Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,153)

Search Parameters:
Keywords = GS-441524

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1044 KiB  
Article
Longitudinal Analysis of Placental IRS1 DNA Methylation and Childhood Obesity
by Ariadna Gómez-Vilarrubla, Maria Niubó-Pallàs, Berta Mas-Parés, Alexandra Bonmatí-Santané, Jose-Maria Martínez-Calcerrada, Beatriz López, Aaron Peñas-Cruz, Francis de Zegher, Lourdes Ibáñez, Abel López-Bermejo and Judit Bassols
Int. J. Mol. Sci. 2025, 26(7), 3141; https://doi.org/10.3390/ijms26073141 - 28 Mar 2025
Viewed by 46
Abstract
Accumulating evidence suggests that the predisposition to metabolic diseases is established in utero through epigenomic modifications. However, it remains unclear whether childhood obesity results from preexisting epigenomic alterations or whether obesity itself induces changes in the epigenome. This study aimed to identify DNA [...] Read more.
Accumulating evidence suggests that the predisposition to metabolic diseases is established in utero through epigenomic modifications. However, it remains unclear whether childhood obesity results from preexisting epigenomic alterations or whether obesity itself induces changes in the epigenome. This study aimed to identify DNA methylation marks in the placenta associated with obesity-related outcomes in children at age 6 and to assess these marks in blood samples at age 6 and whether they correlate with obesity-related outcomes at that time. Using an epigenome-wide DNA methylation microarray on 24 placental samples, we identified differentially methylated CpGs (DMCs) associated with offspring BMI-SDS at 6 years. Individual DMCs were validated in 147 additional placental and leukocyte samples from children at 6 years of age. The methylation and/or gene expression of IRS1 in both placenta and offspring leukocytes were significantly associated with various metabolic risk parameters at age 6 (all p ≤ 0.05). Logistic regression models (LRM) and machine learning (ML) models indicated that IRS1 methylation in the placenta could strongly predict offspring obesity. Our results suggest that IRS1 may serve as a potential biomarker for the prediction of obesity and metabolic risk in children. Full article
(This article belongs to the Special Issue Exploring the Genetics and Genomics of Complex Diseases)
16 pages, 1831 KiB  
Article
The Role of Government Support in Adopting Green Supply Chain Management: The Influence of Green Market Orientation and Employee Environmental Commitment in Libya
by Mohamed Eltalhi, Opeoluwa Seun Ojekemi and Tolga Öz
Sustainability 2025, 17(7), 3012; https://doi.org/10.3390/su17073012 - 28 Mar 2025
Viewed by 113
Abstract
This study examines the role of government support (GS) in facilitating green supply chain management (GSCM) practices in Libya. It focuses on the moderating effect of green market orientation (GMO) and the mediating role of employee environmental commitment (EEC). The study explores how [...] Read more.
This study examines the role of government support (GS) in facilitating green supply chain management (GSCM) practices in Libya. It focuses on the moderating effect of green market orientation (GMO) and the mediating role of employee environmental commitment (EEC). The study explores how government policies drive sustainable supply chain practices, considering the influence of employees’ environmental awareness and market orientation. This study uses empirical data from various Libyan industries and applies structural equation modeling (SEM) to analyze relationships. The results show that GS positively impacts EEC, enhancing the adoption of GSCM practices. Furthermore, GMO strengthens the relationship between EEC and GSCM implementation. These findings highlight the importance of government support in fostering environmental sustainability within supply chains. This study contributes to the literature on sustainable supply chain management by providing empirical evidence from a developing country, offering valuable insights for policymakers and business leaders in Libya and similar regions. Full article
Show Figures

