Impact of Environmental Factors on Aquatic Ecosystem

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Biodiversity and Functionality of Aquatic Ecosystems".

Deadline for manuscript submissions: 5 November 2024 | Viewed by 13124

Special Issue Editors

Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
Interests: ecohydraulic; ecohydrology; habitat; ecosystem; environmental flows; dam operation; fish; Chinese sturgeon; Zoobenthos; reparian

E-Mail Website
Guest Editor
College of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
Interests: ecohydrology; ecological flow; river habitats; wetland ecosystem; ecological operation; ecological effects

E-Mail Website
Guest Editor
China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Interests: ecological flow; eco-environmental restoration; nature-based solutions; watershed eco-compensation; equilibrium optimization calculation; sustainable development; optimal decision-making; wetland ecosystem service

Special Issue Information

Dear Colleagues,

Aquatic ecosystems are structured by the interaction of physical, biological and chemical processes on multiple spatial and temporal scales. Lotic environments are naturally dynamic, characterised by variable discharges, hydraulic patterns, sediment and nutrient loads and thermal regimes that may change temporally and spatially. This complexity produces a variety of geomorphological features and habitats that sustain the diverse ecological communities recorded in fresh, saline and marine waters. The recognition of the long history and widespread and varied extent of environmental factor's impacts on aquatic ecosystems is helpful to minimise and mitigate negative influences.

Therefore, this Special Issue is focused on advances and experiences in the impact of environmental factors on aquatic ecosystems. We welcome original papers addressing research themes including, but not limited to, the following:

  1. Eco-environmental impact of dam and reservoir on aquatic ecosystems.
  2. Eco-environmental impact of water pollution on aquatic ecosystems.
  3. Environmental flow assessment and implementation on aquatic ecosystems.
  4. Approaches to minimize habitat degradation and conserve biodiversity in aquatic ecosystems.
  5. Applied technology in eco-hydraulics and Ecohydrology.

Dr. Xuan Ban
Prof. Dr. Wenxian Guo
Prof. Dr. Yicheng Fu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aquatic ecosystem
  • habitat
  • environmental flows
  • ecohydrology
  • ecohydraulic

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

15 pages, 502 KiB  
Article
Assessment of the Health Status of Whitefish (Coregonus lavaretus Linnaeus, 1758) and the Quality of Its Habitat in Lake Sevan (Armenia) Using a Multi-Biomarker Approach
by Hranush Melkonyan, Grigorii Chuiko, Nelli Barseghyan, Tigran Vardanyan, Evelina Ghukasyan, Hripsime Kobelyan and Bardukh Gabrielyan
Water 2024, 16(19), 2789; https://doi.org/10.3390/w16192789 - 30 Sep 2024
Viewed by 404
Abstract
Lake Sevan is a freshwater reservoir in the Caucasus region. Since the first half of the 20th century, the lake has undergone significant changes caused by human activity and anthropogenic pressure. To identify the current ecological state of two bays—Lchashen and Lichk—located in [...] Read more.
Lake Sevan is a freshwater reservoir in the Caucasus region. Since the first half of the 20th century, the lake has undergone significant changes caused by human activity and anthropogenic pressure. To identify the current ecological state of two bays—Lchashen and Lichk—located in different parts of the lake, a study was conducted in 2022–2023 using a multi-biomarker approach. For this purpose, biomarkers for assessing the health status of fish and the quality of their living conditions were used such as the activity of acetylcholinesterase (AChE) in the brain, glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and the concentration of reduced glutathione (RGS) and malondialdehyde (MDA) in the liver and gills of the whitefish (Coregonus lavaretus Linnaeus, 1758). In addition, hydrochemical and ichthyological analyses were conducted. This study demonstrated seasonal dynamics for all biomarkers. Comparative analysis of biomarkers and hydrochemical and ichthyological data showed that the whitefish in Lchashen Bay is in worse health, and its living conditions there are less favorable than in Lichk Bay. Full article
(This article belongs to the Special Issue Impact of Environmental Factors on Aquatic Ecosystem)
Show Figures

