Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = FOXC2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1826 KB  
Article
Epigenetic Signatures of Dental Stem Cells: Insights into DNA Methylation and Noncoding RNAs
by Rosanna Guarnieri, Agnese Giovannetti, Giulia Marigliani, Michele Pieroni, Tommaso Mazza, Ersilia Barbato and Viviana Caputo
Appl. Sci. 2025, 15(15), 8749; https://doi.org/10.3390/app15158749 - 7 Aug 2025
Viewed by 417
Abstract
Tooth development (odontogenesis) is regulated by interactions between epithelial and mesenchymal tissues through signaling pathways such as Bone Morphogenetic Protein (BMP), Wingless-related integration site (Wnt), Sonic Hedgehog (SHH), and Fibroblast Growth Factor (FGF). Mesenchymal stem cells (MSCs) derived from dental tissues—including dental pulp [...] Read more.
Tooth development (odontogenesis) is regulated by interactions between epithelial and mesenchymal tissues through signaling pathways such as Bone Morphogenetic Protein (BMP), Wingless-related integration site (Wnt), Sonic Hedgehog (SHH), and Fibroblast Growth Factor (FGF). Mesenchymal stem cells (MSCs) derived from dental tissues—including dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and dental follicle progenitor cells (DFPCs)—show promise for regenerative dentistry due to their multilineage differentiation potential. Epigenetic regulation, particularly DNA methylation, is hypothesized to underpin their distinct regenerative capacities. This study reanalyzed publicly available DNA methylation data generated with Illumina Infinium HumanMethylation450 BeadChip arrays (450K arrays) from DPSCs, PDLSCs, and DFPCs. High-confidence CpG sites were selected based on detection p-values, probe variance, and genomic annotation. Principal Component Analysis (PCA) and hierarchical clustering identified distinct methylation profiles. Functional enrichment analyses highlighted biological processes and pathways associated with specific methylation clusters. Noncoding RNA analysis was integrated to construct regulatory networks linking DNA methylation patterns with key developmental genes. Distinct epigenetic signatures were identified for DPSCs, PDLSCs, and DFPCs, characterized by differential methylation across specific genomic contexts. Functional enrichment revealed pathways involved in odontogenesis, osteogenesis, and neurodevelopment. Network analysis identified central regulatory nodes—including genes, such as PAX6, FOXC2, NR2F2, SALL1, BMP7, and JAG1—highlighting their roles in tooth development. Several noncoding RNAs were also identified, sharing promoter methylation patterns with developmental genes and being implicated in regulatory networks associated with stem cell differentiation and tissue-specific function. Altogether, DNA methylation profiling revealed that distinct epigenetic landscapes underlie the developmental identity and differentiation potential of dental-derived mesenchymal stem cells. This integrative analysis highlights the relevance of noncoding RNAs and regulatory networks, suggesting novel biomarkers and potential therapeutic targets in regenerative dentistry and orthodontics. Full article
Show Figures

Figure 1

16 pages, 1730 KB  
Article
Novel Genetic Variants and Clinical Profiles in Peters Anomaly Spectrum Disorders
by Flora Delas, Samuel Koller, Jordi Maggi, Alessandro Maspoli, Lisa Kurmann, Elena Lang, Wolfgang Berger and Christina Gerth-Kahlert
Int. J. Mol. Sci. 2025, 26(13), 6454; https://doi.org/10.3390/ijms26136454 - 4 Jul 2025
Viewed by 443
Abstract
Peters anomaly (PA) is a rare congenital disorder within the anterior segment dysgenesis (ASD) spectrum, characterized by corneal opacity, iridocorneal adhesions, and potential systemic involvement. The genetic basis of PA and related syndromes are complex and incompletely understood. This study investigates novel genetic [...] Read more.
Peters anomaly (PA) is a rare congenital disorder within the anterior segment dysgenesis (ASD) spectrum, characterized by corneal opacity, iridocorneal adhesions, and potential systemic involvement. The genetic basis of PA and related syndromes are complex and incompletely understood. This study investigates novel genetic variants and their clinical impact in two unrelated individuals diagnosed with PA spectrum disorder. Whole-exome sequencing (WES), long-range PCR, and breakpoint analysis were applied to identify pathogenic variants. In the first patient, a heterozygous ~1.6 Mb deletion was detected, spanning the genes PEX2 and ZFHX4 (GRCh37 chr8:g.76760782_78342600del). The second patient carried a heterozygous FOXC1 variant (NM_001453.3:c.310A>G), classified as likely pathogenic. Both variants were confirmed by Sanger sequencing and considered de novo, as they were not present in the biological parents. Clinical evaluations revealed phenotypic variability, with the first patient displaying both ocular and systemic anomalies as in a Peters plus-like syndrome phenotype, while the second patient had isolated ocular manifestations as in a PA type 1 phenotype. These findings expand the genetic landscape of PA, underscoring the importance of comprehensive genomic analysis in subclassifying ASD disorders. Further studies are needed to elucidate the functional consequences of these variants and improve diagnostic and therapeutic strategies. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Eye Diseases: 2nd Edition)
Show Figures

