongs to the Special Issue Advances in Environmental Hydraulics)
Show Figures

Figure 1

23 pages, 1310 KiB  
Article
Significant Extremal Dependence of a Daily North Atlantic Oscillation Index (NAOI) and Weighted Regionalised Rainfall in a Small Island Using the Extremogram
by Luis Angel Espinosa, Maria Manuela Portela and Rui Rodrigues
Water 2020, 12(11), 2989; https://doi.org/10.3390/w12112989 - 25 Oct 2020
Cited by 4 | Viewed by 2937
Abstract
Extremal dependence or independence may occur among the components of univariate or bivariate random vectors. Assessing which asymptotic regime occurs and also its extent are crucial tasks when such vectors are used as statistical models for risk assessment in the field of Climatology [...] Read more.
Extremal dependence or independence may occur among the components of univariate or bivariate random vectors. Assessing which asymptotic regime occurs and also its extent are crucial tasks when such vectors are used as statistical models for risk assessment in the field of Climatology under climate change conditions. Motivated by the poor resolution of current global climate models in North Atlantic Small Islands, the extremal dependence between a North Atlantic Oscillation index (NAOI) and rainfall was considered at multi-year dominance of negative and positive NAOI, i.e., −NAOI and +NAOI dominance subperiods, respectively. The datasets used (from 1948–2017) were daily NAOI, and three daily weighted regionalised rainfall series computed based on factor analysis and the Voronoi polygons method from 40 rain gauges in the small island of Madeira (∼740 km2), Portugal. The extremogram technique was applied for measuring the extremal dependence within the NAOI univariate series. The cross-extremogram determined the dependence between the upper tail of the weighted regionalised rainfalls, and the upper and lower tails of daily NAOI. Throughout the 70-year period, the results suggest systematic evidence of statistical dependence over Madeira between exceptionally −NAOI records and extreme rainfalls, which is stronger in the −NAOI dominance subperiods. The extremal dependence for +NAOI records is only significant in recent years, however, with a still unclear +NAOI dominance. Full article
(This article belongs to the Special Issue Statistical Approach to Hydrological Analysis)
Show Figures

Figure 1

12 pages, 2194 KiB  
Article
First Captive Breeding Program for the Endangered Pyrenean Sculpin (Cottus hispaniolensis Bacescu-Master, 1964)
by Joan Manubens, Oriol Comas, Núria Valls and Lluís Benejam
Water 2020, 12(11), 2986; https://doi.org/10.3390/w12112986 - 24 Oct 2020
Cited by 6 | Viewed by 3046
Abstract
The strong decline of freshwater fish species in Europe implies that further ex-situ conservation plans should be implemented in the near future. The present study reflects our experience with the Pyrenean sculpin (Cottus hispaniolensis Bacescu-Mester, 1964)—a small cottid endemic to the Hispano-French [...] Read more.
The strong decline of freshwater fish species in Europe implies that further ex-situ conservation plans should be implemented in the near future. The present study reflects our experience with the Pyrenean sculpin (Cottus hispaniolensis Bacescu-Mester, 1964)—a small cottid endemic to the Hispano-French Garona River basin. In recent years, the Spanish Pyrenean sculpin population has reached a limit situation. Because of that, the non-profit association ADEFFA—with support from the public administration—started the first captive breeding program for this species in 2006. Fourteen years later, this study presents the results and evaluates the different steps of the program, with the aim of discussing and improving the ex-situ conservation plans for this and other cold freshwater species. There is a description and a comparison between six consecutive phases during the captive breeding process: nesting behaviour, courtship, egg fixation, parental care (incubation), hatching and survival during juvenile development. The purposes of this project are to: (1) identify the most determining phases for a successful captive breeding; (2) identify the factors that had a major influence to the success of the critical phases; and (3) increase the number of the offspring. This study is based on thirty-three wild individuals collected from Garona River (Val d’Aran, Spanish Pyrenees). During the program, twelve couples spawned in captive conditions, with around 2300 eggs laid. Eight couples bred successfully, with 751 hatched individuals and 608 juveniles reared. The analysis of each step of the captive breeding does not reveal significant differences between phases, so it can be concluded that they are all critical at the same level. In the literature, similar study-cases of captive breeding programs identify incubation and survival phases as the most critical. Consequently, the management made for this project has probably allowed to overcome in part the main impediments described in other similar programs. Full article
(This article belongs to the Special Issue Ecology and Conservation of Freshwater Fishes Biodiversity)
Show Figures

Figure 1

15 pages, 1645 KiB  
Article
Relationship between Environmental Conditions and Structure of Macroinvertebrate Community in a Hydromorphologically Altered Pre-Alpine River
by Igor Zelnik and Tjaša Muc
Water 2020, 12(11), 2987; https://doi.org/10.3390/w12112987 - 24 Oct 2020
Cited by 6 | Viewed by 2531
Abstract
Hydromorphological alterations influence a wide range of environmental conditions as well as riparian vegetation and the structure of the macroinvertebrate community. We studied relationships between the structure and diversity of the macroinvertebrate community and hydromorphological and other environmental conditions in the river Gradaščica [...] Read more.
Hydromorphological alterations influence a wide range of environmental conditions as well as riparian vegetation and the structure of the macroinvertebrate community. We studied relationships between the structure and diversity of the macroinvertebrate community and hydromorphological and other environmental conditions in the river Gradaščica (central Slovenia). The Gradaščica river is a pre-Alpine torrential river that has been morphologically altered by humans. A selection of abiotic factors was measured, the ecomorphological status of the river was assessed, vegetation in the riparian zone was surveyed and benthic macroinvertebrates were sampled. Correlations between diversity and the structure of the macroinvertebrate community, environmental parameters and occurrence of invasive alien plant species in the riparian zone were identified. The significance of the influence of environmental parameters on the structure of the macroinvertebrate community was examined. We found that hydromorphological alterations in the river have had a significant influence on the diversity and composition of the macroinvertebrate community because of changes of flow velocity and the spread of invasive alien plant species that has followed those changes. Factors that also significantly influence the composition of macroinvertebrate community are distance from the source and conductivity. Our findings suggest minimization of further human hydromorphological changes of watercourses could prevent the loss of biodiversity of riverine ecosystems. Full article
(This article belongs to the Special Issue Freshwater Communities in Human-Altered Ecosystems)
Show Figures

Figure 1

23 pages, 23230 KiB  
Article
Controls on Reservoir Heterogeneity of a Shallow-Marine Reservoir in Sawan Gas Field, SE Pakistan: Implications for Reservoir Quality Prediction Using Acoustic Impedance Inversion
by Umar Ashraf, Hucai Zhang, Aqsa Anees, Muhammad Ali, Xiaonan Zhang, Saiq Shakeel Abbasi and Hassan Nasir Mangi
Water 2020, 12(11), 2972; https://doi.org/10.3390/w12112972 - 23 Oct 2020
Cited by 78 | Viewed by 4648
Abstract
The precise characterization of reservoir parameters is vital for future development and prospect evaluation of oil and gas fields. C-sand and B-sand intervals of the Lower Goru Formation (LGF) within the Lower Indus Basin (LIB) are proven reservoirs. Conventional seismic amplitude interpretation fails [...] Read more.
The precise characterization of reservoir parameters is vital for future development and prospect evaluation of oil and gas fields. C-sand and B-sand intervals of the Lower Goru Formation (LGF) within the Lower Indus Basin (LIB) are proven reservoirs. Conventional seismic amplitude interpretation fails to delineate the heterogeneity of the sand-shale facies distribution due to limited seismic resolution in the Sawan gas field (SGF). The high heterogeneity and low resolution make it challenging to characterize the reservoir thickness, reservoir porosity, and the factors controlling the heterogeneity. Constrained sparse spike inversion (CSSI) is employed using 3D seismic and well log data to characterize and discriminate the lithofacies, impedance, porosity, and thickness (sand-ratio) of the C- and B-sand intervals of the LGF. The achieved results disclose that the CSSI delineated the extent of lithofacies, heterogeneity, and precise characterization of reservoir parameters within the zone of interest (ZOI). The sand facies of C- and B-sand intervals are characterized by low acoustic impedance (AI) values (8 × 106 kg/m2s to 1 × 107 kg/m2s), maximum sand-ratio (0.6 to 0.9), and maximum porosity (10% to 24%). The primary reservoir (C-sand) has an excellent ability to produce the maximum yield of gas due to low AI (8 × 106 kg/m2s), maximum reservoir thickness (0.9), and porosity (24%). However, the secondary reservoir (B-sand) also has a good capacity for gas production due to low AI (1 × 107 kg/m2s), decent sand-ratio (0.6), and average porosity (14%), if properly evaluated. The time-slices of porosity and sand-ratio maps have revealed the location of low-impedance, maximum porosity, and maximum sand-ratio that can be exploited for future drillings. Rock physics analysis using AI through inverse and direct relationships successfully discriminated against the heterogeneity between the sand facies and shale facies. In the corollary, we proposed that pre-conditioning through comprehensive petrophysical, inversion, and rock physics analysis are imperative tools to calibrate the factors controlling the reservoir heterogeneity and for better reservoir quality measurement in the fluvial shallow-marine deltaic basins. Full article
Show Figures

