Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,492)

Search Parameters:
Keywords = IgM and IgG antibodies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4429 KiB  
Article
Optimized NaYF4: Er3+/Yb3+ Upconversion Nanocomplexes via Oleic Acid for Biomedical Applications
by Ha Thi Phuong, Le Thi Vinh, Tong Quang Cong, Tran Quoc Tien, Nguyen Duc Van, Vu Thi Hong Ha, Vu Ngoc Phan, Le Thi Hoi, Pham Duc Thang, Do Thi Thao and Tran Thu Huong
Inorganics 2025, 13(5), 140; https://doi.org/10.3390/inorganics13050140 - 29 Apr 2025
Viewed by 129
Abstract
This study presents the synthesis of NaYF4: Er3+/Yb3+ upconversion luminescent nanomaterials using a wet chemistry method. The role of oleic acid in influencing the size, shape, and luminescent properties of the materials was also investigated. The results showed [...] Read more.
This study presents the synthesis of NaYF4: Er3+/Yb3+ upconversion luminescent nanomaterials using a wet chemistry method. The role of oleic acid in influencing the size, shape, and luminescent properties of the materials was also investigated. The results showed that, at a suitable oleic acid concentration of 10−3 M, the obtained nanoparticles exhibited a nearly spherical morphology with diameters ranging from 150 to 250 nm and predominantly display a hexagonal (β-NaYF4) crystalline phase. Photoluminescence measurements under 980 nm laser excitation reveal that these nanoparticles emit strong, stable luminescence with narrow emission bands characteristic of Er3+ transitions. Subsequently, the nanoparticles were coated with a silica shell, functionalized with amine groups, and conjugated with IgG antibodies via glutaraldehyde (GA) to form the bio-nano complex β-NaYF4: Er3+/Yb3+@SNGA-IgG. In vitro experiments using fluorescence microscopy demonstrated that the complex effectively labels HeLa cervical cancer cells. With its robust upconversion luminescence and excellent biocompatibility, the developed nanocomplex shows promising potential for rapid pathogen detection and other biomedical applications. Full article
(This article belongs to the Special Issue Biological Activity of Metal Complexes)
Show Figures

Figure 1

10 pages, 2440 KiB  
Brief Report
Leveraging an mRNA Platform for the Development of Vaccines Against Egg Allergy
by Xianyu Shao, Lijing Liu, Changzhen Weng, Kun Guo, Zhutao Lu, Lulu Huang, Zhenhua Di, Yixuan Guo, Guorong Di, Renmei Qiao, Jingyi Wang, Yong Yang, Shiyu Sun, Shentian Zhuang and Ang Lin
Vaccines 2025, 13(5), 448; https://doi.org/10.3390/vaccines13050448 - 24 Apr 2025
Viewed by 195
Abstract
Background: Food allergy (FA) poses a major global health issue due to the increasing prevalence and lack of effective prevention strategies. Allergen-specific immunotherapy (AIT) has emerged as a disease-modifying therapy for FA. However, due to long-term treatment duration and unexpected adverse reactions, only [...] Read more.
Background: Food allergy (FA) poses a major global health issue due to the increasing prevalence and lack of effective prevention strategies. Allergen-specific immunotherapy (AIT) has emerged as a disease-modifying therapy for FA. However, due to long-term treatment duration and unexpected adverse reactions, only a minority of patients benefit from AIT. Therefore, effective prophylactic interventions are urgently needed for FA patients. Methods: In this proof-of-concept study, using a well-established mRNA platform, we developed mRNA vaccine candidates encoding for the major egg white allergen Gal d2 and comprehensively evaluated their prophylactic efficacy against anaphylaxis in a Gal d2-induced allergic mouse model. Results: Two vaccine formulations, Gal d2 mRNA vaccine and Gal d2-IL-10 mRNA vaccine, both demonstrated potent ability in inducing allergen-specific IgG and Th1-type T cells. Importantly, the two vaccine formulations showed promise in preventing the onset of allergic disease, which is indicated by prevention of body temperature decline during anaphylaxis. Conclusions: We provided preliminary proof-of-concept evidence showing that the mRNA platform is unique and holds promise for the development of anti-allergy vaccines. This is largely attributed to the capacities of mRNA vaccines in eliciting an allergen-blocking antibody, shifting Th2 towards Th1 immunity, as well as in generating peripheral tolerance. However, further investigations are required to better understand the mode of action. Full article
(This article belongs to the Special Issue Evaluating the Immune Response to RNA Vaccine)
Show Figures