Figure 1

23 pages, 6722 KB  
Article
Identification of Glycolysis-Related Genes in MAFLD and Their Immune Infiltration Implications: A Multi-Omics Analysis with Experimental Validation
by Jiawei Chen, Siqi Yang, Diwen Shou, Bo Liu, Shaohan Li, Tongtong Luo, Huiting Chen, Chen Huang and Yongjian Zhou
Biomedicines 2025, 13(7), 1636; https://doi.org/10.3390/biomedicines13071636 - 3 Jul 2025
Viewed by 871
Abstract
Background: Metabolic-associated fatty liver disease (MAFLD) is characterized by metabolic syndrome and immune infiltration, with glycolysis pathway activation emerging as a pivotal contributor. This study aims to identify glycolysis-associated key genes driving MAFLD progression and elucidate their crosstalk with immune infiltration through [...] Read more.
Background: Metabolic-associated fatty liver disease (MAFLD) is characterized by metabolic syndrome and immune infiltration, with glycolysis pathway activation emerging as a pivotal contributor. This study aims to identify glycolysis-associated key genes driving MAFLD progression and elucidate their crosstalk with immune infiltration through bioinformatics analysis and experimental validation. Methods: Integrative multi-omics analysis was performed on bulk RNA-seq, single-cell RNA-seq, and spatial transcriptomic datasets from MAFLD patients and controls. Differential expression analysis and WGCNA were employed to pinpoint glycolysis-correlated key genes. The relationship with immune infiltration was analyzed using single-cell and spatial transcriptomics technologies. Machine learning was applied to identify feature genes for matching shared TFs and miRNAs. External cohort validation and in vivo experiments (methionine choline-deficient diet murine models) were conducted for biological confirmation. Results: Five glycolysis-associated key genes (ALDH3A1, CDK1, DEPDC1, HKDC1, SOX9) were identified and validated as MAFLD discriminators. Single-cell analysis revealed that the hepatocyte–fibroblast–macrophage axis constitutes the predominant glycolysis-active niche. Spatial transcriptomics showed that CDK1, SOX9, and HKDC1 were colocalized with the monocyte-derived macrophage marker CCR2. Using four machine learning models, four feature genes were identified, along with their common transcription factors YY1 and FOXC1, and the miRNA “hsa-miR-590-3p”. External datasets and experimental validation confirmed that the key genes were upregulated in MAFLD samples. Conclusions: In this study, we identified five glycolysis-related key genes in MAFLD and explored their relationship with immune infiltration, providing new insights for diagnosis and metabolism-directed immunomodulation strategies in MAFLD. Full article
Show Figures