Figure 1

28 pages, 1137 KiB  
Article
Yield and Quality of Maize Grain in Response to Soil Fertilization with Silicon, Calcium, Magnesium, and Manganese and the Foliar Application of Silicon and Calcium: Preliminary Results
by Arkadiusz Artyszak, Dariusz Gozdowski, Jerzy Jonczak, Krzysztof Pągowski, Rafał Popielec and Zahoor Ahmad
Agronomy 2025, 15(4), 837; https://doi.org/10.3390/agronomy15040837 - 27 Mar 2025
Viewed by 97
Abstract
Climate change is forcing the search for innovative solutions to effectively reduce its harmful effects on food production. In addition, increasingly stringent regulations are being introduced in the European Union (the European Green Deal), mandating reductions in mineral fertilizer doses, which can reduce [...] Read more.
Climate change is forcing the search for innovative solutions to effectively reduce its harmful effects on food production. In addition, increasingly stringent regulations are being introduced in the European Union (the European Green Deal), mandating reductions in mineral fertilizer doses, which can reduce crop yields. One innovative technology could be soil fertilization and foliar application of Si-based fertilizers. A two-year field experiment (2023 and 2024), in commercial crop conditions in Kraski (52°2′42″ N, 18°54′6″ E), in Central Poland, studied the effect of differentiated soil fertilization and the foliar application of Si-based products on the yield and quality of maize grain at two levels of nitrogen/phosphorus/potassium (NPK) fertilization (100% and 50%). The soil fertilizer SiGS® (Si—200 g kg−1, Ca—181 g kg−1, Mg—46 g kg−1, and Mn—45 g kg−1) was applied to the soil at doses of 100, 300, and 500 kg ha−1, alone or with Barrier Si-Ca® (Si—336 g dm−3; Ca—207 g dm−3) foliar fertilizer (1 dm3 ha−1). The number of combinations assessed is 16. The effects were compared against the control treatment. The experiment evaluated plant physiological parameters, grain and dry matter yield, grain moisture content and quality (protein, fat, and starch content), and grain yield components. The highest grain yields were obtained with soil fertilization at a dose of 500 kg ha−1 (giving an increase of 17.5%), at a dose of 300 kg ha−1 plus foliar application (+16.4%), and at a dose of 500 kg ha−1 plus foliar application (+17.8%). The increase in grain yield in treatments with a half-rate of NPK was of a similar magnitude (on average, +11.9%) to the full rate (+12.6%) compared to the control treatments. Doubling the NPK rate contributed to an increase in grain yield of 7.8%. The applied fertilization had a significant and beneficial effect on the protein and fat content of the grain, while it reduced the starch content. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 6347 KiB  
Article
Genome-Wide Association Study of Body Size Traits in Luning Chickens Using Whole-Genome Sequencing
by Zhiyi Li, Yi Nong, Yuan Liu, Zi Wang, Jiayan Wang and Zhixiong Li
Animals 2025, 15(7), 972; https://doi.org/10.3390/ani15070972 (registering DOI) - 27 Mar 2025
Viewed by 70
Abstract
Growth traits are crucial for poultry breeding and production. Marker-assisted selection (MAS) and genomic selection (GS) of growth traits require a substantial number of accurate genetic markers. A genome-wide association study (GWAS) for body size traits was performed on 248 Luning chickens to [...] Read more.
Growth traits are crucial for poultry breeding and production. Marker-assisted selection (MAS) and genomic selection (GS) of growth traits require a substantial number of accurate genetic markers. A genome-wide association study (GWAS) for body size traits was performed on 248 Luning chickens to identify significant single-nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs) related to the growth and development of chickens. A total of 30 significant SNPs and 13 INDELs were obtained for body size traits. Two notable regions, spanning from 43.072 to 43.219 Mb on chromosome 1 and from 4.751 to 4.800 Mb on chromosome 11, were found to be significantly associated with growth traits in the GWAS of both SNPs and INDELs. Some genes, including PPFIA2, KITLG, DUSP6, TOX3, MTNR1B, FAT3, PTPRR, VEZT, BBS9, and CYLD, were identified as important candidate genes for the growth of chickens. The results provide valuable information for understanding the genetic basis of growth traits which is beneficial for the subsequent selective breeding in Luning chickens. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