Figure 1

18 pages, 6078 KiB  
Article
The Distribution and Succession of Filamentous Algae in the Southern Taihang Catchment under Different Nutrient Regimes
by Bo Yang, Yiguang Zhang, Man Zhang, Xucong Lv, Yuhua Li, Jingxiao Zhang, Xianfeng Wang, Xiaofei Gao, Xueqin Zhao and Xiufen Wang
Water 2024, 16(17), 2453; https://doi.org/10.3390/w16172453 - 29 Aug 2024
Viewed by 668
Abstract
Human activities have resulted in the eutrophication of rivers, leading to heightened concerns regarding the occurrence of filamentous algal blooms. With the increasing utilization of rivers by humans, the occurrence of these nuisance filamentous algae is expected to increase in frequency in the [...] Read more.
Human activities have resulted in the eutrophication of rivers, leading to heightened concerns regarding the occurrence of filamentous algal blooms. With the increasing utilization of rivers by humans, the occurrence of these nuisance filamentous algae is expected to increase in frequency in the future. Blooms primarily occur due to energy congestion at the trophic level of primary producers, resulting from inefficient energy flow in both the bottom-up and top-down pathways. To investigate the mechanism underlying the outbreak of filamentous algae, two streams in the southern Taihang catchment with different nutrient conditions were selected for this study. The objective of this study was to understand the effects of nutrient levels and other potential factors on the distribution and succession of filamentous algae. Our findings revealed a positive correlation between nutrient conditions and the biomass of filamentous algae. Cladophora and Spirogyra were identified as the dominant species among filamentous algae, each exhibiting unique distribution patterns in the two streams. Spirogyra thrived predominantly in the Baligou stream, where lower nutrient levels and warmer temperatures prevailed. In contrast, Cladophora flourished in the nutrient-rich Nanping stream at colder temperatures. Results from the generalized linear model indicated that the biomass of Cladophora was influenced by nutrient concentration, water depth, water temperature, and macrobenthic biomass. The biomass of Spirogyra, on the other hand, was primarily determined by water temperature, nutrient concentrations, water depth, and velocity. The positive correlation between Cladophora and macrobenthos revealed a possible mutually beneficial relationship, suggesting that macrobenthos may promote the growth of Cladophora by inhibiting periphytic diatoms. In return, the macrobenthos benefit from a secure refuge and an environment conducive to foraging and reproduction. This study suggested that to alleviate energy flow congestion in the benthic food chain, it is advisable to address this issue by either reducing nutrient loadings in rivers or enhancing the presence of benthivorous fishes in streams. Full article
(This article belongs to the Special Issue Impact of Environmental Factors on Aquatic Ecosystem)
Show Figures