Figure 1

26 pages, 2962 KiB  
Article
Addressing Urban–Rural Water Conflicts in Nagpur through Benefit Sharing
by Vibhas Sukhwani, Kamakshi Thapa, Rajib Shaw, Sameer Deshkar, Bijon Kumer Mitra and Wanglin Yan
Water 2020, 12(11), 2979; https://doi.org/10.3390/w12112979 - 23 Oct 2020
Cited by 11 | Viewed by 7922
Abstract
Urban and rural areas often meet their water demands from a shared stock of finite water resources. Against the changing climate, the rising water demands in fast-growing urban areas are leading to increasing water-use conflicts with the co-dependent rural areas. Although poor water [...] Read more.
Urban and rural areas often meet their water demands from a shared stock of finite water resources. Against the changing climate, the rising water demands in fast-growing urban areas are leading to increasing water-use conflicts with the co-dependent rural areas. Although poor water governance is frequently cited as the key reason for such urban–rural conflicts, it is also recognized as a potential pathway to resolve them. In the case of Nagpur Region in Central India, water stress has today become a subject of serious concern. The water demands in Nagpur City are primarily met through the multipurpose Pench Dam on priority, but the recently declining water availability has raised undue concerns for irrigation in the Pench command areas. To substantiate the limited understanding of ongoing water conflicts in the wider Nagpur Metropolitan Area, this study analyzes a specific set of secondary data related to the history of the Pench Project and its water utilization trends. By uncovering the periodic decline in irrigated area and the increasing groundwater use for irrigation, the cross-sectoral and transboundary implications of increasing water transfer to Nagpur City are revealed. To address these concerns, this study then suggests feasible governance strategies based on benefit sharing and multi-stakeholder engagement. Full article
Show Figures

Graphical abstract

17 pages, 5090 KiB  
Article
Influence of Physical and Chemical Characteristics of Sediment on Macroinvertebrate Communities in Agricultural Headwater Streams
by Tyler C. Shuman, Peter C. Smiley, Jr., Robert B. Gillespie and Javier M. Gonzalez
Water 2020, 12(11), 2976; https://doi.org/10.3390/w12112976 - 23 Oct 2020
Cited by 10 | Viewed by 4557
Abstract
Agricultural land use leads to changes in physical and chemical characteristics of sediment that influence macroinvertebrate community diversity and abundance in streams. To the best of our knowledge the joint influence of sediment’s physical and chemical characteristics on stream macroinvertebrates has not been [...] Read more.
Agricultural land use leads to changes in physical and chemical characteristics of sediment that influence macroinvertebrate community diversity and abundance in streams. To the best of our knowledge the joint influence of sediment’s physical and chemical characteristics on stream macroinvertebrates has not been assessed. We measured sediment’s physical and chemical characteristics and sampled macroinvertebrates in eight agricultural headwater streams in Indiana, Michigan, and Ohio, United States, in 2017 and 2018 to determine the physical and chemical conditions of the sediment, to evaluate the relationships between physical and chemical characteristics of the sediment, and the relationship of macroinvertebrate communities with the sediment’s physical and chemical characteristics. Sediments within most sites were dominated by sand or silt. pH was suitable for macroinvertebrates and nitrate, herbicide, and trace metal concentrations were below concentration levels anticipated to affect macroinvertebrate survival. Linear mixed effect model analysis results indicated that a physical gradient of percent small gravel and percent silt was positively correlated (p < 0.05) with a chemical gradient of potassium concentrations, magnesium concentrations, and percent total nitrogen in the sediments. Our linear mixed effect model analysis results also indicated that Invertebrate Community Index scores were negatively correlated (p < 0.05) with a chemical gradient of simazine and calcium concentrations and were negatively correlated (p < 0.05) with physical gradient of grain size diversity and percent sand. Our results suggest that watershed management plans need to address physical and chemical degradation of sediment to improve macroinvertebrate biotic integrity within agricultural headwater streams in the Midwestern United States. Full article
Show Figures

Figure 1

20 pages, 3483 KiB  
Article
Assessing the Ecological Water Level: The Case of Four Mediterranean Lakes
by Olga Petriki, Dimitrios Zervas, Charalampos Doulgeris and Dimitra Bobori
Water 2020, 12(11), 2977; https://doi.org/10.3390/w12112977 - 23 Oct 2020
Cited by 8 | Viewed by 2649
Abstract
The ecological water regime in lake water bodies refers to the water levels that enable the fulfillment of the ecosystem’s multiple functions. Therefore, assessing the ecological water regime necessitates the consideration of hydrological, economic, social, and ecological factors. The present research is focused [...] Read more.
The ecological water regime in lake water bodies refers to the water levels that enable the fulfillment of the ecosystem’s multiple functions. Therefore, assessing the ecological water regime necessitates the consideration of hydrological, economic, social, and ecological factors. The present research is focused on the assessment of the ecological water level of four Mediterranean natural lake ecosystems, considering their morphological and biological features. Initially, suggestions on the ecological water regime of the studied lakes were made based on an analysis of the lakes’ morphometry. Further, the ecological and biological requirements of the present fish fauna and aquatic macrophytic vegetation were considered. For the latter, mapping was conducted by extensive sampling according to international standards, in order to assess macrophyte composition, abundance, and chorology, as well as species sensitivity to water level fluctuations. The above guided the proposals on the optimal water level regime that should be met by each lake regarding the macrophytic and fish communities’ sustainability, also taking into account the unique hydromorphological features of each lake. The differences in the outcoming results revealed that hydromorphological and biological approaches should be combined for assessing lakes’ ecological water regimes. Full article
Show Figures

Figure 1

25 pages, 5242 KiB  
Article
A Novel Approach to Harmonize Vulnerability Assessment in Carbonate and Detrital Aquifers at Basin Scale
by Leticia Baena-Ruiz and David Pulido-Velazquez
Water 2020, 12(11), 2971; https://doi.org/10.3390/w12112971 - 23 Oct 2020
Cited by 8 | Viewed by 2323
Abstract
The DRASTIC (D: Depth to water; R: Net recharge; A: Aquifer media; S: Soil media; T: Topography; I: Impact of vadose zone; C: Hydraulic conductivity) index is usually applied to assess intrinsic vulnerability in detrital and carbonate aquifers, although it does not take [...] Read more.
The DRASTIC (D: Depth to water; R: Net recharge; A: Aquifer media; S: Soil media; T: Topography; I: Impact of vadose zone; C: Hydraulic conductivity) index is usually applied to assess intrinsic vulnerability in detrital and carbonate aquifers, although it does not take into account the particularities of karst systems as the COP (C: Concentration of flow; O: Overlying layers above water table; P: precipitation) method does. In this paper we aim to find a reasonable correspondence between the vulnerability maps obtained using these two methods. We adapt the DRASTIC index in order to obtain reliable assessments in carbonate aquifers while maintaining its original conceptual formulation. This approach is analogous to the hypothesis of “equivalent porous medium”, which applies to karstic aquifers the numerical solution developed for detrital aquifers. We applied our novel method to the Upper Guadiana Basin, which contains both carbonate and detrital aquifers. Validation analysis demonstrated a higher confidence in the vulnerability assessment provided by the COP method in the carbonate aquifers. The proposed method solves an optimization problem to minimize the differences between the assessments provided by the modified DRASTIC and COP methods. Decision trees and spatial statistics analyses were combined to identify the ranges and weights of DRASTIC parameters to produce an optimal solution that matches the COP vulnerability classification for carbonate aquifers in 75% of the area, while maintaining a reliable assessment of the detrital aquifers in the Basin. Full article
(This article belongs to the Special Issue Assessing Water Quality by Statistical Methods)
Show Figures