25 pages, 8999 KiB  
Article
Multipath-Assisted Ultra-Wideband Vehicle Localization in Underground Parking Environment Using Ray-Tracing
by Shuo Hu, Lixin Guo, Zhongyu Liu and Shuaishuai Gao
Sensors 2025, 25(7), 2082; https://doi.org/10.3390/s25072082 - 26 Mar 2025
Viewed by 66
Abstract
In complex underground parking scenarios, non-line-of-sight (NLOS) obstructions significantly impede positioning signals, presenting substantial challenges for accurate vehicle localization. While traditional positioning approaches primarily focus on mitigating NLOS effects to enhance accuracy, this research adopts an alternative perspective by leveraging NLOS propagation as [...] Read more.
In complex underground parking scenarios, non-line-of-sight (NLOS) obstructions significantly impede positioning signals, presenting substantial challenges for accurate vehicle localization. While traditional positioning approaches primarily focus on mitigating NLOS effects to enhance accuracy, this research adopts an alternative perspective by leveraging NLOS propagation as valuable information, enabling precise positioning in NLOS-dominated environments. We introduce an innovative NLOS positioning framework based on the generalized source (GS) technique, which employs ray-tracing (RT) to transform NLOS paths into equivalent line-of-sight (LOS) paths. A novel GS filtering and weighting strategy to establish initial weights for the nonlinear equation system. To combat significant NLOS noise interference, a robust iterative reweighted least squares (W-IRLS) method synergizes initial weights with optimal position estimation. Integrating ultra-wideband (UWB) delay and angular measurements, four distinct localization modes based on W-IRLS are developed: angle-of-arrival (AOA), time-of-arrival (TOA), AOA/TOA hybrid, and AOA/time-difference-of-arrival (TDOA) hybrid. The comprehensive experimental and simulation results validate the exceptional effectiveness and robustness of the proposed NLOS positioning framework, demonstrating positioning accuracy up to 0.14 m in specific scenarios. This research not only advances the state of the art in NLOS positioning but also establishes a robust foundation for high-precision localization in challenging environments. Full article
(This article belongs to the Special Issue Multi‐sensors for Indoor Localization and Tracking: 2nd Edition)
Show Figures

Figure 1

14 pages, 2305 KiB  
Article
Metrics of Genomic Complexity in the Evolution of Bacterial Endosymbiosis
by Pablo Román-Escrivá, Moisès Bernabeu, Eleonora Paganin, Wladimiro Díaz-Villanueva, Miguel Verdú, José L. Oliver, Vicente Arnau and Andrés Moya
Biology 2025, 14(4), 338; https://doi.org/10.3390/biology14040338 - 25 Mar 2025
Viewed by 130
Abstract
Endosymbiosis can be considered a regressive or degenerative evolutionary process characterized at the genomic level by genome erosion and degeneration due to high mutational pressure toward AT (adenine and thymine) bases. The genomic and biological complexity of endosymbionts must be lower than that [...] Read more.
Endosymbiosis can be considered a regressive or degenerative evolutionary process characterized at the genomic level by genome erosion and degeneration due to high mutational pressure toward AT (adenine and thymine) bases. The genomic and biological complexity of endosymbionts must be lower than that of the free-living bacteria from which they evolved. In the present work, we contrasted whether two proposed metrics for measuring genomic complexity in both types of bacteria, GS and BB, reflect their complexity, expecting higher values in free-living bacteria than in endosymbionts. On the other hand, we endeavored to delve into the factors that contribute to the reduction in metric values in endosymbionts, as well as their eventual relationship with six genomic parameters associated with functionality. This study aimed to test the robustness of these proposed metrics in a well-known biological scenario, such as the endosymbiosis process. Full article
(This article belongs to the Section Evolutionary Biology)
14 pages, 728 KiB  
Article
Genomic Selection for Pea Grain Yield and Protein Content in Italian Environments for Target and Non-Target Genetic Bases
by Margherita Crosta, Nelson Nazzicari, Luciano Pecetti, Tommaso Notario, Massimo Romani, Barbara Ferrari, Giovanni Cabassi and Paolo Annicchiarico
Int. J. Mol. Sci. 2025, 26(7), 2991; https://doi.org/10.3390/ijms26072991 - 25 Mar 2025
Viewed by 150
Abstract
Enhanced pea cultivation, which can increase the sustainability of European agriculture, requires better-performing cultivars. This study investigated the genomic selection (GS) ability to predict grain yield, protein content, and protein yield on the same or a different genetic base (target/non-target GB) relative to [...] Read more.
Enhanced pea cultivation, which can increase the sustainability of European agriculture, requires better-performing cultivars. This study investigated the genomic selection (GS) ability to predict grain yield, protein content, and protein yield on the same or a different genetic base (target/non-target GB) relative to that employed for model training. GS models were developed on 276 lines from three Recombinant Inbred Line (RIL) populations evaluated in three Italian autumn-sown environments using 5537 SNPs from genotyping by sequencing. Validation in two cropping years concerned 108 independent lines from five RIL populations, of which two belonged to the GS training set, and three shared one parent each with training populations. A genome-wide association study performed on the GS training set using 18,674 SNPs highlighted the polygenic control of protein content and grain yield, with several environment-dependent QTLs for yield. Intermediate/high predictive ability within or across populations emerged for all traits in the target GB (0.359–0.675), with some variation depending on the population. Predictive ability in the non-target GB was modest/intermediate for protein content, and null/poor for the other traits. No inverse correlation emerged between grain yield and protein content. GS proved useful for all traits in the target GB and for protein content in a non-target GB. Full article
Show Figures