Figure 1

31 pages, 37552 KiB  
Article
Sedimentological, Geochemical, and Environmental Assessment in an Eastern Mediterranean, Stressed Coastal Setting: The Gialova Lagoon, SW Peloponnese, Greece
by Maria Papakonstantinou, Spyros Sergiou, Maria Geraga, Amalia Prandekou, Xenophon Dimas, Elias Fakiris, Dimitris Christodoulou and George Papatheodorou
Water 2024, 16(16), 2312; https://doi.org/10.3390/w16162312 - 16 Aug 2024
Viewed by 706
Abstract
This study describes the prevalent sedimentological and geochemical patterns and investigates the environmental status of the bottom of Gialova lagoon, a highly vulnerable coastal site of the EU’s Natura 2000 network. For this task, lithological, geochemical, and microfaunal analyses of sediment samples were [...] Read more.
This study describes the prevalent sedimentological and geochemical patterns and investigates the environmental status of the bottom of Gialova lagoon, a highly vulnerable coastal site of the EU’s Natura 2000 network. For this task, lithological, geochemical, and microfaunal analyses of sediment samples were combined with a high-resolution bathymetric survey. Potential pollution was determined using geochemical-based (EF, I-geo, and PLI) and faunal (Foram-AMBI) indices. We find that sedimentation is mainly controlled by the bottom morphology, hydrodynamic variations, and biogenic productivity of the lagoon. The application of the multivariate factor analysis technique revealed four dominant factors explaining the geochemical processes occurring in the lagoon. The first factor, namely “terrigenous aluminosilicates associated with Corg vs. autochthonous biogenic carbonates”, discriminates the deposition of detrital sediments, related to the high adsorption of heavy metals—versus bioclastic sediments. The “sulfides” factor represents an anoxic phase of the lagoon floor, whereas the “Mn-oxyhydroxides” factor indicates increased manganese content with several compounded trace elements. The “phosphate” factor reveals multiple sources of phosphorus in the lagoon. The lagoon bottom shows negligible to minor contamination in heavy metals, except Mo and Pb, which induce moderate pollution levels. The maximum contamination and environmental stress concern two small-sized, shallow basins within the lagoon. Full article
(This article belongs to the Special Issue Impact of Environmental Factors on Aquatic Ecosystem)
Show Figures

Figure 1

15 pages, 6666 KiB  
Article
Estimation of Phytoplankton Primary Productivity in Qinghai Lake Using Ocean Color Satellite Data: Seasonal and Interannual Variations
by Xuan Ban, Yingchao Dang, Peng Shu, Hongfang Qi, Ying Luo, Fei Xiao, Qi Feng and Yadong Zhou
Water 2024, 16(10), 1433; https://doi.org/10.3390/w16101433 - 17 May 2024
Viewed by 810
Abstract
Estimation of primary production in Qinghai Lake is crucial for the aquatic ecosystem management in the northeastern Qinghai–Tibet Plateau. This study used the Vertically Generalized Production Model (VGPM) with ocean color satellite data to estimate phytoplankton primary productivity (PP) in Qinghai Lake during [...] Read more.
Estimation of primary production in Qinghai Lake is crucial for the aquatic ecosystem management in the northeastern Qinghai–Tibet Plateau. This study used the Vertically Generalized Production Model (VGPM) with ocean color satellite data to estimate phytoplankton primary productivity (PP) in Qinghai Lake during the non-freezing period from 2002 to 2023. Field data from 2018 and 2023 were used to calibrate and verify the model. The results showed a seasonal trend in chlorophyll-a and PP, with the lowest values in May and peaks from June to September. Qinghai Lake was identified as oligotrophic, with annual mean chlorophyl-a of 0.24–0.40 µg/L and PP of 40–369 mg C/m2/day. The spatial distribution of PP was low in the center of the lake and high near the shores and estuaries. An interesting periodic increasing trend in PP every 2 to 4 years was observed from 2002 to 2023. This study established a remote sensing method for PP assessment in Qinghai Lake, revealing seasonal and interannual variations and providing a useful example for monitoring large saline mountain lakes. Full article
(This article belongs to the Special Issue Impact of Environmental Factors on Aquatic Ecosystem)
Show Figures