Figure 1

19 pages, 7248 KB  
Article
Construction of Coexpression Networks Affecting Litter Size in Goats Based on Transcriptome Analysis
by Yifan Ren, Junmin He, Guifen Liu, Chen Wei, Xue Li, Jingyi Mao, Guoping Zhang, Wenhao Zhang, Li Long, Ming Wang, Kechuan Tian and Xixia Huang
Animals 2025, 15(11), 1505; https://doi.org/10.3390/ani15111505 - 22 May 2025
Viewed by 592
Abstract
Optimal litter size on goat farms is an important trait for production and economic efficiency. The ovary and uterus, key components of the reproductive system, play essential roles in reproductive performance. In recent years, numerous genes linked to goat reproductive performance have been [...] Read more.
Optimal litter size on goat farms is an important trait for production and economic efficiency. The ovary and uterus, key components of the reproductive system, play essential roles in reproductive performance. In recent years, numerous genes linked to goat reproductive performance have been identified. However, reliable marker genes that are specifically associated with litter size require further exploration. In this study, eight Jining Grey goats were divided into high-yield (n = 4) and low-yield (n = 4) groups on the basis of their kidding records to identify key regulatory genes associated with litter size. Ovarian and uterine tissues were collected during oestrus for RNA sequencing (RNA-seq). After two outlier uterine tissue samples were excluded, the remaining 14 samples were subjected to WGCNA and differential expression gene (DEG) analysis. A total of 1224 DEGs were identified (|log2(fold change) ≥ 1|, p ≤ 0.05), including 912 in ovarian tissues (monozygotic vs. polyzygotic, MO vs. PO) and 312 in uterine tissues (MU vs. PU). Through WGCNA, we identified 15 coexpression modules, among which four key modules were significantly correlated with litter size. Our analysis focused on the magenta and green modules, as they contained 11 and 3 candidate genes overlapping with the DEGs, respectively. Notably, three genes—FOXC1, FOSB, and FGL2—were found to play important roles in both ovarian and uterine tissues. These genes mainly participate in regulatory processes such as RNA polymerase II transcription factor activity, calcium ion binding, and extracellular space organization, highlighting their potential as key candidates for future research. Overall, we identified several gene modules associated with litter size in goats, providing potential molecular markers for investigating litter size traits in Jining Grey goats. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

14 pages, 298 KB  
Article
Genetic Analysis of CYP1B1 and Other Anterior Segment Dysgenesis-Associated Genes in Latvian Cohort of Primary Congenital Glaucoma
by Eva Elksne, Baiba Lace, Janis Stavusis, Anastasija Tvoronovica, Pawel Zayakin, Eriks Elksnis, Arturs Ozolins, Ieva Micule, Sandra Valeina and Inna Inashkina
Biomedicines 2025, 13(5), 1222; https://doi.org/10.3390/biomedicines13051222 - 18 May 2025
Viewed by 782
Abstract
Background: Primary congenital glaucoma (PCG) is a rare disease with an incidence of 1 in 12,000 to 18,000 in Europeans. The scarcity of the disease and limited access to genetic testing have hindered research, particularly within the Latvian population. Objectives: This [...] Read more.
Background: Primary congenital glaucoma (PCG) is a rare disease with an incidence of 1 in 12,000 to 18,000 in Europeans. The scarcity of the disease and limited access to genetic testing have hindered research, particularly within the Latvian population. Objectives: This study aims to present the preliminary results of a molecular genetic investigation into PCG in a Latvian cohort and to compare the prevalence of gene CYP1B1 variants with other European studies as well as to the general population in Latvia. Methods: Twenty probands with clinically diagnosed PCG and 36 family members enrolled in the study. Genetic testing was conducted using genomic DNA from peripheral blood using next generation sequencing (NGS) of seven selected genes: CYP1B1, FOXC1, FOXE3, PXDN, PITX2, PITX3, PAX6, and CPAMD8. Four probands had whole-genome sequencing (WGS). Results: All participants were of European ancestry, with no family history of PCG. Most probands were diagnosed in their first year of life, with a female to male ratio of 1:1.2 and with 80.0% of cases being unilateral. No CYP1B1 pathogenic variants were identified in the screened subjects. However, a heterozygous missense variant c.4357C>A (p.Pro4357Thr) in the PXDN gene was found in one proband and one of her parents that was classified as a variant of uncertain significance. Conclusions: This study represents the first genetic characterization of PCG in the Latvian population. Using NGS, we identified no pathogenic variants in the CYP1B1 gene among affected individuals. Preliminary evidence from this cohort does not support CYP1B1 variants as a predominant cause of PCG, though larger studies are needed to confirm this observation. Comprehensive genetic screening using whole-exome or whole-genome sequencing will be essential to identify the underlying genetic etiology of PCG in Latvia. Full article
(This article belongs to the Special Issue Ophthalmic Genetics: Unraveling the Genomics of Eye Disorders)
19 pages, 2153 KB  
Review
Molecular Mechanisms Regulating Epithelial Mesenchymal Transition (EMT) to Promote Cancer Progression
by Saima Ghafoor, Elizabeth Garcia, Daniel J. Jay and Sujata Persad
Int. J. Mol. Sci. 2025, 26(9), 4364; https://doi.org/10.3390/ijms26094364 - 3 May 2025
Cited by 3 | Viewed by 2659
Abstract
The process of epithelial–mesenchymal transition (EMT) is crucial in various physiological/pathological circumstances such as development, wound healing, stem cell behavior, and cancer progression. It involves the conversion of epithelial cells into a mesenchymal phenotype, which causes the cells to become highly motile. This [...] Read more.
The process of epithelial–mesenchymal transition (EMT) is crucial in various physiological/pathological circumstances such as development, wound healing, stem cell behavior, and cancer progression. It involves the conversion of epithelial cells into a mesenchymal phenotype, which causes the cells to become highly motile. This reprogramming is initiated and controlled by various signaling pathways and governed by several key transcription factors, including Snail 1, Snail 2 (Slug), TWIST 1, TWIST2, ZEB1, ZEB2, PRRX1, GOOSECOID, E47, FOXC2, SOX4, SOX9, HAND1, and HAND2. The intracellular signaling pathways are activated/inactivated by signals received from the extracellular environment and the transcription factors are carefully regulated at the transcriptional, translational, and post-translational levels to maintain tight regulatory control of EMT. One of the most important pathways involved in this process is the transforming growth factor-β (TGFβ) family signaling pathway. This review will discuss the role of EMT in promoting epithelial cancer progression and the convergence/interplay of multiple signaling pathways and transcription factors that regulate this phenomenon. Full article
(This article belongs to the Special Issue Cellular Plasticity and EMT in Cancer and Fibrotic Diseases)
Show Figures