Figure 1

21 pages, 4951 KiB  
Article
Evaluation of Immunogenicity of Mycobacterium tuberculosis ag85ab DNA Vaccine Delivered by Pulmonary Administration
by Haimei Zhao, Zhen Zhang, Yong Xue, Nan Wang, Yinping Liu, Xihui Ma, Lan Wang, Xiaoou Wang, Danyang Zhang, Junxian Zhang, Xueqiong Wu and Yan Liang
Vaccines 2025, 13(5), 442; https://doi.org/10.3390/vaccines13050442 - 23 Apr 2025
Viewed by 327
Abstract
Background: Tuberculosis (TB) is a respiratory infectious disease, and the current TB vaccine has low local lung protection. We aim to optimize immune pathways to improve the immunogenicity of vaccines. Methods: In the immunogenicity study, 50 BALB/c mice were randomly divided into the [...] Read more.
Background: Tuberculosis (TB) is a respiratory infectious disease, and the current TB vaccine has low local lung protection. We aim to optimize immune pathways to improve the immunogenicity of vaccines. Methods: In the immunogenicity study, 50 BALB/c mice were randomly divided into the following: (1) phosphate buffered saline (PBS)+intramuscular injection combined with electroporation (EP) group (100 μL), (2) pVAX1+EP group (50 μg/100 μL), (3) ag85ab+EP group (50 μg/100 μL), (4) pVAX1+pulmonary delivery (PD) group (50 μg/50 μL), and (5) ag85ab+PD group (50 μg/50 μL). Immunization was given once every 2 weeks for a total of three times. The number of IFN-γ-secreting lung and spleen lymphocytes was determined by enzyme-linked immunospot assay (ELISPOT). The levels of Th1, Th2, and Th17 cytokines in the culture supernatants of lung and spleen lymphocytes were detected with the Luminex method. The proportion of FoxP3 regulatory T cells in splenocytes was determined by flow cytometry. The levels of IgG-, IgG1-, and IgG2a-specific antibodies in plasma and IgA antibody in bronchoalveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay (ELISA). Results: The PD and EP routes of Mycobacterium tuberculosis (M. tb) ag85ab DNA vaccine can effectively induce the responses of IFN-γ-secreting lung and spleen lymphocytes, and induce dominant Th1 and Th17 cell immune responses. The PD route can induce earlier, greater numbers and stronger responses of pulmonary effector T cells, with higher levels of the specific antibody IgA detected in BALF. High levels of the specific antibodies IgG, IgG1, and IgG2α were detected in the plasma of mice immunized by the EP route. Conclusions: The PD route of DNA vaccines can more effectively stimulate the body to produce strong cellular and mucosal immunity than the EP route, especially local cellular immunity in the lungs, which can provide early protection for the lungs. It can significantly improve the immunogenicity of the ag85ab DNA vaccine, suggesting a feasible and effective approach to DNA immunization. Full article
Show Figures

Figure 1

18 pages, 3439 KiB  
Article
Dynamic Changes in Antibodies and Proteome in Breast Milk of Mothers Infected with Wild-Type SARS-CoV-2 and Omicron: A Longitudinal Study
by Yaqiong Guo, Cheng Li, Minjie Tan, Yuexiao Chen, Shuai Zhu, Cheng Zhi and Jing Zhu
Nutrients 2025, 17(8), 1396; https://doi.org/10.3390/nu17081396 - 21 Apr 2025
Viewed by 276
Abstract
Background: Breast milk confers essential passive immunity to infants, particularly during viral pandemics. This study investigates dynamic changes in SARS-CoV-2-specific antibodies and proteome in the breast milk of mothers infected with either the wild-type or Omicron variants, addressing gaps in longitudinal dynamics and [...] Read more.
Background: Breast milk confers essential passive immunity to infants, particularly during viral pandemics. This study investigates dynamic changes in SARS-CoV-2-specific antibodies and proteome in the breast milk of mothers infected with either the wild-type or Omicron variants, addressing gaps in longitudinal dynamics and conserved or variant-specific immune responses. Methods: A prospective cohort of 22 lactating mothers infected with Omicron variant (December 2022–January 2023) was analyzed alongside a published dataset of wild-type-infected mothers (January–May 2020). Breast milk samples were collected at eight time points (1, 4, 7, 14, 21, 28, 35, 42 days post-infection) from the Omicron cohort for ELISA quantification of SARS-CoV-2-specific IgA, IgG, and IgM. Proteomic analysis was conducted for both cohorts. Results: Macronutrient composition remained stable throughout the post-infection period. SARS-CoV-2-specific IgA and IgG demonstrated biphasic kinetics, rapidly rising by day 14 (IgA: 0.03 to 0.13 ng/mL; IgG: 0.91 to 37.00 ng/mL) and plateauing through day 42. In contrast, IgM levels remained unchanged. Proteomic profiling identified 135 proteins associated with IgA/IgG dynamics, including variant-specific and conserved proteins. Conclusions: Breast milk maintains nutritional integrity while mounting robust immune responses during SARS-CoV-2 infection. These findings underscore breastfeeding as a safe and protective practice during COVID-19. Full article
(This article belongs to the Special Issue Dietary Patterns and Lifestyles for Maternal–Infant Health)
Show Figures