Figure 1

13 pages, 592 KiB  
Article
The Use of Macrophytes for the Removal of Chlorpyrifos from the Aquatic Environment
by Elżbieta Sobiecka, Milena Mroczkowska, Tomasz P. Olejnik and Agnieszka Nowak
Water 2024, 16(7), 1071; https://doi.org/10.3390/w16071071 - 8 Apr 2024
Cited by 1 | Viewed by 1172
Abstract
Phytoremediation is one of the effective technologies for removing pollutants from the aquatic environment. Toxic compounds such as chlorpyrifos can affect the physiological processes of aquatic plants, causing secondary oxidative stress in plant tissues. Macrophytes, like other organisms inhabiting the contaminated ecosystem, have [...] Read more.
Phytoremediation is one of the effective technologies for removing pollutants from the aquatic environment. Toxic compounds such as chlorpyrifos can affect the physiological processes of aquatic plants, causing secondary oxidative stress in plant tissues. Macrophytes, like other organisms inhabiting the contaminated ecosystem, have developed a system of defense mechanisms, thanks to which plants can still exist in their natural ecosystem. Our research is a summary of the previously presented results of the effectiveness of purifying contaminated water with chlorpyrifos in the phytoremediation process and the second type of phytoremediation supported by microorganisms, which intensify the process of removing contaminants from the environment. This research concerned changes in nonenzymatic and enzymatic antioxidants in Canadian seaweed, needle spikerush and water mint caused by chlorpyrifos. The research determines changes in the total concentration of polyphenols, flavonoids and dyes (chlorophyll A, chlorophyll B, anthocyanins and carotenoids) as well as differences in the activity of guaiacol peroxidase and glutathione S-transferase. The analysis of the results showed an increase in the content of polyphenols and flavonoids. The reverse trend was observed in the case of the pigment content. The appearance of chlorpyrifos in the environment caused an increase in the activity of the examined enzymes. The process involving microorganisms that were obtained from places contaminated with pesticide proved to be more effective. This shows the cooperation of species living in an investigated ecosystem. Full article
(This article belongs to the Special Issue Impact of Environmental Factors on Aquatic Ecosystem)
Show Figures

Graphical abstract

27 pages, 34775 KiB  
Article
A Comprehensive Assessment of the Hydrological Evolution and Habitat Quality of the Xiangjiang River Basin
by Fengtian Hong, Wenxian Guo and Hongxiang Wang
Water 2023, 15(20), 3626; https://doi.org/10.3390/w15203626 - 17 Oct 2023
Cited by 1 | Viewed by 1506
Abstract
Human disturbance and climatic factors alter the hydrological state of rivers in many ways and have a degree of negative impact on the quality of watershed habitats; quantifying the impact of both human disturbance and climatic factors on hydrological change can help improve [...] Read more.
Human disturbance and climatic factors alter the hydrological state of rivers in many ways and have a degree of negative impact on the quality of watershed habitats; quantifying the impact of both human disturbance and climatic factors on hydrological change can help improve the quality of watershed habitats. Therefore, in this research, an integrated watershed assessment framework is proposed to analyse the watershed from four perspectives: hydrological situation, environmental flows, drivers, and habitat quality. A meteorological streamflow model based on the Long Short-Term Memory (LSTM) model was employed to analyse the hydrological evolution and quantify the influence of the drivers from the perspective of hydrological and environmental flows. The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model was then used to evaluate the spatial and temporal evolution of habitat quality in the basin. And, finally, the grey correlation theory was used to reveal the response of habitat quality to hydrological changes. Studies have shown that annual flow and precipitation are increasing in the Xiangjiang River (XJR) basin, while its annual potential evapotranspiration is decreasing significantly. After 1991, the hydrological conditions of the XJR were highly variable, with the combined rate of change of the most Ecologically Relevant Hydrological Indicators, ERHIs-IHA and ERHIs-EFCs, reaching 26.21% and 121.23%, respectively. Climate change and human disturbance are the main drivers of change for both (with contributions of 60% and 71%, respectively). Between 1990 and 2020, the habitat quality in the basin declined over time (from 0.770 to 0.757), with areas of high habitat value located mainly in mountainous areas and habitat degradation being concentrated in urban areas in the middle and lower reaches, gradually evolving towards areas of high habitat value in the periphery. There is a strong correlation between watershed habitat quality and the ERHIs. The results of the study can provide a scientific basis for maintaining regional ecological security and rational allocation of water resources. Full article
(This article belongs to the Special Issue Impact of Environmental Factors on Aquatic Ecosystem)
Show Figures