Figure 1

17 pages, 1820 KiB  
Article
The Estimation of Phenolic Compounds, Sugars, and Acids of the Cultivar and Clones of Red-Fleshed Apples Based on Image Features
by Ewa Ropelewska, Justyna Szwejda-Grzybowska, Mariusz Lewandowski and Monika Mieszczakowska-Frąc
Foods 2025, 14(7), 1138; https://doi.org/10.3390/foods14071138 - 25 Mar 2025
Viewed by 175
Abstract
The genotypes of red-fleshed apples can vary in the intensity of red color and other fruit quality parameters. Crossing red-fleshed apple genotypes may lead to the development of new genotypes with increased health properties desired by apple processors. For fruit samples belonging to [...] Read more.
The genotypes of red-fleshed apples can vary in the intensity of red color and other fruit quality parameters. Crossing red-fleshed apple genotypes may lead to the development of new genotypes with increased health properties desired by apple processors. For fruit samples belonging to 5 genotypes, such as the cultivar ‘Trinity’ and four clones (90, 120, 156, and 158), image textures and the contents of sucrose, fructose, glucose, sorbitol, total sugars, L-ascorbic acid, malic acid, citric acid, and phenolic compounds were measured. Five groups of polyphenols, namely, flavanols, dihydrochalcones, anthocyanins, flavonols, and phenolic acids, were determined. The correlations between the chemical and image properties of apple samples were determined. The regression equations to estimate the chemical compounds content in red-fleshed apple samples based on image features were set. Generally, the results revealed that red-fleshed apple clones and a cultivar can statistically significantly differ in the content of phenolic compounds, sugars, and acids. Strong relationships between all examined chemical parameters with selected image texture features were observed. The highest correlation coefficients were found between citric acid with texture ZS5SH3Correlat (R = −0.999), total flavanols with RS5SH5Correlat (R = 0.999), quercetin-xyloside (group of flavonols) with XS5SH5Entropy (R = 0.999), and total sugars with GS5SH1SumVarnc (R = −0.998). The developed regression equations allowed for correct estimations of acid, sugar, and phenolic compound contents based on image textures with the coefficients of determination (R2) reaching 0.998 for citric acid, total flavanols, and quercetin-xyloside, and 0.996 for total sugars. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