Graphical abstract

13 pages, 7019 KiB  
Article
A Method for Estimating the Risk of Dam Reservoir Silting in Fire-Prone Watersheds: A Study in Douro River, Portugal
by Daniela Patrícia Salgado Terêncio, Rui Manuel Vitor Cortes, Fernando António Leal Pacheco, João Paulo Moura and Luís Filipe Sanches Fernandes
Water 2020, 12(11), 2959; https://doi.org/10.3390/w12112959 - 22 Oct 2020
Cited by 15 | Viewed by 3636
Abstract
Forest fires are an increasing problem over recent decades. The fires, among other consequences, lead to an increase in the soil vulnerability to water erosion and a consequent increase in sedimentation rates. When barriers are present, such as dams or weirs, there is [...] Read more.
Forest fires are an increasing problem over recent decades. The fires, among other consequences, lead to an increase in the soil vulnerability to water erosion and a consequent increase in sedimentation rates. When barriers are present, such as dams or weirs, there is an amplified risk of sediment and ash deposition in their reservoirs, causing siltation. Thus, there is an interest in studying in more detail the risk of siltation of barriers and reservoirs in the Douro River watershed following wildfires. A detailed barrier inventory was lacking for the Douro River, hampering the identification of siltation-prone areas. In order to fill in this gap, an extensive inventory of barriers in the Douro river basin was carried out for the present study. The result was an abundant and reliable dataset on the Douro River barriers, which allowed a prognosis on the watershed siltation risk. The method for calculating the siltation risk relied on the relationship between the frequency of forest fires, the erosion risk and the frequency of reservoirs. The sub-basins with the greater siltation risk are the Tâmega, Corgo, Sousa and Paiva river basins. Most reservoirs with the highest siltation risk were from small dams. The modelling results were compared with stream connectivity and concentrations of stream water phosphorus (associated with the sediments that flow into the rivers due to the fires). With regard to connectivity, only two reservoirs were at high risk of sedimentation due to fires, so the categories of connectivity risk and fire-based sedimentation risk are probably not related. With regard to risk of high phosphorus loadings, in 8 basins the upper classes for fire-based erosion risk coincided with the upper class for phosphorus loadings suggesting that high phosphorus loading could be associated with fire-based erosion. This study works as a simple but reliable example on the assessment and mapping of siltation risk in stream networks intersected by abundant barriers. It allowed for identifying barriers that can accumulate a large quantity of fine sediments and ashes, interfering with water quality and soil erosion as well as with the storage capacity of the respective barriers. Full article
(This article belongs to the Special Issue Flowing Waters and Threatened Aquatic Life)
Show Figures

Figure 1

28 pages, 6855 KiB  
Article
Experimental Study on the Influence of an Artificial Reef on Cross-Shore Morphodynamic Processes of a Wave-Dominated Beach
by Yue Ma, Cuiping Kuang, Xuejian Han, Haibo Niu, Yuhua Zheng and Chao Shen
Water 2020, 12(10), 2947; https://doi.org/10.3390/w12102947 - 21 Oct 2020
Cited by 13 | Viewed by 3405
Abstract
Artificial reefs are being implemented around the world for their multi-functions including coastal protection and environmental improvement. To better understand the hydrodynamic and morphodynamic roles of an artificial reef (AR) in beach protection, a series of experiments were conducted in a 50 m-long [...] Read more.
Artificial reefs are being implemented around the world for their multi-functions including coastal protection and environmental improvement. To better understand the hydrodynamic and morphodynamic roles of an artificial reef (AR) in beach protection, a series of experiments were conducted in a 50 m-long wave flume configured with a 1:10 sloping beach and a model AR (1.8 m long × 0.3 m high) with 0.2 m submergence depth. Five regular and five irregular wave conditions were generated on two types of beach profiles (with/without model AR) to study the cross-shore hydrodynamic and morphological evolution process. The influences of AR on the processes are concluded as follows: (1) AR significantly decreases the incident wave energy, and its dissipation effect differs for higher and lower harmonics under irregular wave climates; (2) AR changes the cross-shore patterns of hydrodynamic factors (significant wave height, wave skewness and asymmetry, and undertow), leading to the movement of shoaling and breaking zones; (3) the beach evolution is characterized by a sandbar and a scarp which respectively sit at a higher and lower location on the profile with AR than natural beach without AR; (4) the cross-shore morphological features indicate that AR can lead to beach state transformation toward reflective state; (5) the scarp retreat process can be described by a model where the scarp location depends linearly on the natural exponential of time with the fitting parameters determined by wave run-up reduced by AR. This study demonstrates cross-shore effects of AR as a beach protection structure that changes wave dynamics in surf and swash zone, reduces offshore sediment transport, and induces different morphological features. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

23 pages, 1222 KiB  
Article
Environmental Benefits and Economical Sustainability of Urban Wastewater Reuse for Irrigation—A Cost-Benefit Analysis of an Existing Reuse Project in Puglia, Italy
by Claudio Arena, Mario Genco and Mario Rosario Mazzola
Water 2020, 12(10), 2926; https://doi.org/10.3390/w12102926 - 20 Oct 2020
Cited by 30 | Viewed by 5619
Abstract
Besides benefits associated to increased water availability for irrigation, reuse projects of urban water can also provide positive environmental impacts, as they contribute to improve water quality of the receiving bodies by diverting wastewater from their outlet. This represents a typical win-win situation [...] Read more.
Besides benefits associated to increased water availability for irrigation, reuse projects of urban water can also provide positive environmental impacts, as they contribute to improve water quality of the receiving bodies by diverting wastewater from their outlet. This represents a typical win-win situation where significant synergies can be achieved between urban and agricultural sector, and the environment. These favorable conditions, however, do not necessarily imply that water reuse is either feasible from an economic perspective nor that the underlying supply chain is going to be triggered, if certain conditions are not met. Cost-Benefit Analysis (CBA) is considered a sound, theoretically well-grounded tool to analyze the financial and economical sustainability of an investment. The paper presents the CBA of an existing reuse scheme in Puglia, in southern Italy, reclaiming wastewater for irrigation from a coastal area with growing recreational, beach-related activities. Supported by operational data, official statistics and sector documents, the CBA reveals that in almost all scenarios the existence of environmental benefits must be invoked in order to consider the project economically sustainable. Coherent screening of the different impacts, isolating the ones that are applicable to the specific case-study, shows that these benefits are mainly non-use benefits related to the aesthetic enjoyment of clean water in the reclaimed stretch of coastline where wastewater discharge may no longer take place or take place in a way that significantly reduce seawater pollution. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 6775 KiB  
Article
Redox Dependent Arsenic Occurrence and Partitioning in an Industrial Coastal Aquifer: Evidence from High Spatial Resolution Characterization of Groundwater and Sediments
by Chiara Sbarbati, Maurizio Barbieri, Alyssa Barron, Benjamin Bostick, Nicolò Colombani, Micòl Mastrocicco, Henning Prommer, Stefania Passaretti, Yan Zheng and Marco Petitta
Water 2020, 12(10), 2932; https://doi.org/10.3390/w12102932 - 20 Oct 2020
Cited by 20 | Viewed by 3421
Abstract
Superlative levels of arsenic (As) in groundwater and sediment often result from industrial pollution, as is the case for a coastal aquifer in Southern Italy, with a fertilizer plant atop. Understanding conditions under which As is mobilized from the sediments, the source of [...] Read more.
Superlative levels of arsenic (As) in groundwater and sediment often result from industrial pollution, as is the case for a coastal aquifer in Southern Italy, with a fertilizer plant atop. Understanding conditions under which As is mobilized from the sediments, the source of that As, is necessary for developing effective remediation plans. Here, we examine hydrogeological and geochemical factors that affect groundwater As concentrations in a contaminated coastal aquifer. Groundwater has been subject to pump-and-treat at a massive scale for more than 15 years and is still ongoing. Nevertheless, As concentrations (0.01 to 100 mg/L) that are four orders of magnitude more than Italian drinking water standard of 10 μg/L are still present in groundwater collected from about 50 monitoring wells over three years (2011, 2016, and 2018). As was quantified in three different locations by sequential extractions of 29 sediment cores in 2018 (depth 2.5 m to −16.5 m b.g.l.), combined with groundwater As composition, the aqueous and solid partitioning of As were evaluated by partition coefficient (Kd) in order to infer the evolution of the contaminant plumes. Most sediment As is found in easily extractable and/or adsorbed on amorphous iron oxides/hydroxides fractions based on sequential extractions. The study shows that As contamination persists, even after many years of active remediation due to the partitioning to sediment solids. This implies that the choice of remediation techniques requires an improved understanding of the biogeochemical As-cycling and high spatial resolution characterization of both aqueous and solid phases for sites of interest. Full article
(This article belongs to the Special Issue Groundwater and Contaminant Transport)
Show Figures