Graphical abstract

15 pages, 3610 KiB  
Article
mRNA Vaccine Delivery via Intramuscular Electroporation Induces Protective Antiviral Immune Responses in Mice
by So-Hyun Park, Yeonhwa Kim, Mina Kim, Yong Jin Lee, Yeji Seo, Hao Jin and Sang-Myeong Lee
Appl. Sci. 2025, 15(8), 4428; https://doi.org/10.3390/app15084428 - 17 Apr 2025
Viewed by 146
Abstract
Messenger RNA (mRNA) vaccines have exhibited promising potential for infectious disease prevention. Although various delivery methods have been explored, the use of electroporation (EP) for the delivery of naked mRNA has received relatively less attention. In this study, we used mouse models to [...] Read more.
Messenger RNA (mRNA) vaccines have exhibited promising potential for infectious disease prevention. Although various delivery methods have been explored, the use of electroporation (EP) for the delivery of naked mRNA has received relatively less attention. In this study, we used mouse models to investigate whether naked mRNA vaccine delivery via intramuscular EP (IM-EP) elicits a protective immune response against lethal viral infection. To achieve this, we injected C57BL/6 mice with naked mRNA encoding the SARS-CoV-2 mRNA vaccine via IM-EP and evaluated the resulting immune responses. IM-EP-mediated delivery of the mRNA vaccine induced robust humoral and cellular immune responses, characterized by elevated SARS-CoV-2 receptor-binding domain (RBD)-specific IgG antibodies, enhanced IFN-γ production by CD8+ T cells, and upregulated cytokine expression in the muscle and lymph nodes. Using the K18-hACE2 mouse model, we revealed that IM-EP-mediated delivery of the naked mRNA vaccine effectively protected mice from lethal SARS-CoV-2 infection. Overall, our findings suggest that the delivery of naked mRNA via IM-EP can be an effective strategy for preventing infectious diseases. Full article
Show Figures

Figure 1

11 pages, 6888 KiB  
Communication
Facile Immunoassay Constructed by Gold Nanostar-Labeled Rabbit-AFP Antibody and Gold Nanoparticle-Conjugated Goat Anti-Rabbit IgG
by Kang Yang, Fang Yang, Xiaoling Lu, Hao Li, Zeng Yang, Qi Yin, Lin Zhang, You Long, Chao Shen, Liya Chen, Bo Yao and Chenghong Huang
Nanomaterials 2025, 15(8), 612; https://doi.org/10.3390/nano15080612 - 16 Apr 2025
Viewed by 171
Abstract
Simple and accurate analysis of cancer-related biomarkers is very important for disease screening and auxiliary diagnosis. This study proposed a facile immunoassay that used gold nanostar-labeled rabbit anti-AFP as a capture antibody and gold nanoparticle-conjugated goat anti-rabbit IgG as an enhance antibody for [...] Read more.
Simple and accurate analysis of cancer-related biomarkers is very important for disease screening and auxiliary diagnosis. This study proposed a facile immunoassay that used gold nanostar-labeled rabbit anti-AFP as a capture antibody and gold nanoparticle-conjugated goat anti-rabbit IgG as an enhance antibody for the construction of a detection strategy for AFP analysis. Investigations indicated that the 50 nm diameter GNS-labeled capture antibody can specifically catch AFPs by direct detection profile or by further signal amplification through AuNP-tagged enhance antibody combination. Results showed that the developed method holds 8.6 ng/mL sensitivity, 20.0–110.0 ng/mL detection range, acceptable precision and fine accuracy, as well as favorable specificity. Results of application to real serum determination by the proposed method are highly related to those of the ECLIA method (correlation coefficient is 0.931). The proposed method has simple-operation merit and is very suitable for clinical screening of large-scale serum samples of cancers. Full article
(This article belongs to the Special Issue Nanomaterials for Bioelectronics and Energy Harvesting)
Show Figures