15 pages, 2799 KiB  
Article
Promoter Methylation of HIV Coreceptor-Related Genes CCR5 and CXCR4: Original Research
by Anna Esman, Svetlana Salamaikina, Alina Kirichenko, Michael Vinokurov, Darya Fomina, Kirill Sikamov, Arina Syrkina, Anastasia Pokrovskaya and Vasily Akimkin
Viruses 2025, 17(4), 465; https://doi.org/10.3390/v17040465 - 25 Mar 2025
Viewed by 185
Abstract
The persistence of human immunodeficiency virus (HIV) within viral reservoirs poses significant challenges to eradication efforts. Epigenetic alterations, including DNA methylation, are potential factors influencing the latency and persistence of HIV. This study details the development and application of techniques to assess CpG [...] Read more.
The persistence of human immunodeficiency virus (HIV) within viral reservoirs poses significant challenges to eradication efforts. Epigenetic alterations, including DNA methylation, are potential factors influencing the latency and persistence of HIV. This study details the development and application of techniques to assess CpG methylation in the promoter regions of the CCR5 and CXCR4 genes, which are key HIV-1 coreceptors. Using both Sanger sequencing and pyrosequencing methods, we examined 51 biological samples from 17 people living with HIV at three time points: baseline (week 0) and post-antiretroviral therapy (ART) at weeks 24 and 48. Our results revealed that CXCR4 promoter CpG sites were largely unmethylated, while CCR5 promoter CpGs exhibited significant variability in methylation levels. Specifically, CCR5 CpG 1 showed a significant decrease in methylation from week 0 to week 48, while CXCR4 CpG 3 displayed a significant decrease between week 0 and week 24. These differences were statistically significant when compared with non-HIV-infected controls. These findings demonstrate distinct methylation patterns between CCR5 and CXCR4 promoters in people living with HIV over time, suggesting that epigenetic modifications may play a role in regulating the persistence of HIV-1. Our techniques provide a reliable framework for assessing gene promoter methylation and could be applied in further research on the epigenetics of HIV. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

19 pages, 2080 KiB  
Article
Genetic Alterations in Atypical Cerebral Palsy Identified Through Chromosomal Microarray and Exome Sequencing
by Ji Yoon Han, Jin Gwack, Jong Hun Kim, Min Kyu Park and Joonhong Park
Int. J. Mol. Sci. 2025, 26(7), 2929; https://doi.org/10.3390/ijms26072929 - 24 Mar 2025
Viewed by 162
Abstract
This study investigated the genetic causes of atypical cerebral palsy (CP) through chromosomal microarray (CMA) and exome sequencing (ES) in a cohort of 10 Korean patients to identify variants and expand the spectrum of mutations associated with atypical cerebral palsy. Whole ES and/or [...] Read more.
This study investigated the genetic causes of atypical cerebral palsy (CP) through chromosomal microarray (CMA) and exome sequencing (ES) in a cohort of 10 Korean patients to identify variants and expand the spectrum of mutations associated with atypical cerebral palsy. Whole ES and/or genome sequencing (GS) after routine karyotyping and CMA was performed to identify causative variants and expand the spectrum of mutations associated with atypical CP. In cases of atypical CP, scoliosis and/or kyphosis, ranging from mild to severe, were present in all patients. Epilepsy was a comorbidity in seven patients (70%), and intellectual disability (ID) was observed in varying degrees. This study identified three copy number variations (CNVs), including 15q11.2 microdeletion (n = 1), 17p11.2 duplication (n = 1), and 12p13.33p11.23 duplication/18p11.32 microdeletion (n = 1), and six likely pathogenic variants (LPVs) or pathogenic variants (PVs) detected in the SLC2A1, PLAA, CDC42BPB, CACNA1D, ALG12, and SACS genes (n = 6). These findings emphasize the significance of incorporating genetic testing into the diagnostic process for atypical CP to improve our understanding of its molecular basis and inform personalized treatment strategies. To further advance this research, future studies should focus on exploring genotype–phenotype correlations, assessing the functional impact of identified variants, and increasing the sample size to validate the observed patterns. Full article
Show Figures