Figure 1

18 pages, 7378 KiB  
Article
Development and Evaluation of the Combined Machine Learning Models for the Prediction of Dam Inflow
by Jiyeong Hong, Seoro Lee, Joo Hyun Bae, Jimin Lee, Woon Ji Park, Dongjun Lee, Jonggun Kim and Kyoung Jae Lim
Water 2020, 12(10), 2927; https://doi.org/10.3390/w12102927 - 20 Oct 2020
Cited by 44 | Viewed by 5758
Abstract
Predicting dam inflow is necessary for effective water management. This study created machine learning algorithms to predict the amount of inflow into the Soyang River Dam in South Korea, using weather and dam inflow data for 40 years. A total of six algorithms [...] Read more.
Predicting dam inflow is necessary for effective water management. This study created machine learning algorithms to predict the amount of inflow into the Soyang River Dam in South Korea, using weather and dam inflow data for 40 years. A total of six algorithms were used, as follows: decision tree (DT), multilayer perceptron (MLP), random forest (RF), gradient boosting (GB), recurrent neural network–long short-term memory (RNN–LSTM), and convolutional neural network–LSTM (CNN–LSTM). Among these models, the multilayer perceptron model showed the best results in predicting dam inflow, with the Nash–Sutcliffe efficiency (NSE) value of 0.812, root mean squared errors (RMSE) of 77.218 m3/s, mean absolute error (MAE) of 29.034 m3/s, correlation coefficient (R) of 0.924, and determination coefficient (R2) of 0.817. However, when the amount of dam inflow is below 100 m3/s, the ensemble models (random forest and gradient boosting models) performed better than MLP for the prediction of dam inflow. Therefore, two combined machine learning (CombML) models (RF_MLP and GB_MLP) were developed for the prediction of the dam inflow using the ensemble methods (RF and GB) at precipitation below 16 mm, and the MLP at precipitation above 16 mm. The precipitation of 16 mm is the average daily precipitation at the inflow of 100 m3/s or more. The results show the accuracy verification results of NSE 0.857, RMSE 68.417 m3/s, MAE 18.063 m3/s, R 0.927, and R2 0.859 in RF_MLP, and NSE 0.829, RMSE 73.918 m3/s, MAE 18.093 m3/s, R 0.912, and R2 0.831 in GB_MLP, which infers that the combination of the models predicts the dam inflow the most accurately. CombML algorithms showed that it is possible to predict inflow through inflow learning, considering flow characteristics such as flow regimes, by combining several machine learning algorithms. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

40 pages, 6346 KiB  
Review
An Overview and Evaluation of Highly Porous Adsorbent Materials for Polycyclic Aromatic Hydrocarbons and Phenols Removal from Wastewater
by Zakariyya Uba Zango, Nonni Soraya Sambudi, Khairulazhar Jumbri, Anita Ramli, Noor Hana Hanif Abu Bakar, Bahruddin Saad, Muhammad Nur’ Hafiz Rozaini, Hamza Ahmad Isiyaka, Abubaker Mohammed Osman and Abdelmoneim Sulieman
Water 2020, 12(10), 2921; https://doi.org/10.3390/w12102921 - 19 Oct 2020
Cited by 75 | Viewed by 6975
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds had been widely recognized as priority organic pollutants in wastewater with toxic effects on both plants and animals. Thus, the remediation of these pollutants has been an active area of research in the field of environmental [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds had been widely recognized as priority organic pollutants in wastewater with toxic effects on both plants and animals. Thus, the remediation of these pollutants has been an active area of research in the field of environmental science and engineering. This review highlighted the advantage of adsorption technology in the removal of PAHs and phenols in wastewater. The literature presented on the applications of various porous carbon materials such as biochar, activated carbon (AC), carbon nanotubes (CNTs), and graphene as potential adsorbents for these pollutants has been critically reviewed and analyzed. Under similar conditions, the use of porous polymers such as Chitosan and molecularly imprinted polymers (MIPs) have been well presented. The high adsorption capacities of advanced porous materials such as mesoporous silica and metal-organic frameworks have been considered and evaluated. The preference of these materials, higher adsorption efficiencies, mechanism of adsorptions, and possible challenges have been discussed. Recommendations have been proposed for commercialization, pilot, and industrial-scale applications of the studied adsorbents towards persistent organic pollutants (POPs) removal from wastewater. Full article
(This article belongs to the Special Issue Adsorbents for Water and Wastewater Treatment and Resource Recovery)
Show Figures

Figure 1

24 pages, 11936 KiB  
Article
Influence of Unsteady Flow Induced by a Large-Scale Hydropower Station on the Water Level Fluctuation of Multi-Approach Channels: A Case Study of the Three Gorges Project, China
by Zhiyong Wan, Yun Li, Xiaogang Wang, Jianfeng An, Bo Dong and Yipeng Liao
Water 2020, 12(10), 2922; https://doi.org/10.3390/w12102922 - 19 Oct 2020
Cited by 8 | Viewed by 2604
Abstract
Unsteady flow induced by hydropower stations exerts a significant impact on the water level in multi-approach channels, which directly threatens the safe passage of ships. In this study, a one-dimensional and a two-dimensional hydrodynamic model are adopted to simulate the water level fluctuations [...] Read more.
Unsteady flow induced by hydropower stations exerts a significant impact on the water level in multi-approach channels, which directly threatens the safe passage of ships. In this study, a one-dimensional and a two-dimensional hydrodynamic model are adopted to simulate the water level fluctuations at the entrance of multi-approach channels and the lower lock head of a ship lift with consideration of initial water surface elevation, base flow, flow amplitude, regulation time, and locations of hydropower stations, unfavorable conditions are successfully identified; and the fluctuations at the approach channel entrance and the lower lock head of a ship lift under single-peak and double-peak regulating mode are analyzed considering the flow regulating of the Gezhouba Hydropower Station (GHS), thus, the water level oscillation process in the multi-approach channels is presented. Results show that the largest wave amplitude in the multi-approach channels manifests under unfavorable conditions including lower initial water surface elevation, smaller base flow, larger flow variation, and shorter regulation time; and water level fluctuation in the multi-approach channel is primarily induced by flow amplitude and net flow between the Three Gorges Hydropower Station (TGHS) and the GHS, with consideration of the counter-regulation process of the GHS. This research contributes to providing a reference for a similar large-scale cascade hydropower station regarding regulation and control of navigation conditions. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

23 pages, 2970 KiB  
Article
Application of an Interval Two-Stage Robust (ITSR) Optimization Model for Optimization of Water Resource Distribution in the Yinma River Basin, Jilin Province, China
by Wei He, Luze Yang, Minghao Li, Chong Meng and Yu Li
Water 2020, 12(10), 2910; https://doi.org/10.3390/w12102910 - 18 Oct 2020
Cited by 7 | Viewed by 2362
Abstract
The present study is based on the application of an interval two-stage stochastic programming (ITSP) model in the Yinma River Basin. A robust method based on interval two-stage robust (ITSR) optimization is introduced to construct an optimization model of water resource distribution in [...] Read more.
The present study is based on the application of an interval two-stage stochastic programming (ITSP) model in the Yinma River Basin. A robust method based on interval two-stage robust (ITSR) optimization is introduced to construct an optimization model of water resource distribution in order to solve the problems of water shortage in low-income and high-income areas caused by the unreasonable distribution of water resources. The model would help in reducing the system risk in the Yinma River Basin caused by an excessive pursuit of economic benefits. The model simulations show that the amount of water required for the water resource distribution is significantly reduced after balancing the risks and the water resource distribution of the water use departments is reduced by up to 20%. In addition, the situation of water scarcity of various water use departments shows a decreasing trend. There is no scarcity of water use in Panshi, Yongji, Shuangyang and Jiutai areas. The water shortage of water use departments in other areas is reduced by up to 97%. The allocation of reused water to ecological and environmental departments with higher water demand further solved the water shortage problem in low-income departments in the interval-two-stage planning model. In this study, after the introduction of the robust optimization method in the Yinma River Basin, the stability of the water resources distribution system is significantly improved. In addition, the risk of water use system in the interval-two-stage stochastic model can be avoided. Full article
Show Figures