Figure 1

16 pages, 3772 KB  
Article
Effect of MiRNA 204-5P Mimics and Lipopolysaccharide-Induced Inflammation on Transcription Factor Levels, Cell Maintenance, and Retinoic Acid Signaling in Primary Limbal Epithelial Cells
by Maryam Amini, Tanja Stachon, Shao-Lun Hsu, Zhen Li, Ning Chai, Fabian N. Fries, Berthold Seitz, Swarnali Kundu, Shweta Suiwal and Nóra Szentmáry
Int. J. Mol. Sci. 2025, 26(8), 3809; https://doi.org/10.3390/ijms26083809 - 17 Apr 2025
Viewed by 645
Abstract
MicroRNA-204-5p (miR-204-5p) is a critical regulator of differentiation, structural maintenance, and inflammation in limbal epithelial cells (LECs). This study examined the role of miR-204-5p in modulating the gene expression related to transcription factors, cell structure, extracellular matrix remodeling, and retinoic acid signaling under [...] Read more.
MicroRNA-204-5p (miR-204-5p) is a critical regulator of differentiation, structural maintenance, and inflammation in limbal epithelial cells (LECs). This study examined the role of miR-204-5p in modulating the gene expression related to transcription factors, cell structure, extracellular matrix remodeling, and retinoic acid signaling under normal and lipopolysaccharide (LPS)-induced inflammatory conditions. Using qPCR, we analyzed the mRNA levels of FOSL2, FOXC1, Meis2, PPARγ, ABCG2, PTGES2, IL-1β, IL-6, KRT3, KRT12, MMP2, MMP9, RARA, RARB, RXRA, RXRB, CRABP2, RBP1, RDH10, ADH7, ADH1A1, FABP5, CYP1B1, and CYP26A1, while changes in protein levels were assessed via Western blot or ELISA. Our data revealed that the overexpression of miR-204-5p reduced the mRNA levels of FOXC1, KRT12, and RDH10 under normal and inflammatory conditions (p ≤ 0.039). Additionally, it decreased FOSL2 and RXRA mRNA under normal conditions (p = 0.006, p = 0.011) and KRT3 and FABP5 mRNA under inflammatory conditions (p = 0.010, p = 0.001). The IL-6 mRNA expression was significantly increased following the LPS treatment in cells overexpressing miR-204-5p (p = 0.029). A protein analysis revealed significant reductions in FOXC1 and KRT3 in the miR-204-5p-transfected cells during LPS-induced inflammation (p = 0.020, p = 0.030). These findings suggest that miR-204-5p modulates genes critical to the differentiation, migration, and inflammatory response of LECs. The modulation of FOXC1 and KRT3 by miR-204-5p highlights these proteins as novel targets under inflammatory conditions. Full article
(This article belongs to the Special Issue Recent Advances in Molecular and Cellular Research in Ophthalmology)
Show Figures