Figure 1

15 pages, 4546 KiB  
Article
Optimizing Methanol Flow Rate for Enhanced Semi-Passive Mini-Direct Methanol Fuel Cell Performance
by Laura Faria and Vicenta María Barragán
Fuels 2025, 6(2), 21; https://doi.org/10.3390/fuels6020021 - 24 Mar 2025
Viewed by 174
Abstract
Direct methanol fuel cells (DMFCs) typically operate in passive mode, where methanol is distributed across the membrane electrode assembly through natural diffusion. Usual methanol concentrations range from 1% to 5% by weight (wt.%), although this can vary depending on the specific configuration and [...] Read more.
Direct methanol fuel cells (DMFCs) typically operate in passive mode, where methanol is distributed across the membrane electrode assembly through natural diffusion. Usual methanol concentrations range from 1% to 5% by weight (wt.%), although this can vary depending on the specific configuration and application. In this work, the effect of an additional pumping system to supply the methanol has been analyzed by varying the methanol flow rate within the pump’s range. To this end, a parametric experimental study was carried out to study the influence of temperature (25–40 °C), concentration (0.15–6 wt.% methanol in water), and the flow rate of methanol (1.12–8.65 g/s) on the performance of a single mini-direct methanol fuel cell (DMFC) operating in semi-passive mode with a passive cathode and an active anode. Open circuit voltage, maximum power density, and cell efficiency were analyzed. To this purpose, open circuit voltage and current–voltage curves were measured in different experimental conditions. Results indicate that temperature is the most decisive parameter to increase DMFC performance. For all methanol concentrations and flow rates, performance improves with higher operating temperatures. However, the impact of the concentration and flow rate depends on the other parameters. The operating optimal concentration was 1% wt. At this concentration, a maximum power of 14.2 mW was achieved at 40 °C with a methanol flow of 7.6 g/s. Under these same conditions, the cell also reached its maximum efficiency of 23%. The results show that switching from passive to semi-passive mode generally increases open-circuit voltage and maximum power, thus improving fuel cell performance, likely due to the enhanced uniform distribution of the reactant in semi-passive mode. However, further increases in flow rate led to a decrease in performance, probably due to the methanol crossover effect. An optimal methanol flow rate is observed, depending on methanol flow temperature and concentration. Full article
Show Figures

Figure 1

17 pages, 2530 KiB  
Article
Physiological Response of Macadamia (Macadamia integrifolia) Seedlings to Drought Stress
by Zhuanmiao Kang, Hu Cai, Guangzheng Guo, Hui Zeng, Wenlin Wang and Xinghao Tu
Horticulturae 2025, 11(4), 347; https://doi.org/10.3390/horticulturae11040347 - 23 Mar 2025
Viewed by 217
Abstract
Guizhou Province is one of the regions in China where macadamia is cultivated. The area is characterized by prominent karst landforms, with uneven distribution of precipitation and utilizable water resources, which poses significant challenges to macadamia production. To explore the effects of different [...] Read more.
Guizhou Province is one of the regions in China where macadamia is cultivated. The area is characterized by prominent karst landforms, with uneven distribution of precipitation and utilizable water resources, which poses significant challenges to macadamia production. To explore the effects of different drought levels on the anatomical structure and physiological characteristics of macadamia seedlings, and to reveal their adaptation mechanisms and regulatory responses to drought stress, this study established a drought stress experiment on O.C (Own Choice) macadamia seedlings. The seedlings were subjected to stress in a 25% PEG-6000 solution for 0 h (CK), 24 h, 36 h, 48 h, and 72 h, and cellular structural features of stems and leaves were measured, as well as physiological and biochemical indices. The results indicated that macadamia seedlings gradually exhibited dehydration and chlorosis with prolonged drought stress. At 72 h of drought stress, root water potential, leaf water potential, chlorophyll content, relative water content, and root activity decreased by 353%, 98%, 44%, 72%, and 79%, respectively. Leaf thickness, palisade tissue thickness, and spongy tissue thickness were reduced by 19%, 33%, and 29%, respectively. Stomatal density increased by 50%, while stomatal aperture, vessel diameter, and cell wall thickness significantly decreased. Photosynthesis was markedly impaired: Pn, Tr, Gs, WUE, Fv/Fm, qP, and ΦPSII declined by 73%, 25%, 67%, 64%, 0.23, 60%, and 84%, respectively, whereas Ci and qN increased by 107% and 11%, respectively. Cell membranes began to sustain damage after 24 h of drought stress, with electrolyte leakage and MDA content rising by 266% and 672%, respectively, at 72 h. Prolonged drought stress reduced IAA, CTK, and GA levels by 37%, 33%, and 16%, respectively, while ABA content increased by 48%. To counteract drought stress, seedlings activated osmotic adjustment and reactive oxygen species (ROS) scavenging mechanisms. Osmolyte content significantly increased with stress duration, reaching 61%, 73%, 697%, and 107% increments in SS, SP, Pro, and betaine at 72 h. Antioxidant enzyme activities initially rose, peaking at 24 h (SOD, POD, CAT, and APX increased by 132%, 288%, 110%, and 46%, respectively), then gradually declined. By 72 h, SOD and APX activities fell below control levels, while POD and CAT remained elevated. These findings demonstrate that under PEG-6000-simulated drought stress, macadamia seedlings alleviate damage by modifying leaf and stem cellular structures and activating antioxidant and osmotic adjustment mechanisms. This study provides a theoretical basis for understanding the physiological mechanisms of macadamia drought stress response. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

14 pages, 4478 KiB  
Communication
Light Intensity Dependence of CO2 Assimilation Is More Related to Biochemical Capacity Rather than Diffusional Conductance
by Xiaoqian Wang, Qi Shi, Ningyu Liu, Jianxin Cao and Wei Huang
Plants 2025, 14(7), 986; https://doi.org/10.3390/plants14070986 - 21 Mar 2025
Viewed by 174
Abstract
The response of CO2 assimilation rate (AN) to incident light intensity reflects the efficiency of light utilization. The light intensity dependence of AN varies widely among different plant species, yet the underlying mechanisms remain poorly understood. To elucidate [...] Read more.
The response of CO2 assimilation rate (AN) to incident light intensity reflects the efficiency of light utilization. The light intensity dependence of AN varies widely among different plant species, yet the underlying mechanisms remain poorly understood. To elucidate this issue, we measured the light intensity dependence of gas exchange and chlorophyll fluorescence in twelve tree species. The results indicated that (1) with increasing light intensity, the variation in AN was closely related to stomatal conductance (gs), mesophyll conductance (gm), the maximum velocity of Rubisco carboxylation (Vcmax), and electron transport rate (ETR); (2) compared with AN at sub-saturating light, the increase in AN at saturating light was more strongly associated with Vcmax and ETR than with gs and gm; and (3) the increase in Vcmax and AN from 600 to 2000 μmol photons m−2 s−1 were positively correlated with the maximum capacity of Vcmax. These findings suggest that Vcmax is an energy-dependent process that significantly regulates the light intensity dependence of AN in plants. This provides valuable insights for crop improvement through the manipulation of Vcmax. Full article
(This article belongs to the Special Issue Advance in Plant Photobiology)
Show Figures