Figure 1

24 pages, 9252 KiB  
Article
Massive Influx of Pelagic Sargassum spp. on the Coasts of the Mexican Caribbean 2014–2020: Challenges and Opportunities
by Valeria Chávez, Abigail Uribe-Martínez, Eduardo Cuevas, Rosa E. Rodríguez-Martínez, Brigitta I. van Tussenbroek, Vanessa Francisco, Miriam Estévez, Lourdes B. Celis, L. Verónica Monroy-Velázquez, Rosa Leal-Bautista, Lorenzo Álvarez-Filip, Marta García-Sánchez, Luis Masia and Rodolfo Silva
Water 2020, 12(10), 2908; https://doi.org/10.3390/w12102908 - 18 Oct 2020
Cited by 145 | Viewed by 15123
Abstract
Since late 2014, the Mexican Caribbean coast has periodically received massive, atypical influxes of pelagic Sargassum spp. (sargasso). Negative impacts associated with these influxes include mortality of nearshore benthic flora and fauna, beach erosion, pollution, decreasing tourism and high management costs. To understand [...] Read more.
Since late 2014, the Mexican Caribbean coast has periodically received massive, atypical influxes of pelagic Sargassum spp. (sargasso). Negative impacts associated with these influxes include mortality of nearshore benthic flora and fauna, beach erosion, pollution, decreasing tourism and high management costs. To understand the dynamics of the sargasso influx, we used Landsat 8 imagery (from 2016 to mid-2020) to record the coverage of sargasso in the sea off the Mexican Caribbean coastline, with a maximum reported in September 2018. Satellite image analysis also showed local differences in the quantity of beached sargasso along the coastline. Over the years, good practice for collection on the beach and for off-shore collection of sargasso have been established through trial and error, and the Mexican Government and hotel industry have spent millions of dollars on removal and off-shore detention of sargasso. Notwithstanding, sargasso also has various properties that could be harnessed in local industries. The stimulation of local industrial growth would offer alternatives to the dependence on tourism, as a circular economy, based on sargasso, is developed. Full article
(This article belongs to the Special Issue Climate Change and Anthropogenic Impact on Coastal Environments)
Show Figures

Figure 1

28 pages, 7739 KiB  
Article
An Analytical Study on Wave-Current-Mud Interaction
by S. Hadi Shamsnia and Denys Dutykh
Water 2020, 12(10), 2899; https://doi.org/10.3390/w12102899 - 17 Oct 2020
Cited by 3 | Viewed by 2440
Abstract
This study aims at providing analytical investigations to the first and second-order on the wave–current–mud interaction problem by applying a perturbation method. Direct formulations of the wave–current–mud interaction could not be found in the literature. Explicit formulations for the particle velocity, dissipation rates, [...] Read more.
This study aims at providing analytical investigations to the first and second-order on the wave–current–mud interaction problem by applying a perturbation method. Direct formulations of the wave–current–mud interaction could not be found in the literature. Explicit formulations for the particle velocity, dissipation rates, and phase shift in the first order and the mass transport in the second-order have been obtained. The findings of the current study confirmed that by an increase in the current velocity (e.g., moving from negative to positive values of current velocity), the dissipation rates and mud (instantaneous and mean) velocity decrease. The proposed assumption of a thin mud layer (boundary layer assumption) matches with the laboratory data in the mud viscosity of the orders of (0.01 N/m2) in both wave dissipation and mud mass transport leading to small ranges of discrepancies. The results from the newly proposed model were compared with the measurements and the results of an existing model in the literature. The proposed model showed better agreements in simulating the mud (instantaneous and mean) velocity compared to the existing one. Full article
(This article belongs to the Special Issue Mathematical Modeling of Sediment Transport in Coastal Areas)
Show Figures

Figure 1

22 pages, 3903 KiB  
Review
The Regional Hydro-Ecological Simulation System for 30 Years: A Systematic Review
by Benxin Chen, Zhifeng Liu, Chunyang He, Hui Peng, Pei Xia and Yu Nie
Water 2020, 12(10), 2878; https://doi.org/10.3390/w12102878 - 16 Oct 2020
Cited by 10 | Viewed by 4270
Abstract
As the Regional Hydro-Ecological Simulation System (RHESSys) is a tool to simulate the interactions between ecological and hydrological processes, many RHESSys-based studies have been implemented for sustainable watershed management. However, it is crucial to review a RHESSys updating history, pros, and cons for [...] Read more.
As the Regional Hydro-Ecological Simulation System (RHESSys) is a tool to simulate the interactions between ecological and hydrological processes, many RHESSys-based studies have been implemented for sustainable watershed management. However, it is crucial to review a RHESSys updating history, pros, and cons for further improving the RHESSys and promoting ecohydrological studies. This paper reviewed the progress of ecohydrological studies employing RHESSys by a bibliometric analysis that quantitatively analyzed the characteristics of relevant studies. In addition, we addressed the main application progress, parameter calibration and validation methods, and uncertainty analysis. We found that since its release in 1993, RHESSys has been widely applied for basins (<100 km2) within mainly seven biomes. The RHESSys model has been applied for evaluating the ecohydrological responses to climate change, land management, urbanization, and disturbances, as well as water quality and biogeochemical cycle. While most studies have paid their attention on climate change, the focus has shifted to the application for land management in recent years. This study also identified many challenges in RHESSys such as the inaccessible data and parameters, oversimplified calibration approach, few applications for large-scale watersheds, and limited application fields. Therefore, this study proposed a set of suggestions to overcome the limitations and challenges: (1) Developing a new approach for parameter acquisition and calibration from multi-source data, (2) improving the applicability for a large-scale basin, and (3) extending the scope of application fields. We believe RHESSys can improve the understandings of human–environment relationships and the promotion of sustainable watersheds development. Full article
(This article belongs to the Special Issue Integrated Ecohydrological Models and Aquatic Ecosystem Management)
Show Figures

Figure 1

14 pages, 11025 KiB  
Article
Seasonal Variation and Assessment of Fish Resources in the Yangtze Estuary Based on Environmental DNA
by Hui Jia, Yibang Wang, Susumu Yoshizawa, Wataru Iwasaki, Yuquan Li, Weiwei Xian and Hui Zhang
Water 2020, 12(10), 2874; https://doi.org/10.3390/w12102874 - 16 Oct 2020
Cited by 22 | Viewed by 4099
Abstract
In the past few years, environmental DNA (eDNA) techniques have been used to monitor marine communities. Research indicates that eDNA is an effective tool for monitoring fishery resources. This study analyzed the seasonal variations in fish resources in the Yangtze Estuary, China, using [...] Read more.
In the past few years, environmental DNA (eDNA) techniques have been used to monitor marine communities. Research indicates that eDNA is an effective tool for monitoring fishery resources. This study analyzed the seasonal variations in fish resources in the Yangtze Estuary, China, using eDNA. A total of 103 water samples were collected from the Yangtze Estuary across the four seasons in 2019—20 samples in February, 28 in May, 28 in August and 27 in November. Our research successfully detected the fishery resources of the Yangtze Estuary. We found significant differences according to the season. The results showed that 59 species were identified in 2019 (20 in February, 16 in May, 5 in August and 45 in November) and fish species varied widely over the four seasons. Furthermore, our samples revealed significant differences in annual fish stocks in the Yangtze Estuary, compared with eDNA data from 2018 and with traditional surveys from past years. Overall, eDNA is a useful emerging tool to assist with monitoring and protecting fish resources for the Yangtze Estuary. Full article
Show Figures

Figure 1

16 pages, 5463 KiB  
Article
Vehicle-Related Flood Fatalities in Texas, 1959–2019
by Zhongyu Han and Hatim O. Sharif
Water 2020, 12(10), 2884; https://doi.org/10.3390/w12102884 - 16 Oct 2020
Cited by 10 | Viewed by 4471
Abstract
Texas has the highest number of flood fatalities and vehicle-related flood fatalities in the United States. This study provides a detailed analysis of vehicle-related flood fatalities in Texas from 1959 to 2019. The data was compiled from the Storm Data publication maintained by [...] Read more.
Texas has the highest number of flood fatalities and vehicle-related flood fatalities in the United States. This study provides a detailed analysis of vehicle-related flood fatalities in Texas from 1959 to 2019. The data was compiled from the Storm Data publication maintained by the National Weather Service and includes demographics of the victims, dates, flood types, roadway types, and fatality location. There were 570 vehicle-related flood fatalities during the study period, with almost all fatal accidents resulting in one fatality. These fatalities represent 58% of total flood fatalities. The spatial analysis reveals that most counties with high vehicle-related flood fatalities are clustered in Flash Flood Alley. These counties accounted for over 80% of the fatalities. The annual distribution of these fatalities follows a statistically significant decreasing trend. Monthly distribution of vehicle-related fatalities follows that of rainfall in the Flash Flood Alley, with flash floods causing 61% of all vehicle-related flood fatalities. Night was the time of the day when the most vehicle-related deaths occurred. Males accounted for 63% of the fatalities and the age group of 20–29 was the most affected. The study discusses how the results can be used to increase awareness of flood hazards, used as input into state and regional disaster mitigation plans, and help tailor education and outreach programs. Full article
(This article belongs to the Special Issue GIS Application: Flood Risk Management)
Show Figures