Figure 1

12 pages, 4571 KiB  
Article
What Drives the Morphological Traits of Stress-Tolerant Plant Cynodon dactylon in a Riparian Zone of the Three Gorges Reservoir, China
by Xiaolong Li, Shanze Li, Yawei Xie, Zehui Wei and Zilong Li
Water 2023, 15(18), 3183; https://doi.org/10.3390/w15183183 - 6 Sep 2023
Cited by 4 | Viewed by 1349
Abstract
The cyclical process of water storage and recession in the regular operation of the Three Gorges Reservoir creates a unique habitat stress that alters the structural and functional attributes of vegetation ecology within the riparian zone. The stress-tolerant plant Cynodon dactylon (L.) Pers [...] Read more.
The cyclical process of water storage and recession in the regular operation of the Three Gorges Reservoir creates a unique habitat stress that alters the structural and functional attributes of vegetation ecology within the riparian zone. The stress-tolerant plant Cynodon dactylon (L.) Pers is the dominant plant species in the riparian zone of the Three Gorges Reservoir. In this study, the riparian zone of the Daning River, a tributary located in the center of the Three Gorges Reservoir, was selected as our study area. To identify the drivers of the morphological traits of C. dactylon in the riparian zone of Daning River, we examined plant biomass and plant characteristics across different elevation gradients, with reference to abiotic factors to determine the distribution patterns of plant morphological traits. Results indicated that in the two main soil types of the riparian zone, plant biomass showed a consistent trend along the elevation gradient, with a “middle-height expansion” pattern; biomass increased and then decreased with rising water levels. Plant biomass positively correlated with soil total nitrogen and negatively correlated with soil pH, electrical conductivity, and total phosphorus. C. dactylon adapted to prolonged flooding in the riparian zone by having a significant negative correlation between plant height and erect stem length with soil moisture content to facilitate root respiration. Full article
(This article belongs to the Special Issue Impact of Environmental Factors on Aquatic Ecosystem)
Show Figures

Figure 1

12 pages, 2515 KiB  
Article
Biochar/Clay Composite Particle Immobilized Compound Bacteria: Preparation, Collaborative Degradation Performance and Environmental Tolerance
by Pengfei Sun, Jun Wei, Yaoyao Gao, Zuhao Zhu and Xiao Huang
Water 2023, 15(16), 2959; https://doi.org/10.3390/w15162959 - 16 Aug 2023
Cited by 1 | Viewed by 1839
Abstract
Immobilized microbial materials can effectively remove pollutants from surface water, and a biochar/clay composite particle (BCCP) material is prepared with immobilized Flavobacterium mizutaii sp. and Aquamicrobium sp. to remove ammonia nitrogen (NH4+–N) and petroleum hydrocarbons (PHCs). The results indicated that [...] Read more.
Immobilized microbial materials can effectively remove pollutants from surface water, and a biochar/clay composite particle (BCCP) material is prepared with immobilized Flavobacterium mizutaii sp. and Aquamicrobium sp. to remove ammonia nitrogen (NH4+–N) and petroleum hydrocarbons (PHCs). The results indicated that the optimal ratios of biochar, Na2SiO3 and NaHCO3 were 15%, 3%, and 3%, and the adsorption process was found to be better described with the pseudo-second-order kinetic equation. The individual immobilization of Flavobacterium mizutaii sp. and Aquamicrobium sp. with sodium alginate–polyvinyl alcohol (PVA + SA) achieved 80% and 90% removal efficiencies for NH4+–N and PHCs at the 10th d. The composite immobilization of two efficient bacteria could degrade 82.48% NH4+–N and 74.62% PHCs. In addition, immobilization relieved the effects of temperature and salinity. This study can provide guidance for the application of immobilized microbial composite materials in natural water environments. Full article
(This article belongs to the Special Issue Impact of Environmental Factors on Aquatic Ecosystem)
Show Figures