Figure 1

16 pages, 3470 KiB  
Article
Clinical Outcomes and Genomic Alterations in Gleason Score 10 Prostate Cancer
by Luke W. Chen, Yetkin Tuac, Sophia Li, Jonathan E. Leeman, Martin T. King, Peter F. Orio, Paul L. Nguyen, Anthony V. D’Amico, Cagdas Aktan and Mutlay Sayan
Cancers 2025, 17(7), 1055; https://doi.org/10.3390/cancers17071055 - 21 Mar 2025
Viewed by 172
Abstract
Background: Gleason score (GS) 10 prostate cancer (PC) is a highly aggressive localized disease. Despite advances in treating high-risk PC, the clinical outcomes and molecular underpinnings of GS 10 remain unclear. This study aimed to determine whether GS 10 PC has distinct [...] Read more.
Background: Gleason score (GS) 10 prostate cancer (PC) is a highly aggressive localized disease. Despite advances in treating high-risk PC, the clinical outcomes and molecular underpinnings of GS 10 remain unclear. This study aimed to determine whether GS 10 PC has distinct clinical outcomes from other “high-risk” cancers (i.e., Gleason 8–9) and identify genomic alterations driving its aggressive phenotype. Methods: A retrospective review of The Cancer Genome Atlas database identified patients with GS 8–10 PC who underwent radical prostatectomy. Clinical factors were compared between GS 10 and GS 8–9 cohorts. Time to biochemical recurrence (BCR) was analyzed using Kaplan–Meier and Cox regression. RNA sequencing identified differentially expressed genes, and protein–protein interaction networks identified hub genes. Results: Of 192 patients, 13 (6.8%) had GS 10 PC. After median follow-up of 37.87 months, GS 10 status was associated with significantly lower time to BCR (AHR, 2.67; 95% CI, 1.18–6.02; p = 0.018) compared to GS 8–9. Multiple genes (e.g., RAD54L, FAAH, AATK, MAST2) showed higher alteration frequencies, and high expression of RAD54L, MAST2, and CCHCR1 correlated with shorter disease-free survival. Six overlapping hub genes (CD8A, CDC20, E2F1, IL10, TNF, VCAM1) were overexpressed in GS 10 tumors, reflecting key pathways in tumor progression. Conclusions: GS 10 PC confers inferior time to BCR and displays a distinct genomic landscape compared to GS 8–9 disease, highlighting the need for biomarker-driven therapeutic strategies. Further studies are needed to validate these genomic targets and improve management for this very high-risk population. Full article
(This article belongs to the Special Issue New Insights into Prostate Cancer Radiotherapy)
Show Figures

Figure 1

22 pages, 1537 KiB  
Review
Breeding of Solanaceous Crops Using AI: Machine Learning and Deep Learning Approaches—A Critical Review
by Maria Gerakari, Anastasios Katsileros, Konstantina Kleftogianni, Eleni Tani, Penelope J. Bebeli and Vasileios Papasotiropoulos
Agronomy 2025, 15(3), 757; https://doi.org/10.3390/agronomy15030757 - 20 Mar 2025
Viewed by 461
Abstract
This review discusses the potential of artificial intelligence (AI), particularly machine learning (ML) and its subset, deep learning (DL), in advancing the genetic improvement of Solanaceous crops. AI has emerged as a powerful solution to overcome the limitations of traditional breeding techniques, which [...] Read more.
This review discusses the potential of artificial intelligence (AI), particularly machine learning (ML) and its subset, deep learning (DL), in advancing the genetic improvement of Solanaceous crops. AI has emerged as a powerful solution to overcome the limitations of traditional breeding techniques, which often involve time-consuming, resource-intensive processes with limited predictive accuracy. Through advanced algorithms and predictive models, ML and DL facilitate the identification and optimization of key traits, including higher yield, improved quality, pest resistance, and tolerance to extreme climatic conditions. By integrating big data analytics and omics, these methods enhance genomic selection (GS), support gene-editing technologies like CRISPR-Cas9, and accelerate crop breeding, thus enabling the development of resilient and adaptable crops. This review highlights the role of ML and DL in improving Solanaceae crops, such as tomato, potato, eggplant, and pepper, with the aim of developing novel varieties with superior agronomic and quality traits. Additionally, this study examines the advantages and limitations of AI-driven breeding compared to traditional methods in Solanaceae, emphasizing its contribution to agricultural resilience, food security, and environmental sustainability. Full article
Show Figures

Figure 1

Back to TopTop