Figure 1

39 pages, 60539 KiB  
Article
Use of Modern Technologies for the Conservation of Historical Heritage in Water Management
by Adrian Șmuleac, Laura Șmuleac, Teodor Eugen Man, Cosmin Alin Popescu, Florin Imbrea, Isidora Radulov, Tabita Adamov and Raul Pașcalău
Water 2020, 12(10), 2895; https://doi.org/10.3390/w12102895 - 16 Oct 2020
Cited by 11 | Viewed by 4412
Abstract
Historical monuments represent a cultural heritage that humanity has a duty to preserve and conserve. Lately all over the world, scanning these heritage objectives has become a priority, in order to preserve in the smallest details the used architecture. The work aims to [...] Read more.
Historical monuments represent a cultural heritage that humanity has a duty to preserve and conserve. Lately all over the world, scanning these heritage objectives has become a priority, in order to preserve in the smallest details the used architecture. The work aims to complete the cultural heritage for Sânmihaiu Român hydro technical development built between 1912 and 1915, located on the Bega River in Western Romania, through modern mobile scanning technology, Leica Pegasus Backpack, necessary for the creation of a three-dimensional (3D) documentation, for the completion of the cultural heritage, and for the creation of a 3D database. The purpose of the scientific paper is restoring Sanmihaiu Roman Hidro technical Node, subject to degradation, in order to achieve the project “The navigable Bega”, waterway connection to Serbia. Collecting method of LiDAR data is Fused Slam, the acquisition of RINNEX data being made by placing a Leica GS08 Master Station. Visualization of quality graphics has been performed in Quality Control (QC) Tools. The scanning accuracy is between 2 and 3 cm and the 3D data processing was performed with the Cyclone Model version program, with SmartPick Point and Virtual Surveyor functions. The obtained point clouds will be of a great help in order to follow in time the construction which can be used whenever it will be needed by the designers and specialists in the field of hydrotechnics. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

22 pages, 3112 KiB  
Article
The Structure of Riparian Vegetation in Agricultural Landscapes Influences Spider Communities and Aquatic-Terrestrial Linkages
by Ellinor Ramberg, Francis J. Burdon, Jasmina Sargac, Benjamin Kupilas, Geta Rîşnoveanu, Danny C. P. Lau, Richard K. Johnson and Brendan G. McKie
Water 2020, 12(10), 2855; https://doi.org/10.3390/w12102855 - 14 Oct 2020
Cited by 16 | Viewed by 3962
Abstract
Riparian habitats are important ecotones connecting aquatic and terrestrial ecosystems, but are often highly degraded by human activities. Riparian buffers might help support impacted riparian communities, and improve trophic connectivity. We sampled spider communities from riparian habitats in an agricultural catchment, and analyzed [...] Read more.
Riparian habitats are important ecotones connecting aquatic and terrestrial ecosystems, but are often highly degraded by human activities. Riparian buffers might help support impacted riparian communities, and improve trophic connectivity. We sampled spider communities from riparian habitats in an agricultural catchment, and analyzed their polyunsaturated fatty acid (PUFA) content to quantify trophic connectivity. Specific PUFAs are exclusively produced by stream algae, and thus are used to track uptake of aquatic resources by terrestrial consumers. Riparian spiders were collected from 10 site pairs situated along agricultural streams, and from five forest sites (25 sites total). Each agricultural site pair comprised an unshaded site with predominantly herbaceous vegetation cover, and a second with a woody riparian buffer. Spider communities differed between site types, with web-building spiders dominating woody buffered sites and free-living spiders associated with more open habitats. PUFA concentrations were greatest overall in free-living spiders, but there was also evidence for increased PUFA uptake by some spider groups when a woody riparian buffer was present. Our results reveal the different roles of open and wooded riparian habitats in supporting terrestrial consumers and aquatic-terrestrial connectivity, and highlight the value of incorporating patches of woody vegetation within riparian networks in highly modified landscapes. Full article
(This article belongs to the Special Issue Ecosystem Functioning in Rivers and Riparian Zones)
Show Figures

Figure 1

17 pages, 2928 KiB  
Article
The Use of Various Rainfall Simulators in the Determination of the Driving Forces of Changes in Sediment Concentration and Clay Enrichment
by Judit Alexandra Szabó, Csaba Centeri, Boglárka Keller, István Gábor Hatvani, Zoltán Szalai, Endre Dobos and Gergely Jakab
Water 2020, 12(10), 2856; https://doi.org/10.3390/w12102856 - 14 Oct 2020
Cited by 8 | Viewed by 2875
Abstract
Soil erosion is a complex, destructive process that endangers food security in many parts of the world; thus, its investigation is a key issue. While the measurement of interrill erosion is a necessity, the methods used to carry it out vary greatly, and [...] Read more.
Soil erosion is a complex, destructive process that endangers food security in many parts of the world; thus, its investigation is a key issue. While the measurement of interrill erosion is a necessity, the methods used to carry it out vary greatly, and the comparison of the results is often difficult. The present study aimed to examine the results of two rainfall simulators, testing their sensitivity to different environmental conditions. Plot-scale nozzle type rainfall simulation experiments were conducted on the same regosol under both field and laboratory conditions to compare the dominant driving factors of runoff and soil loss. In the course of the experiments, high-intensity rainfall, various slope gradients, and different soil surface states (moisture content, roughness, and crust state) were chosen as the response parameters, and their driving factors were sought. In terms of the overall erosion process, the runoff, and soil loss properties, we found an agreement between the simulators. However, in the field (a 6 m2 plot), the sediment concentration was related to the soil conditions and therefore its hydrological properties, whereas in the laboratory (a 0.5 m2 plot), slope steepness and rainfall intensity were the main driving factors. This, in turn, indicates that the design of a rainfall simulator may affect the results of the research it is intended for, even if the differences occasioned by various designs may be of a low order. Full article
(This article belongs to the Special Issue Soil Water Erosion)
Show Figures

Figure 1

18 pages, 647 KiB  
Article
Cultivating Water Literacy in STEM Education: Undergraduates’ Socio-Scientific Reasoning about Socio-Hydrologic Issues
by David C. Owens, Destini N. Petitt, Diane Lally and Cory T. Forbes
Water 2020, 12(10), 2857; https://doi.org/10.3390/w12102857 - 14 Oct 2020
Cited by 12 | Viewed by 4392
Abstract
Water-literate individuals effectively reason about the hydrologic concepts that underlie socio-hydrological issues (SHI), but functional water literacy also requires concomitant reasoning about the societal, non-hydrological aspects of SHI. Therefore, this study explored the potential for the socio-scientific reasoning construct (SSR), which includes consideration [...] Read more.
Water-literate individuals effectively reason about the hydrologic concepts that underlie socio-hydrological issues (SHI), but functional water literacy also requires concomitant reasoning about the societal, non-hydrological aspects of SHI. Therefore, this study explored the potential for the socio-scientific reasoning construct (SSR), which includes consideration of the complexity of issues, the perspectives of stakeholders involved, the need for ongoing inquiry, skepticism about information sources, and the affordances of science toward the resolution of the issue, to aid undergraduates in acquiring such reasoning skills. In this fixed, embedded mixed methods study (N = 91), we found SHI to hold great potential as meaningful contexts for the development of water literacy, and that SSR is a viable and useful construct for better understanding undergraduates’ reasoning about the hydrological and non-hydrological aspects of SHI. The breadth of reasoning sources to which participants referred and the depth of the SSR they exhibited in justifying those sources varied within and between the dimensions of SSR. A number of participants’ SSR was highly limited. Implications for operationalizing, measuring, and describing undergraduate students’ SSR, as well as for supporting its development for use in research and the classroom, are discussed. Full article
(This article belongs to the Special Issue Water Literacy and Education)
Show Figures

Figure 1

15 pages, 305 KiB  
Article
Pipe Fault Prediction for Water Transmission Mains
by Ariel Gorenstein, Meir Kalech, Daniela Fuchs Hanusch and Sharon Hassid
Water 2020, 12(10), 2861; https://doi.org/10.3390/w12102861 - 14 Oct 2020
Cited by 8 | Viewed by 2089
Abstract
Every network of supply waterlines experiences thousands of yearly bursts, breaks, leakages, and other failures. These failures waste a great amount of resources, as not only the waterlines need to be repaired, but also water is wasted and the distribution service is interrupted. [...] Read more.
Every network of supply waterlines experiences thousands of yearly bursts, breaks, leakages, and other failures. These failures waste a great amount of resources, as not only the waterlines need to be repaired, but also water is wasted and the distribution service is interrupted. For that reason, many water facilities employ proactive maintenance strategies in their networks, where they replace likely-to-fail pipes in advance to prevent the failures. In this paper, we aim to establish a reliable prediction model that can accurately predict faults in waterlines prior to their occurrence. We propose a specific segmentation method for long transmission mains, as well as three data-driven models and one rule-based prediction model. We evaluate a real world waterline network used in Israel, operated by Mekorot company, using three common metrics. The results show that the data-driven algorithms outperform the rule-based model by at least 5% in each of the metrics. Additionally, their prediction becomes more accurate as they are trained with more data, but enhancing these data with geographically related features does not improve the accuracy further. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