Figure 1

15 pages, 1871 KiB  
Article
Dynamics of SARS-CoV-2 IgG in Nursing Home Residents in Belgium Throughout Three BNT162b2 Vaccination Rounds: 19-Month Follow-Up
by Eline Meyers, Liselore De Rop, Claudia Gioveni, Fien Engels, Anja Coen, Tine De Burghgraeve, Marina Digregorio, Pauline Van Ngoc, Nele De Clercq, Laëtitia Buret, Samuel Coenen, Elizaveta Padalko, Els Duysburgh, Beatrice Scholtes, Jan Y. Verbakel, Stefan Heytens and Piet Cools
Vaccines 2025, 13(4), 409; https://doi.org/10.3390/vaccines13040409 - 15 Apr 2025
Viewed by 329
Abstract
Background/Objectives: This study mapped antibody dynamics across three COVID-19 vaccination rounds (primary course, first, and second booster with BNT162b2) in Belgian nursing home residents (NHRs). Methods: Within a national SARS-CoV-2 serosurveillance study (February 2021–September 2022) across Belgian nursing homes, dried blood spots were [...] Read more.
Background/Objectives: This study mapped antibody dynamics across three COVID-19 vaccination rounds (primary course, first, and second booster with BNT162b2) in Belgian nursing home residents (NHRs). Methods: Within a national SARS-CoV-2 serosurveillance study (February 2021–September 2022) across Belgian nursing homes, dried blood spots were collected, on which anti-spike SARS-CoV-2 IgG antibodies were quantified by ELISA in international units/mL (IU/mL). Sociodemographic data were collected at the study start and infection history and vaccination data at each sampling round. Results: Infection-naïve NHRs had low antibody levels after primary course vaccination (geometric mean concentration (GMC) 292 IU/mL, 95% confidence interval (95% CI): 197–432), but increased tenfold after first booster (GMC 2168 IU/mL, 95% CI: 1554–3027). While antibodies among NHRs significantly declined within six months after primary vaccination (p < 0.0001), they remained stable for nine months post-booster (p > 0.05). Among primary vaccine non-responders, 92% (95% CI: 82–97%) developed antibodies after the first booster (GMC 594 IU/mL, 95% CI: 416–849), though tenfold lower than initial responders (GMC 4642 IU/mL, 95% CI: 3577–6022). Conclusions: These findings demonstrate that NHRs require tailored vaccination, prioritizing repeated immunization to improve serological outcomes in poor responders such as infection-naive NHRs. Regular immune monitoring could aid in implementing evidence-based vaccine strategies, ensuring optimal protection for vulnerable populations against SARS-CoV-2 and other infectious threats. Full article
Show Figures