Figure 1

16 pages, 4707 KB  
Article
β-Catenin Drives the FOXC2-Mediated Epithelial–Mesenchymal Transition and Acquisition of Stem Cell Properties
by Maria Castaneda, Petra den Hollander, Steve Werden, Esmeralda Ramirez-Peña, Suhas V. Vasaikar, Nick A. Kuburich, Claire Gould, Rama Soundararajan and Sendurai A. Mani
Cancers 2025, 17(7), 1114; https://doi.org/10.3390/cancers17071114 - 26 Mar 2025
Cited by 2 | Viewed by 758
Abstract
Background: Aggressive forms of breast cancer, such as triple-negative breast cancer (TNBC), are associated with an increase in cancer cells that exhibit stem cell properties. The activation of the epithelial–mesenchymal transition (EMT) program, mediated by the transcription factor FOXC2, generates these stem-like [...] Read more.
Background: Aggressive forms of breast cancer, such as triple-negative breast cancer (TNBC), are associated with an increase in cancer cells that exhibit stem cell properties. The activation of the epithelial–mesenchymal transition (EMT) program, mediated by the transcription factor FOXC2, generates these stem-like cells. FOXC2 is linked to poor prognoses across various cancer types and is notably upregulated in TNBC, where it establishes and sustains these stem-like cells within the tumor population. Methods: Here, we decode the pathways regulating FOXC2 activation using EMT-enriched cell line models. Stemness was assessed using mammosphere assays and mesenchymal markers by western blot. Expression correlations with clinical data was examined using the EMTome. Results: We demonstrate that β-catenin serves as a critical mediator of mesenchymal and stemness characteristics through FOXC2 upregulation. By disrupting β-catenin, we find that FOXC2 expression, mesenchymal properties, and stemness are reduced; however, the introduction of exogenous FOXC2 expression in β-catenin deficient cells is enough to restore the mesenchymal and stemness phenotype. These findings support the idea that FOXC2 acts as the downstream regulator of β-catenin and influences both mesenchymal and stemness properties. Moreover, there is a positive correlation between the expression of β-catenin and FOXC2 in various cancer subtypes observed in clinical patient samples. Conclusions: Our study clarifies the role of the β-catenin/FOXC2 signaling axis in maintaining stemness properties, suggesting potential targets for TNBC and other cancers driven by EMT-related mesenchymal and stemness characteristics. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

20 pages, 6079 KB  
Article
GCBRGCN: Integration of ceRNA and RGCN to Identify Gastric Cancer Biomarkers
by Peng Zhi, Yue Liu, Chenghui Zhao and Kunlun He
Bioengineering 2025, 12(3), 255; https://doi.org/10.3390/bioengineering12030255 - 3 Mar 2025
Cited by 1 | Viewed by 1170
Abstract
Gastric cancer (GC) is a prevalent malignancy, and the discovery of biomarkers plays a crucial role in the diagnosis and prognosis of GC. However, current strategies for identifying GC biomarkers often focus on a single ribonucleic acid (RNA) class, neglecting the potential for [...] Read more.
Gastric cancer (GC) is a prevalent malignancy, and the discovery of biomarkers plays a crucial role in the diagnosis and prognosis of GC. However, current strategies for identifying GC biomarkers often focus on a single ribonucleic acid (RNA) class, neglecting the potential for multiple RNA types to collectively serve as biomarkers with improved predictive capabilities. To bridge this gap, our study introduces the GC biomarker relation graph convolution neural network (GCBRGCN) model which integrates the competing endogenous RNA (ceRNA) network with GC clinical informations and whole transcriptomics data, leveraging the relational graph convolutional network (RGCN) to predict GC biomarkers. It demonstrates exceptional performance, surpassing traditional machine learning and graph neural network algorithms with an area under the curve (AUC) of 0.8172 in the task of predicting GC biomarkers. Our study identified three unreported potential novel GC biomarkers: CCNG1, CYP1B1, and CITED2. Moreover, FOXC1 and LINC00324 were characterized as biomarkers with significance in both prognosis and diagnosis. Our work offers a novel framework for GC biomarker identification, highlighting the critical role of multiple types RNA interaction in oncological research. Full article
(This article belongs to the Special Issue Machine Learning Technology in Predictive Healthcare)
Show Figures