15 pages, 1781 KiB  
Article
A Novel Method for Determination of the Natural Toxin Ptaquiloside in Ground and Drinking Water
by Natasa Skrbic, Ann-Katrin Pedersen, Sarah C. B. Christensen, Hans Christian Bruun Hansen and Lars Holm Rasmussen
Water 2020, 12(10), 2852; https://doi.org/10.3390/w12102852 - 13 Oct 2020
Cited by 11 | Viewed by 3993
Abstract
Ptaquiloside (PTA) is a carcinogenic compound naturally occurring in bracken ferns (Pteridium aquilinum). It is highly water soluble and prone to leaching from topsoil to surface and groundwaters. Due to possible human exposure via drinking water, PTA is considered as an [...] Read more.
Ptaquiloside (PTA) is a carcinogenic compound naturally occurring in bracken ferns (Pteridium aquilinum). It is highly water soluble and prone to leaching from topsoil to surface and groundwaters. Due to possible human exposure via drinking water, PTA is considered as an emerging contaminant. We present a sensitive and robust method for analysis of PTA and its degradation product pterosin B (PtB) in groundwater. The method comprises two steps: sample preservation at the field site followed by sample pre-concentration in the laboratory. The preservation step was developed by applying a Plackett–Burman experimental design testing the following variables: water type, pH, filtering, bottle type, storage temperature, transportation conditions and test time. The best sample preservation was obtained by using amber glass bottles, unfiltered solutions buffered at pH 6, transported without ice, stored at 4 °C and analysed within 48 h. The recovery was 94% to 100%. The sample purification step had a pre-concentration factor of 250, and the recovery percentages of the entire method were 85 ± 2 (PTA) and 91 ± 3 (PtB). The limits of detection (LOD) of the full method were 0.001 µg L−1 and 0.0001 µg L−1 for PTA and PtB, respectively. The method enables sensitive monitoring of PTA and PtB in groundwater. Carcinogenic PTA was detected in one groundwater well (0.35 µg L−1). Full article
(This article belongs to the Special Issue Emerging Contaminants (ECs) in Water)
Show Figures

Graphical abstract

34 pages, 2807 KiB  
Review
Interplay of the Factors Affecting Water Flux and Salt Rejection in Membrane Distillation: A State-of-the-Art Critical Review
by Lin Chen, Pei Xu and Huiyao Wang
Water 2020, 12(10), 2841; https://doi.org/10.3390/w12102841 - 13 Oct 2020
Cited by 47 | Viewed by 6436
Abstract
High water flux and elevated rejection of salts and contaminants are two primary goals for membrane distillation (MD). It is imperative to study the factors affecting water flux and solute transport in MD, the fundamental mechanisms, and practical applications to improve system performance. [...] Read more.
High water flux and elevated rejection of salts and contaminants are two primary goals for membrane distillation (MD). It is imperative to study the factors affecting water flux and solute transport in MD, the fundamental mechanisms, and practical applications to improve system performance. In this review, we analyzed in-depth the effects of membrane characteristics (e.g., membrane pore size and distribution, porosity, tortuosity, membrane thickness, hydrophobicity, and liquid entry pressure), feed solution composition (e.g., salts, non-volatile and volatile organics, surfactants such as non-ionic and ionic types, trace organic compounds, natural organic matter, and viscosity), and operating conditions (e.g., temperature, flow velocity, and membrane degradation during long-term operation). Intrinsic interactions between the feed solution and the membrane due to hydrophobic interaction and/or electro-interaction (electro-repulsion and adsorption on membrane surface) were also discussed. The interplay among the factors was developed to qualitatively predict water flux and salt rejection considering feed solution, membrane properties, and operating conditions. This review provides a structured understanding of the intrinsic mechanisms of the factors affecting mass transport, heat transfer, and salt rejection in MD and the intra-relationship between these factors from a systematic perspective. Full article
Show Figures

Figure 1

15 pages, 1647 KiB  
Article
Reduction of Environmental Impacts Due to Using Permeable Pavements to Harvest Stormwater
by Lucas Niehuns Antunes, Calum Sydney, Enedir Ghisi, Vernon R. Phoenix, Liseane Padilha Thives, Christopher White and Emmanuelle Stefânia Holdefer Garcia
Water 2020, 12(10), 2840; https://doi.org/10.3390/w12102840 - 13 Oct 2020
Cited by 17 | Viewed by 3894
Abstract
While rainwater harvesting can provide additional water resources, this approach is largely undertaken using water from roofs. More recently, the potential for using stormwater harvested from permeable pavements was recognised as a potential additional water resource. The objective of this study was to [...] Read more.
While rainwater harvesting can provide additional water resources, this approach is largely undertaken using water from roofs. More recently, the potential for using stormwater harvested from permeable pavements was recognised as a potential additional water resource. The objective of this study was to estimate the reduction of environmental impacts caused by traditional drainage systems and centralised water utilities if permeable pavement systems were used to harvest stormwater for nonpotable purposes in buildings. The lifecycle environmental impacts and costs associated with the proposed pavements and hydraulic systems were assessed. The city of Glasgow was chosen as a case study. We used the Netuno computer programme to estimate the potential for potable water savings considering the use of stormwater for nonpotable purposes and the SimaPro software to perform a lifecycle assessment (LCA). With the implementation of permeable pavements and stormwater utilisation, great reductions in lifecycle emissions (i.e., CO2-, SO2-, and PM2.5-equivalent emissions) were observed. The proposed system also proved to be economically feasible, i.e., a payback period equal to 16.9 years. The results show the economic and environmental feasibility of permeable pavements when used on a large scale, proving to be an important strategy to reduce water and environmental stresses caused by centralised water utilities and traditional drainage systems. Full article
Show Figures

Figure 1

19 pages, 2303 KiB  
Article
From Highs to Lows: Changes in Dissolved Organic Carbon in a Peatland Catchment and Lake Following Extreme Flow Events
by Eleanor Jennings, Elvira de Eyto, Tadhg Moore, Mary Dillane, Elizabeth Ryder, Norman Allott, Caitriona Nic Aonghusa, Martin Rouen, Russell Poole and Donald C. Pierson
Water 2020, 12(10), 2843; https://doi.org/10.3390/w12102843 - 13 Oct 2020
Cited by 9 | Viewed by 3861
Abstract
The concentration of dissolved organic carbon (DOC) in freshwater catchments has implications for carbon availability in downstream lakes and for water supplies. The links between catchment hydrology and stream and lake DOC concentrations are, however, still not fully understood. Much of the literature [...] Read more.
The concentration of dissolved organic carbon (DOC) in freshwater catchments has implications for carbon availability in downstream lakes and for water supplies. The links between catchment hydrology and stream and lake DOC concentrations are, however, still not fully understood. Much of the literature has been from catchments with organo-mineral soils, with fewer studies from upland peat sites. We used high-frequency fluorescence data, a proxy for DOC, to investigate 1. the relationship between stream discharge and concentration in a blanket peat catchment during extreme high flows and 2. the relationship between inflow and in-lake estimated DOC concentrations. We found that for approximately two thirds of extreme events, there was a decrease in stream DOC concentration (i.e., a dilution) on the rising limb rather than an increase (i.e., a flushing out of DOC from terrestrial stores). Flushing events dominated only in summer when concentrations in the stream were also increasing. In comparison to the stream, concentrations in the downstream lake were less variable, and peaks and troughs were damped and lagged. Replicating these patterns and processes in DOC models would be critical in order to provide appropriate simulations in response to shorter- and longer-term changes in climate, and thus inform future catchment and lake management. Full article
(This article belongs to the Special Issue Effect of Extreme Climate Events on Lake Ecosystems)
Show Figures