Figure 1

17 pages, 1223 KiB  
Article
Dynamics of IgM and IgA Antibody Response Profile Against Vibrio cholerae Toxins A, B, and P
by Salvatore Giovanni De-Simone, Paloma Napoleão-Pêgo, Guilherme Curty Lechuga, Joao Pedro Rangel Silva Carvalho, Sergian Vianna Cardozo, Alexandre Oliveira Saisse, Carlos Medicis Morel, David William Provance and Flavio Rocha da Silva
Int. J. Mol. Sci. 2025, 26(8), 3507; https://doi.org/10.3390/ijms26083507 - 9 Apr 2025
Viewed by 220
Abstract
The first immune response controls many bacterial and viral inflammatory diseases. Oral immunization with cholera toxin (CT) elicits antibodies and can prevent cholerae in endemic environments. While the IgG immune response to the toxin is well-documented, the IgA and IgM epitopes responsible for [...] Read more.
The first immune response controls many bacterial and viral inflammatory diseases. Oral immunization with cholera toxin (CT) elicits antibodies and can prevent cholerae in endemic environments. While the IgG immune response to the toxin is well-documented, the IgA and IgM epitopes responsible for the initial immune reaction to the toxin remained uncharted. In this study, our objective was to identify and characterize immunologically and structurally these IgA and IgM epitopes. We conducted SPOT synthesis to create two libraries, each containing one hundred twenty-two 15-mer peptides, encompassing the entire sequence of the three chains of the CT protein. We could map continuous IgA and IgM epitopes by testing these membrane-bound peptides with sera from mice immunized with an oral vaccine (Schankol™). Our approach involved topological studies, peptide synthesis, and the development of an ELISA. We successfully identified seven IgA epitopes, two in CTA, two in CTB, and three in protein P. Additionally, we discovered eleven IgM epitopes, all situated within CTA. Three IgA-specific and three IgM-specific epitopes were synthesized as MAP4 and validated using ELISA. We then used two chimeric 45-mer peptides, which included these six epitopes, to coat ELISA plates and screened them with sera from immunized mice. This yielded sensitivities and specificities of 100%. Our findings have unveiled a significant collection of IgA and IgM-specific peptide epitopes from cholera toxins A, B, and P. These epitopes, along with those IgG previously identified by our group, reflect the immunoreactivity associated with the dynamic of the immunoglobulins switching associated with the cholera toxin vaccination. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

16 pages, 2711 KiB  
Article
Ultrasensitive Peptide-Based Electrochemical Biosensor for Universal Diagnostic of Dengue
by Isis Campos Prado, João Pedro Rangel da Silva Carvalho, André Souza Araujo, Paloma Napoleão-Pêgo and Salvatore Giovanni De-Simone
Biosensors 2025, 15(4), 236; https://doi.org/10.3390/bios15040236 - 8 Apr 2025
Viewed by 402
Abstract
Dengue is a neglected disease mainly affecting tropical and subtropical countries. The diagnosis of dengue fever is still a problem since most of it is made from whole or recombinant DENV proteins, which present cross-reactions with other members of the Flavivirus family. Therefore, [...] Read more.
Dengue is a neglected disease mainly affecting tropical and subtropical countries. The diagnosis of dengue fever is still a problem since most of it is made from whole or recombinant DENV proteins, which present cross-reactions with other members of the Flavivirus family. Therefore, there is still a huge demand for new diagnostic methods that provide rapid, low-cost, easy-to-use confirmation. Thus, in this study, we developed an affordable electrochemical biosensor for rapidly detecting immunoglobulin G (IgG) serological antibodies in the sera of DENV-infected patients. An identified linear B-cell epitope (DENV/18) specific for DENV 1–4 serotypes recognized by IgG in patient sera was selected as a target molecule after a microarray of peptides using the SPOT-synthesis methodology. After chemical synthesis, the DENV/18-peptide was immobilized on the surface of the working electrode of a commercially available screen-printed gold electrode (SPGE). The capture of DENV-specific IgG allowed for the formation of an immunocomplex that was measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using a potassium ferrocyanide/ferricyanide ([Fe(CN)6]3−/4−) electrochemical probe. An evaluation of the biosensor’s performance showed a detection limit of 100 µg mL−1 for the synthetic peptides (DENV/18) and 1.21 ng mL−1 in CV and 0.43 ng mL−1 in DPV for human serum, with a sensitivity of 7.21 µA in CV and 8.79 µA in DPV. The differentiation of infected and uninfected individuals was possible even at a high dilution factor that reduced the required sample volumes to a few microliters. The final device proved suitable for diagnosing DENV by analyzing real serum samples, and the results showed good agreement with molecular biology diagnostics. The flexibility to conjugate other antigenic peptides to SPEs suggests that this technology could be rapidly adapted to diagnose other pathogens. Full article
(This article belongs to the Special Issue Biosensing and Diagnosis—2nd Edition)
Show Figures