Figure 1

13 pages, 3139 KB  
Article
Melatonin-Mediated Circadian Rhythm Signaling Exhibits Bidirectional Regulatory Effects on the State of Hair Follicle Stem Cells
by Yu Zhang, Xuefei Zhao, Shuqi Li, Yanchun Xu, Suying Bai and Wei Zhang
Biomolecules 2025, 15(2), 226; https://doi.org/10.3390/biom15020226 - 4 Feb 2025
Cited by 3 | Viewed by 1570
Abstract
The development and regulation of hair are widely influenced by biological rhythm signals. Melatonin plays a crucial role as a messenger in transmitting biological rhythm signals, and its impact on hair development has been well documented. During the process of hair follicle reconstruction, [...] Read more.
The development and regulation of hair are widely influenced by biological rhythm signals. Melatonin plays a crucial role as a messenger in transmitting biological rhythm signals, and its impact on hair development has been well documented. During the process of hair follicle reconstruction, hair follicle stem cells (HFSCs) are the most important cell type, but the regulatory effect of melatonin on the state of HFSCs is still not fully understood. Therefore, it is necessary to conduct a more comprehensive characterization of the effects of melatonin on the state of hair follicle stem cells. The research results indicate that HFSCs express retinoic acid receptor-related orphan receptor alpha (Rorα), and melatonin inhibits the expression level of RORA. Experimental results from CUT&Tag, CUT&RUN, and dual luciferase reporter assays demonstrate that Foxc1 is a downstream target gene of RORA, with RORA regulating Foxc1 expression by binding to the promoter region of Foxc1. The CCK-8 assay results show that low doses of melatonin upregulate the survival rate of hair follicle stem cells, while high doses have the opposite effect. The knockdown of Foxc1 reverses the inhibitory effect of high-dose melatonin on the survival rate of hair follicle stem cells. Based on these findings, we believe that melatonin-mediated circadian signals exert a bidirectional regulatory effect on the state of HFSCs. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

14 pages, 1148 KB  
Article
RNA Sequencing Revealed a Weak Response of Gingival Fibroblasts Exposed to Hyaluronic Acid
by Layla Panahipour, Atefe Imani, Natália dos Santos Sanches, Hannes Kühtreiber, Michael Mildner and Reinhard Gruber
Bioengineering 2024, 11(12), 1307; https://doi.org/10.3390/bioengineering11121307 - 23 Dec 2024
Cited by 1 | Viewed by 1239
Abstract
Hyaluronic acid was proposed to support soft tissue recession surgery and guided tissue regeneration. The molecular mechanisms through which hyaluronic acid modulates the response of connective tissue cells remain elusive. To elucidate the impact of hyaluronic acid on the connective tissue cells, we [...] Read more.
Hyaluronic acid was proposed to support soft tissue recession surgery and guided tissue regeneration. The molecular mechanisms through which hyaluronic acid modulates the response of connective tissue cells remain elusive. To elucidate the impact of hyaluronic acid on the connective tissue cells, we used bulk RNA sequencing to determine the changes in the genetic signature of gingival fibroblasts exposed to 1.6% cross-linked hyaluronic acid and 0.2% natural hyaluronic acid. Transcriptome-wide changes were modest. Even when implementing a minimum of 1.5 log2 fold-change and a significance threshold of 1.0 −log10, only a dozenth of genes were differentially expressed. Upregulated genes were PLK3, SLC16A6, IL6, HBEGF, DGKE, DUSP4, PTGS2, FOXC2, ATAD2B, NFATC2, and downregulated genes were MMP24 and PLXNA2. RT-PCR analysis supported the impact of hyaluronic acid on increasing the expression of a selected gene panel. The findings from bulk RNA sequencing suggest that gingival fibroblasts experience weak changes in their transcriptome when exposed to hyaluronic acid. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

13 pages, 5037 KB  
Article
LINC01614 Promotes Oral Squamous Cell Carcinoma by Regulating FOXC1
by Hongze Che, Xun Zhang, Luo Cao, Wenjun Huang and Qing Lu
Genes 2024, 15(11), 1461; https://doi.org/10.3390/genes15111461 - 13 Nov 2024
Cited by 3 | Viewed by 1174
Abstract
Background: Long non-coding RNAs (lncRNAs) are pivotal mediators during the development of carcinomas; however, it remains to be investigated whether lncRNAs are implicated in oral squamous cell carcinoma (OSCC). Methods: In this study, quantitative real-time PCR was conducted for detecting the expression of [...] Read more.
Background: Long non-coding RNAs (lncRNAs) are pivotal mediators during the development of carcinomas; however, it remains to be investigated whether lncRNAs are implicated in oral squamous cell carcinoma (OSCC). Methods: In this study, quantitative real-time PCR was conducted for detecting the expression of LINC01614 in OSCC cell lines. The biological functions of LINC01614 were assessed by loss- and gain-of-function experiments conducted both in vivo and in vitro. Cellular proliferation, migration, and invasion were investigated herein, and dual luciferase reporter assays were additionally performed to explore the relationships among LINC01614, miR-138-5p, and Forkhead box C1 (FOXC1). Results: The research presented herein revealed that OSCC cells express high levels of LINC01614. Functional experiments employing cellular and animal models demonstrated that LINC01614 knockdown repressed the malignant phenotypes of OSCC cells, including their growth, invasiveness, and migration. Further investigation revealed that LINC01614 absorbs miR-138-5p miRNA by functioning as a competing endogenous RNA to downregulate the abundance of FOXC1. Conclusions: The findings revealed that LINC01614 contributes to the progression of OSCC by targeting the FOXC1 signaling pathway. The study provides insights into a novel mechanistic process to regulate the development of OSCC, and established a possible target for the therapeutic management of OSCC. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

16 pages, 4048 KB  
Article
Integrative Analysis of ATAC-Seq and RNA-Seq through Machine Learning Identifies 10 Signature Genes for Breast Cancer Intrinsic Subtypes
by Jeong-Woon Park and Je-Keun Rhee
Biology 2024, 13(10), 799; https://doi.org/10.3390/biology13100799 - 7 Oct 2024
Cited by 1 | Viewed by 4611
Abstract
Breast cancer is a heterogeneous disease composed of various biologically distinct subtypes, each characterized by unique molecular features. Its formation and progression involve a complex, multistep process that includes the accumulation of numerous genetic and epigenetic alterations. Although integrating RNA-seq transcriptome data with [...] Read more.
Breast cancer is a heterogeneous disease composed of various biologically distinct subtypes, each characterized by unique molecular features. Its formation and progression involve a complex, multistep process that includes the accumulation of numerous genetic and epigenetic alterations. Although integrating RNA-seq transcriptome data with ATAC-seq epigenetic information provides a more comprehensive understanding of gene regulation and its impact across different conditions, no classification model has yet been developed for breast cancer intrinsic subtypes based on such integrative analyses. In this study, we employed machine learning algorithms to predict intrinsic subtypes through the integrative analysis of ATAC-seq and RNA-seq data. We identified 10 signature genes (CDH3, ERBB2, TYMS, GREB1, OSR1, MYBL2, FAM83D, ESR1, FOXC1, and NAT1) using recursive feature elimination with cross-validation (RFECV) and a support vector machine (SVM) based on SHAP (SHapley Additive exPlanations) feature importance. Furthermore, we found that these genes were primarily associated with immune responses, hormone signaling, cancer progression, and cellular proliferation. Full article
(This article belongs to the Special Issue Advances in Biological Breast Cancer Research)
Show Figures