Figure 1

25 pages, 5861 KiB  
Article
Current and Future Ecological Status Assessment: A New Holistic Approach for Watershed Management
by André R. Fonseca, João A. Santos, Simone G.P. Varandas, Sandra M. Monteiro, José L. Martinho, Rui M.V. Cortes and Edna Cabecinha
Water 2020, 12(10), 2839; https://doi.org/10.3390/w12102839 - 13 Oct 2020
Cited by 5 | Viewed by 2453
Abstract
The Paiva River catchment, located in Portugal, integrates the Natura 2000 network of European Union nature protection areas. Resorting to topography, climate and land-use data, a semi-distributed hydrological model (Hydrological Simulation Program–FORTRAN) was run in order to simulate the hydrological cycle of the [...] Read more.
The Paiva River catchment, located in Portugal, integrates the Natura 2000 network of European Union nature protection areas. Resorting to topography, climate and land-use data, a semi-distributed hydrological model (Hydrological Simulation Program–FORTRAN) was run in order to simulate the hydrological cycle of the river and its tributaries. The model was calibrated over a 25-year period and validated within a 31-year period. Its performance was verified by comparing the recorded and simulated daily flows. The values of the Nash–Sutcliffe coefficient of efficiency of 0.95 and 0.76, and coefficient of determination of 0.95 and 0.82, were achieved for calibration and validation, respectively, thus showing a quite satisfactory model performance. Subsequently, the climate change impacts on temperature and precipitation, as well as their extremes, and on the flowrates were also assessed for a future period (2041–2070) under two anthropogenic forcing scenarios (representative concentration pathways 4.5 and 8.5). A procedure for selecting the most relevant metrics for assessing the ecological condition of the Paiva River was developed based upon a set of 52 invertebrate families sampled. Correspondence analyses were carried out for biological datasets (traits/metrics) with physicochemical and land use/land cover matrices separately. Out of all variables, water quality and flow and agriculture land use explained most of the variance observed. The integrated analysis undertaken in the present study is an important advance when compared to previous studies and it provides key information to stakeholders and decision-makers, particularly when planning suitable adaptation measures to cope with changing climates in the forthcoming decades. Full article
(This article belongs to the Special Issue Flowing Waters and Threatened Aquatic Life)
Show Figures

Figure 1

17 pages, 1423 KiB  
Article
Monitoring Waterborne Pathogens in Surface and Drinking Waters. Are Water Treatment Plants (WTPs) Simultaneously Efficient in the Elimination of Enteric Viruses and Fecal Indicator Bacteria (FIB)?
by Daniel Salvador, Maria Filomena Caeiro, Fátima Serejo, Paulo Nogueira, Rui Neves Carneiro and Célia Neto
Water 2020, 12(10), 2824; https://doi.org/10.3390/w12102824 - 11 Oct 2020
Cited by 11 | Viewed by 4141
Abstract
Monitoring the quality of water is a requisite to prevent outbreaks related to waterborne diseases, predominantly caused by pathogens like enteric viruses, usually transmitted via the fecal-oral route. This study aimed to survey a group of enteric viruses (Enterovirus, Norovirus genogroups [...] Read more.
Monitoring the quality of water is a requisite to prevent outbreaks related to waterborne diseases, predominantly caused by pathogens like enteric viruses, usually transmitted via the fecal-oral route. This study aimed to survey a group of enteric viruses (Enterovirus, Norovirus genogroups I and II, and hepatitis A virus) in two surface water sources of drinking water, also intending to evaluate the extent of their elimination in the two water treatment plants (WTPs) involved in drinking water production. Correlations between these viruses and fecal indicator bacteria (FIB) were also evaluated. Positive samples for viral RNA were recurrently found by reverse transcription quantitative PCR (RT-qPCR) and quantified, in genomic copies per liter (gc/L) of sampled water. Viral RNAs were detected in 14 out of 27 samples of surface water, and 21 out of 36 samples of drinking water, NoV II having been the most frequently detected in both (0–78.6 gc/L and 0–12.5 gc/L, respectively). Both WTPs showed variable efficacies in the elimination of viral RNA. Only one correlation was found with FIB, between NoV II and intestinal enterococci. These results recommend the monitoring of enteric viruses over time and their inclusion in the mandatory analysis of water quality. Full article
Show Figures

Graphical abstract

10 pages, 3240 KiB  
Article
Potential Effects of the COVID-19 Pandemic through Changes in Outbound Tourism on Water Demand: The Case of Liège (Belgium)
by Nguyen Bich-Ngoc and Jacques Teller
Water 2020, 12(10), 2820; https://doi.org/10.3390/w12102820 - 11 Oct 2020
Cited by 18 | Viewed by 3959
Abstract
The COVID-19 pandemic has led to many countries closing their borders, and numerous people spending their holidays at home instead of traveling abroad. This sudden reduction in travel activities, and other ‘new normals’, might have influenced people’s water usage. Hence, using Liège as [...] Read more.
The COVID-19 pandemic has led to many countries closing their borders, and numerous people spending their holidays at home instead of traveling abroad. This sudden reduction in travel activities, and other ‘new normals’, might have influenced people’s water usage. Hence, using Liège as a case study, this study aims to address the potential effect of outbound tourism on water consumption and how the current situation might affect the total water demand. Statistical models were developed and validated using the total daily volume of 23 municipalities in the Liège conurbation, the monthly total number of outbound trips, and other meteorological data. Results suggest significantly lower water demand in the months with high numbers of outbound travel activities. Though the projected risk of increased water needs due to fewer people traveling is moderate, the threat becomes much higher during long periods of dry and hot weather. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

16 pages, 11491 KiB  
Article
Response of Agricultural Drought to Meteorological Drought: A Case Study of the Winter Wheat above the Bengbu Sluice in the Huaihe River Basin, China
by Chao Gao, Cai Chen, Yi He, Tian Ruan, Gang Luo and Yanwei Sun
Water 2020, 12(10), 2805; https://doi.org/10.3390/w12102805 - 10 Oct 2020
Cited by 11 | Viewed by 2141
Abstract
This study investigated the responses of winter wheat to drought for the above part of the Bengbu Sluice in the Huaihe River based on the daily scale dataset of 60 meteorological stations from 1961–2015. Crop water deficit index (CWDI) and relative [...] Read more.
This study investigated the responses of winter wheat to drought for the above part of the Bengbu Sluice in the Huaihe River based on the daily scale dataset of 60 meteorological stations from 1961–2015. Crop water deficit index (CWDI) and relative moisture index (M) were used to examine the winter wheat drought and meteorological drought, respectively. We then analyzed the spatial-temporal evolution characteristics of these two kinds of drought to calculate the time lag of winter wheat drought to meteorological drought, and finally discuss the relationship between the time lag of winter wheat drought to meteorological drought and the underlying surface geographical factors, and drew the following conclusions. (1) In terms of time scale, for CWDI, except for the filling and mature period, the CWDI at other growth periods showed a slight downward trend; for M, there was no significant change in the interannual trend of each growth period. In terms of spatial scale, the proportion of above moderate drought level in each station of CWDI and M presented a decreasing feature from north to south. (2) The time lag of winter wheat drought to meteorological drought was the shortest (3.21 days) in the greening and heading period and the longest in the over-wintering period (84.35 days). (3) The correlation between the geographical factors and the time lag of winter wheat drought in each growth period was better than 0.5. The high-value points of the relation between the underlying surface geographical factors and the time lag of winter wheat drought were mostly distributed in the mountainous areas with poor soil field capacity and at a greater depth of shallow groundwater, high elevation and steep slope in the areas with aspects to the east and northeast, and the northern areas with less precipitation and lower temperature. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

15 pages, 3529 KiB  
Article
Water Level Fluctuations and Air Temperatures Affect Common Reed Habitus and Productivity in an Intermittent Wetland Ecosystem
by Alenka Gaberščik, Mateja Grašič, Dragan Abram and Igor Zelnik
Water 2020, 12(10), 2806; https://doi.org/10.3390/w12102806 - 10 Oct 2020
Cited by 14 | Viewed by 2762
Abstract
Lake Cerknica is an intermittent wetland ecosystem with extreme water level fluctuations. It hosts extensive reed stands that have colonized different habitat types. Two different stands were compared: a lake stand not directly influenced by the intermittent River Stržen and a riparian stand [...] Read more.
Lake Cerknica is an intermittent wetland ecosystem with extreme water level fluctuations. It hosts extensive reed stands that have colonized different habitat types. Two different stands were compared: a lake stand not directly influenced by the intermittent River Stržen and a riparian stand near River Stržen. Reed productivity (growth and assimilate allocation) was monitored for these reed stand types over 13 years (2007–2019), and this measurement was compared to monthly water levels and air temperatures. Reeds from the lake reed stand were significantly shorter with a lower shoot density, overall biomass production, and ratio of flowering plants. A correlation analysis revealed stronger and more numerous significant correlations between environmental and reed productivity parameters for the lake reed stand compared to the riparian reed stand. The variabilities of the growth and assimilate allocation parameters in the lake reed stand were both mostly explained by the combined water levels for June and July, which explained 47% and 52% of the variability, respectively. The most influential temperatures were in May, which explained 29% and 19% of the variability of growth and assimilate allocation parameters, respectively. For the riparian reed stand, water levels and temperatures out of the vegetation season appeared more important. Therefore, habitats with permanent water are more suitable for reeds than those with fluctuating water. However, fluctuating water conditions are expected to become more common due to climate change. Full article
(This article belongs to the Special Issue Hydrology-Shaped Plant Communities: Diversity and Ecological Function)
Show Figures

Figure 1

Back to TopTop