Graphical abstract

17 pages, 1005 KiB  
Article
Randomized Controlled Clinical Trial of Pediatric Pneumococcus and Hepatitis A Vaccinations With or Without a High-Dose Oral Vitamin A Supplement
by Nehali Patel, Sherri L. Surman, Bart G. Jones, Rhiannon R. Penkert, Karen Ringwald-Smith, Kim DeLuca, Julie Richardson, Ying Zheng, Li Tang and Julia L. Hurwitz
Biomolecules 2025, 15(4), 540; https://doi.org/10.3390/biom15040540 - 7 Apr 2025
Viewed by 360
Abstract
Previous studies have shown that high-dose vitamin supplements can improve vaccine-induced immune responses and pathogen protection in the context of vitamin deficiencies. To further elucidate the influence of vitamin supplements on immune responses toward pediatric vaccines, we performed a randomized controlled clinical trial [...] Read more.
Previous studies have shown that high-dose vitamin supplements can improve vaccine-induced immune responses and pathogen protection in the context of vitamin deficiencies. To further elucidate the influence of vitamin supplements on immune responses toward pediatric vaccines, we performed a randomized controlled clinical trial (PCVIT) of 20 healthy children 1–4 years of age in Memphis, Tennessee. Study participants received a booster vaccine for pneumococcus and a primary vaccine for hepatitis A virus with or without a high-dose, oral, liquid supplement of 10,000 IU retinyl palmitate. We found that the children enrolled in PCVIT had higher baseline vitamin levels than previously described older children and adults living in Memphis. Only one child in PCVIT had a serum retinol level of less than 0.3 µg/mL. The children frequently consumed milk and baby foods that were likely vitamin-fortified, providing an explanation for the relatively high vitamin levels. Most children in PCVIT responded well to pneumococcus and hepatitis A vaccines by pathogen-specific antibody upregulation. The one child with a serum retinol level below 0.3 µg/mL did not receive a vitamin supplement and exhibited the lowest fold-change in antibody responses toward pneumococcal serotypes. A correlation matrix encompassing demographics, vitamin levels, vaccine-induced immune responses, C-reactive protein, and total serum immunoglobulin isotypes, including IgG2 and IgA, identified variables associated with vaccination outcomes. Perhaps because children were predominantly retinol-sufficient at baseline, the high-dose vitamin A supplement exhibited no benefit to vaccine-induced immune responses. In fact, when vitamin supplemented and vitamin unsupplemented groups were compared among participants with the highest baseline retinol levels, there was a trend toward weaker vaccine-induced immune responses in the vitamin supplemented group. Results encourage the performance of larger clinical studies before high-dose vitamin supplements are recommended for populations that are otherwise vitamin-replete. Full article
(This article belongs to the Special Issue Diet and Immune Response)
Show Figures

Figure 1

19 pages, 3112 KiB  
Article
Borrelia burgdorferi Strain-Specific Differences in Mouse Infectivity and Pathology
by Annabelle Pfeifle, Rose Anderson-Duvall, Levi A. Tamming, Wanyue Zhang, Sathya N. Thulasi Raman, Caroline Gravel, Jianguo Wu, Heather Coatsworth, Maarten J. Voordouw, Xu Zhang, Michael J. W. Johnston, Wangxue Chen, Simon Sauve, Lisheng Wang and Xuguang Li
Pathogens 2025, 14(4), 352; https://doi.org/10.3390/pathogens14040352 - 5 Apr 2025
Viewed by 504
Abstract
Lyme disease (LD), caused by infection with the tick-borne bacteria, Borrelia burgdorferi, is associated with a wide array of symptoms in human patients. Variations in clinical manifestations are thought to be influenced by genetic differences among B. burgdorferi strains. In this study, [...] Read more.
Lyme disease (LD), caused by infection with the tick-borne bacteria, Borrelia burgdorferi, is associated with a wide array of symptoms in human patients. Variations in clinical manifestations are thought to be influenced by genetic differences among B. burgdorferi strains. In this study, we evaluated the infectivity, tissue bacterial load, pathology, and immunogenicity of five strains of B. burgdorferi sensu stricto (297 Ah130, Bb16-54, B31-A3, Bb16-126, JD1) in female C3H/HeN mice at three infectious doses (104, 105, 106 spirochetes). We found that strains Bb16-126 and JD1 were the most infectious, resulting in 100% infection across all the tested doses. Strain Bb16-126 caused the highest bacterial burden in the heart tissue and significant carditis, whereas JD1 exhibited the lowest spirochete load in the heart and minimal carditis. In comparison, strain B31-A3 demonstrated the highest abundance in the tibiotarsal joint. Infection with all the strains induced severe lymph node hyperplasia, with JD1 producing the greatest increase in cellularity. Using a diagnostic C6 peptide ELISA, all the strains induced significant anti-C6 IgM and IgG antibody titers at 14 days post-infection; however, strain B31-A3 elicited the highest anti-C6 IgM titers. Our findings demonstrate the importance of strain diversity in shaping B. burgdorferi pathogenesis in a mouse model and provide insights for developing strain-specific diagnostic, therapeutic, and vaccine strategies. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Graphical abstract