Figure 1

8 pages, 2857 KB  
Case Report
Diagnostic Challenges of Axenfeld-Rieger Syndrome and a Novel FOXC1 Gene Mutation in a Polish Family
by Bogumił Wowra, Marzena Wysocka-Kosmulska, Karolina Stanienda-Sokół, Olga Łach-Wojnarowicz, Dariusz Dobrowolski and Edward Wylęgała
J. Clin. Med. 2024, 13(19), 5761; https://doi.org/10.3390/jcm13195761 - 27 Sep 2024
Viewed by 1781
Abstract
(1) Axenfeld-Rieger syndrome (ARS) is a rare autosomal dominant disorder, the symptoms of which include both ocular and systemic abnormalities. In the studied subjects, the cornea was significantly opacified with peripheral scarring neovascularization, which is not specific to this syndrome. A suspicion of [...] Read more.
(1) Axenfeld-Rieger syndrome (ARS) is a rare autosomal dominant disorder, the symptoms of which include both ocular and systemic abnormalities. In the studied subjects, the cornea was significantly opacified with peripheral scarring neovascularization, which is not specific to this syndrome. A suspicion of incorrect diagnosis was raised despite an initial diagnosis of a bilateral Chandler syndrome. (2) In order to provide the proper diagnosis, a DNA sequencing genetic test was conducted with three sisters carrying the presence of a genome imbalance in the FOXC1 gene. The aim of this study is to report a case of a Polish family with a novel gene mutation and its relation with ARS. (3) Our findings implicate the novel deletion of the FOXC1 gene in the pathogenesis of ARS in the affected family. The phenotypic variability observed, including differences in corneal and systemic anomalies, underscores the importance of genetic testing and suggests the influence of non-genetic factors on ARS manifestation. Full article
(This article belongs to the Special Issue Corneal Diseases: Clinical Diagnosis and Management)
Show Figures

Figure 1

14 pages, 2695 KB  
Article
Potential Involvements of Cilia-Centrosomal Genes in Primary Congenital Glaucoma
by Goutham Pyatla, Meha Kabra, Anil K. Mandal, Wei Zhang, Ashish Mishra, Samir Bera, Sonika Rathi, Satish Patnaik, Alice A. Anthony, Ritu Dixit, Seema Banerjee, Konegari Shekhar, Srinivas Marmamula, Inderjeet Kaur, Rohit C. Khanna and Subhabrata Chakrabarti
Int. J. Mol. Sci. 2024, 25(18), 10028; https://doi.org/10.3390/ijms251810028 - 18 Sep 2024
Viewed by 2190
Abstract
Primary congenital glaucoma (PCG) occurs in children due to developmental abnormalities in the trabecular meshwork and anterior chamber angle. Previous studies have implicated rare variants in CYP1B1, LTBP2, and TEK and their interactions with MYOC, FOXC1, and PRSS56 in [...] Read more.
Primary congenital glaucoma (PCG) occurs in children due to developmental abnormalities in the trabecular meshwork and anterior chamber angle. Previous studies have implicated rare variants in CYP1B1, LTBP2, and TEK and their interactions with MYOC, FOXC1, and PRSS56 in the genetic complexity and clinical heterogeneity of PCG. Given that some of the gene-encoded proteins are localized in the centrosomes (MYOC) and perform ciliary functions (TEK), we explored the involvement of a core centrosomal protein, CEP164, which is responsible for ocular development and regulation of intraocular pressure. Deep sequencing of CEP164 in a PCG cohort devoid of homozygous mutations in candidate genes (n = 298) and controls (n = 1757) revealed CEP164 rare pathogenic variants in 16 cases (5.36%). Co-occurrences of heterozygous alleles of CEP164 with other genes were seen in four cases (1.34%), and a physical interaction was noted for CEP164 and CYP1B1 in HEK293 cells. Cases of co-harboring alleles of the CEP164 and other genes had a poor prognosis compared with those with a single copy of the CEP164 allele. We also screened INPP5E, which synergistically interacts with CEP164, and observed a lower frequency of pathogenic variants (0.67%). Our data suggest the potential involvements of CEP164 and INPP5E and the yet unexplored cilia-centrosomal functions in PCG pathogenesis. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Retina Degeneration)
Show Figures

Figure 1

Back to TopTop