Figure 1

16 pages, 5990 KiB  
Article
Quantifying the Impact of Changes in Sinuosity on River Ecosystems
by Zicheng Yu, Yicheng Fu, Ye Zhang, Zhe Liu and Yixuan Liu
Water 2023, 15(15), 2751; https://doi.org/10.3390/w15152751 - 29 Jul 2023
Cited by 2 | Viewed by 2212
Abstract
To quantitatively study the hydrodynamic changes in different river morphologies and clarify the impact of morphological changes on river ecosystems, this study examined a section of the Nansha River near Laoniuwan in the Haidian District, Beijing, and characterized different river morphologies by river [...] Read more.
To quantitatively study the hydrodynamic changes in different river morphologies and clarify the impact of morphological changes on river ecosystems, this study examined a section of the Nansha River near Laoniuwan in the Haidian District, Beijing, and characterized different river morphologies by river sinuosity. The River 2D model was used for simulation and analysis, and the depth and velocity diversity indices were introduced to quantify the distribution of depth and velocity under different sinuosities. Cyprinus carpio was selected as the target fish in this study, and its suitability curve was determined using literature and field surveys. Combined with the simulation results, a weighted usable area curve was established to identify its inflection point and maximum value and determine the ecological flow in the river under different sinuosities, that is, to clarify the relationship between sinuosity and ecological flow. The results showed that the lower the sinuosity, the worse the depth and velocity diversity, but a greater sinuosity did not lead to better depth and velocity diversity. The depth and velocity diversity of a sinuosity of 1.5 were better than those of 1.89 in general, except for low flow conditions (Q = 5 m3/s). For rivers with water use restricted by nature and society and where ecological needs exist, ecological engineering that appropriately changes the planform of rivers can be considered to increase the diversity of river/channel geometry and provide a basis for the ecological restoration of rivers. Full article
(This article belongs to the Special Issue Impact of Environmental Factors on Aquatic Ecosystem)
Show Figures

Figure 1

Other

Jump to: Research

13 pages, 3631 KiB  
Brief Report
Study on Ferritin Gene Expression to Evaluate the Health of White Leg Shrimp (Litopenaeus vannamei) Postlarvae Due to Changes in Water Temperature, Salinity, and pH
by Chul-Won Kim, Ju-Wook Lee, Seung-Won Kang and Han-Seung Kang
Water 2024, 16(11), 1477; https://doi.org/10.3390/w16111477 - 22 May 2024
Cited by 1 | Viewed by 775
Abstract
The growth and survival of marine organisms are influenced by environmental factors such as water temperature, salinity, and pH. Unsuitable environmental conditions may negatively impact marine organisms. The white leg shrimp (Litopenaeus vannamei), a euryhaline organism highly adapted to salinity, is [...] Read more.
The growth and survival of marine organisms are influenced by environmental factors such as water temperature, salinity, and pH. Unsuitable environmental conditions may negatively impact marine organisms. The white leg shrimp (Litopenaeus vannamei), a euryhaline organism highly adapted to salinity, is a valuable species for aquaculture. This study examined the effects of water temperature, salinity, and pH on the health of postlarvae L. vannamei. Stress levels within the organisms were analyzed through the expression of a biomarker gene. Ferritin was selected as the biomarker gene for analysis. The experimental animal samples used were the hepatopancreas of L. vannamei postlarvae. The analysis was performed by qRT-PCR. The results showed that the adaptation of L. vannamei postlarvae to temperature was dependent on salinity. Under low-salinity conditions (5 psu), ferritin expression increased at 25 °C and 30 °C after 48 h of exposure; however, it decreased after 72 h of exposure. Under normal salinity conditions (27 psu), ferritin expression increased from 24 h to 72 h at water temperatures of 25 °C and 30 °C. These results indicate that low-salinity conditions may enable L. vannamei postlarvae to rapidly adapt to high temperatures. In conclusion, L. vannamei postlarvae adapt more efficiently to high temperatures under low-salinity conditions than that under high-salinity conditions. The results of this study could beneficially impact L. vannamei farming. Full article
(This article belongs to the Special Issue Impact of Environmental Factors on Aquatic Ecosystem)
Show Figures

Figure 1

Back to TopTop