22 pages, 4237 KiB  
Article
Impact of Monoclonal Antibody Aggregates on Effector Function Characterization
by Wendy J. Walton, Shousong Jason Zhang, Joseph J. Wilson, Briana N. Harvey, Matthew Clemens and Yingmei Gu
Antibodies 2025, 14(2), 31; https://doi.org/10.3390/antib14020031 - 2 Apr 2025
Viewed by 623
Abstract
Background/Objectives: Monoclonal antibodies have successfully been used for a variety of indications. Many therapeutic antibodies are IgG1 and elicit effector functions as part of their mechanism of action. It is well known that aggregate levels should be controlled for therapeutic antibodies. Although there [...] Read more.
Background/Objectives: Monoclonal antibodies have successfully been used for a variety of indications. Many therapeutic antibodies are IgG1 and elicit effector functions as part of their mechanism of action. It is well known that aggregate levels should be controlled for therapeutic antibodies. Although there are several reports describing the impact of antibody aggregates on FcγR binding, most of these have been performed with surface plasmon resonance in an avidity-based format. What is less well known is which Fcγ receptor is most impacted by antibody aggregation and how antibody aggregates impact binding to Fcγ receptors in solution-based formats and in cell-based assays. Methods: An effector-competent IgG1 (mAb1) was forcibly degraded and fractionated by size exclusion chromatography to enrich for aggregates. The fractions were examined for FcγR binding by SPR with different formats and in solution. The fractions were also analyzed with cell-based FcγR reporter assays. Results: All Fcγ receptors displayed increased binding to enriched mAb1 aggregates in the avidity-based SPR methods and in solution, with FcγRIIa impacted the most. When examined with an antibody-down SPR format that is not usually susceptible to avidity, FcγRIIa did not show increased binding with mAb1 aggregation. Although activity for mAb1 aggregates increased slightly in an FcγRIIa cell-based reporter assay, it decreased in the FcγRIIIa reporter assay (most likely due to differences in fucosylation from the reference standard). Conclusions: Monoclonal antibody aggregation can impact FcγR binding for avidity-based binding formats. Even at low levels of antibody aggregation, FcγRII binding increases substantially. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Figure 1

16 pages, 3529 KiB  
Article
The Clinical and Laboratory Landscape of COVID-19 During the Initial Period of the Pandemic and at the Beginning of the Omicron Era
by Yulia A. Desheva, Tamara N. Shvedova, Olga S. Kopteva, Danila S. Guzenkov, Polina A. Kudar, Tatiana S. Kotomina, Daria S. Petrachkova, Elena P. Grigorieva, Anna A. Lerner and Stanislav V. Ponkratov
Viruses 2025, 17(4), 481; https://doi.org/10.3390/v17040481 - 27 Mar 2025
Viewed by 329
Abstract
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underwent significant mutations, resulting in the Omicron variant. Methods: In this study, we analyzed blood samples from 98 patients with acute coronavirus disease 19 (COVID-19) hospitalized during the initial SARS-CoV-2 wave and the onset of [...] Read more.
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underwent significant mutations, resulting in the Omicron variant. Methods: In this study, we analyzed blood samples from 98 patients with acute coronavirus disease 19 (COVID-19) hospitalized during the initial SARS-CoV-2 wave and the onset of Omicron in 2021. High-resolution melting (HRM) analysis of PCR products was used to analyze RNA extracted from clinical samples collected in July and November 2021 from patients infected with SARS-CoV-2. Results: HRM analysis revealed a characteristic deletion in the N protein RNA of the virus isolated in November 2021, associated with the Omicron variant. Elevated levels of inflammatory markers and interleukin-6 (IL-6) were observed in both waves of COVID-19. Complement levels and IgG and IgM antibodies to SARS-CoV-2 were detected more often during the second wave. An increase in hemagglutinin-inhibiting (HI) antibodies against influenza viruses was observed in paired blood specimens from moderate to severe COVID-19 patients during both outbreaks. Conclusions: Patients admitted during both waves of COVID-19 showed a significant rise in inflammatory markers, suggesting that Omicron triggers inflammatory responses. The rapid formation of IgM and IgG in Omicron may indicate a faster immune response. Seasonal flu may negatively impact the clinical course of coronavirus infections. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

18 pages, 4338 KiB  
Article
Aflatoxin M1 Determination in Whole Milk with Immersible Silicon Photonic Immunosensor
by Dimitra Kourti, Michailia Angelopoulou, Eleni Makarona, Anastasios Economou, Panagiota Petrou, Konstantinos Misiakos and Sotirios Kakabakos
Toxins 2025, 17(4), 165; https://doi.org/10.3390/toxins17040165 - 26 Mar 2025
Viewed by 344
Abstract
Aflatoxin M1 (AFM1) appears in the milk of animals that have consumed feed contaminated with aflatoxin B1. AFM1 presence in milk is regulated by the European Commission, which has set the maximum allowable limits for adult and infant consumption to 50 and 25 [...] Read more.
Aflatoxin M1 (AFM1) appears in the milk of animals that have consumed feed contaminated with aflatoxin B1. AFM1 presence in milk is regulated by the European Commission, which has set the maximum allowable limits for adult and infant consumption to 50 and 25 pg/mL, respectively. Here, a rapid and sensitive method for detecting AFM1 in milk based on an immersible silicon photonic chip is presented. The chip features two U-shaped silicon nitride waveguides formed as Mach–Zehnder interferometers. One interferometer is functionalized with AFM1–bovine serum albumin conjugate and the other with BSA to serve as a blank. The chip is connected to a broad-band white LED and a spectrophotometer by a bifurcated optical fiber and an assay is performed by immersing the chip in a mixture of milk with the anti-AFM1 antibody. Then, the chip is sequentially immersed in biotinylated anti-rabbit IgG antibody and streptavidin solutions for signal enhancement. The assay is completed in 20 min and the detection limit for AFM1 in undiluted milk is 20 pg/mL. Given its analytical performance and the absence of pumps and fluidics that lead to a compact instrument design, the proposed immunosensor is ideal for the on-site detection of AFM1 in milk samples. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (3rd Edition))
Show Figures

Figure 1

16 pages, 6130 KiB  
Article
Identification of B-Cell Epitopes Located on the Surface of the S1 Protein of Infectious Bronchitis Virus M41 Strains
by Zichen Gao, Jianing Hu, Yiqin Cai, Ye Liu, Guihu Yin, Xinyu Guo, Ruiying Wang, Meng Zhong, Qingtao Liu and Xiuli Feng
Viruses 2025, 17(4), 464; https://doi.org/10.3390/v17040464 - 24 Mar 2025
Viewed by 262
Abstract
Avian infectious bronchitis is caused by the avian infectious bronchitis virus (IBV), which poses a significant threat to the poultry industry and public health. The S1 protein of IBV plays a crucial role in the process of the virus invading host cells. To [...] Read more.
Avian infectious bronchitis is caused by the avian infectious bronchitis virus (IBV), which poses a significant threat to the poultry industry and public health. The S1 protein of IBV plays a crucial role in the process of the virus invading host cells. To investigate the significant antigenic targets within the S1 protein, in this study, the truncated S1 sequence of the IBV M41 strain was cloned with approximately 660 bp and expressed. After purification and renaturation, the recombinant S1 protein was immunized into BALB/c mice. Then, following fusion with lymphocytes and SP2/0 cells, the indirect ELISA and Western blotting techniques were employed to screen hybridoma cell lines secreting monoclonal antibodies (mAbs) targeting the S1 protein. Antigenic epitopes of the mAbs were identified using truncated S1 fragments and peptide scanning. The results indicated that three hybridoma cell lines stably secreting S1 protein-specific mAbs (2A10, 4E9, and 5E12) were screened. The heavy chains of the three mAbs were IgG1, and all three mAbs contained kappa light chains. The identified minimal B-cell epitopes were 132RVSAMK137 and 142FYNLTV147. Homology analysis showed these both epitopes were conserved across IBV subtypes and located on the S1 protein surface. The conserved β-sheet epitope 132RVSAMK137 and the surface-exposed, flexible loop epitope 142FYNLTV147 serve as ideal targets for broad-spectrum diagnostics and early infection detection, respectively. These epitopes provide unique structural advantages for antibody binding, enabling the design of multivalent epitope vaccines or the development of immunomodulatory drugs. They offer novel biomaterials and targets for antibody-based drug development and rapid detection methods for avian infectious bronchitis virus (IBV), holding significant potential for the prevention and control of IBV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop