Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = Langmuir-Blodgett (LB) films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2346 KB  
Article
SERS and Chiral Properties of Cinnamic Acid Derivative Langmuir-Blodgett Films Complexed with Dyes
by Xingdi Zhao, Xinyu Li, Pengfei Bian, Qingrui Zhang, Yuqing Qiao, Mingli Wang and Tifeng Jiao
Coatings 2025, 15(8), 890; https://doi.org/10.3390/coatings15080890 - 1 Aug 2025
Viewed by 344
Abstract
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated [...] Read more.
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated structures, tetramethylporphyrin tetrasulfonic acid (TPPS), and Nickel(II) phthalocyanine-tetrasulfonic acid tetrasodium salt (TsNiPc), and composite LB films of CCA/TPPS and CCA/TsNiPc were successfully prepared by using Langmuir-Blodgett (LB) technology. The circular dichroism (CD) test proved that the CCA/TPPS composite film had a strong CD signal at 300–400 nm, and the composite film showed chirality. This significant optical activity provides a new idea and option for the application of LB films in chiral sensors. In the Surface Enhanced Raman Spectroscopy (SERS) test, the CCA/TPPS composite film was sensitive to signal sensing, in which the enhancement factor EF = 2.28 × 105, indicating that a large number of effective signal response regions were formed on the surface of the film, and the relative standard deviation (RSD) = 12.08%, which demonstrated that the film had excellent uniformity and reproducibility. The high sensitivity and low signal fluctuation make the CCA/TPPS composite LB film a promising SERS substrate material. Full article
Show Figures

Figure 1

14 pages, 4572 KB  
Article
Synergistic Enhancement of Near-Infrared Electrochromic Performance in W18O49 Nanowire Thin Films via Copper Doping and Langmuir–Blodgett Assembly
by Yueyang Wu, Honglong Ning, Ruiqi Luo, Muyun Li, Zijian Zhang, Rouqian Huang, Junjie Wang, Mingyue Peng, Runjie Zhuo, Rihui Yao and Junbiao Peng
Inorganics 2025, 13(6), 200; https://doi.org/10.3390/inorganics13060200 - 14 Jun 2025
Viewed by 1114
Abstract
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based [...] Read more.
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based electrochromic systems. Cu-doped W18O49 nanowires with varying Cu concentrations (0–12 mol%) were synthesized hydrothermally and assembled into thin films via the LB technique, with LB precursors characterized by contact angle, surface tension, viscosity, and thermogravimetric-differential scanning calorimetry (TG-DSC) analyses. The films were systematically evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry, and transmittance spectroscopy. Experimental results reveal an optimal Cu-doping concentration of 8 mol%, achieving a near-infrared optical modulation amplitude of 76.24% at 1066 nm, rapid switching kinetics (coloring/bleaching: 5.0/3.0 s), and a coloration efficiency of 133.00 cm2/C. This performance is speculated to be a balance between Cu-induced improvements in ion intercalation kinetics and LB-ordering degradation caused by lattice strain and interfacial charge redistribution, while mitigating excessive doping effects such as structural deterioration and thermodynamic instability. The work establishes a dual-modification framework for designing high-performance electrochromic interfaces, emphasizing the critical role of surface chemistry and nanoscale assembly in advancing adaptive optoelectronic devices like smart windows. Full article
(This article belongs to the Special Issue Optical and Quantum Electronics: Physics and Materials)
Show Figures

Figure 1

17 pages, 4524 KB  
Article
The Langmuir Monolayer as a Model Membrane System for Studying the Interactions of Poly(Butyl Cyanoacrylate) Nanoparticles with Phospholipids at the Air/Water Interface
by Georgi Yordanov, Ivan Minkov and Konstantin Balashev
Membranes 2024, 14(12), 254; https://doi.org/10.3390/membranes14120254 - 2 Dec 2024
Viewed by 2087
Abstract
Poly(butyl cyanoacrylate) (PBCA) nanoparticles have numerous applications, including drug and gene delivery, molecular imaging, and cancer therapy. To uncover the molecular mechanisms underlying their interactions with cell membranes, we utilized a Langmuir monolayer as a model membrane system. This approach enabled us to [...] Read more.
Poly(butyl cyanoacrylate) (PBCA) nanoparticles have numerous applications, including drug and gene delivery, molecular imaging, and cancer therapy. To uncover the molecular mechanisms underlying their interactions with cell membranes, we utilized a Langmuir monolayer as a model membrane system. This approach enabled us to investigate the processes of penetration and reorganization of PBCA nanoparticles when deposited in a phospholipid monolayer subphase. Atomic force microscopy (AFM) was employed to visualize Langmuir–Blodgett (LB) films of these nanoparticles. Additionally, we examined the state of a monolayer of Pluronic F68, a stabilizer of PBCA nanoparticles in suspension, by measuring the changes in relative surface area and surface potential over time in the barostatic regime following PBCA suspension spreading. Based on these findings, we propose a molecular mechanism for nanoparticle reorganization at the air–water interface. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

8 pages, 4783 KB  
Article
Fabrication and Self-Assembly Behavior of BPEF and BBPEF Composite Langmuir–Blodgett Films with Photovoltaic Conversion Properties
by Feifei Wang, Lei Ge, Lin Li, Tianyue Zhao and Tifeng Jiao
Nanomaterials 2024, 14(18), 1514; https://doi.org/10.3390/nano14181514 - 18 Sep 2024
Viewed by 1332
Abstract
The LB films prepared through the Langmuir–Blodgett (LB) technique are of significant importance for the fabrication of functional films such as optoelectronic materials and sensors. In this study, 9,9-bis (4-(2-hydroxy-ethoxy) phenyl) fluorene (BPEF) and 9,9-bis [3-phenyl-4-(β-hydroxy-ethoxy) phenyl] fluorene (BBPEF) were combined with saffron [...] Read more.
The LB films prepared through the Langmuir–Blodgett (LB) technique are of significant importance for the fabrication of functional films such as optoelectronic materials and sensors. In this study, 9,9-bis (4-(2-hydroxy-ethoxy) phenyl) fluorene (BPEF) and 9,9-bis [3-phenyl-4-(β-hydroxy-ethoxy) phenyl] fluorene (BBPEF) were combined with saffron T (ST), methylene blue (MB) and Rhodamine B (RhB) dyes by LB technique to prepare ordered composite films. The nanostructures and morphologies of the composite films were analyzed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). It was found that the films exhibited distinct aggregation morphologies. The UV-VIS absorption spectra showed that the concentration of dye molecules had a significant effect on the spectral characteristics. The contact Angle test shows that the prepared composite films are hydrophobic. The photovoltaic conversion performance of LB composite films was studied by transient photocurrent response experiments. It was found that BPEF/dye and BBPEF/dye composite films exhibited significant responses in photocurrent. In particular, BPEF/RhB and BBPEF/RhB composite films demonstrated excellent photoresponsive performance. This study used LB technology in combination with BPEF and BBPEF to demonstrate enhanced photocurrent and stable performance of LB film, which provided ideas for expanding the application range of materials. Full article
Show Figures

Figure 1

20 pages, 5919 KB  
Article
First Direct Gravimetric Detection of Perfluorooctane Sulfonic Acid (PFOS) Water Contaminants, Combination with Electrical Measurements on the Same Device—Proof of Concepts
by George R. Ivanov, Tony Venelinov, Yordan G. Marinov, Georgi B. Hadjichristov, Andreas Terfort, Melinda David, Monica Florescu and Selcan Karakuş
Chemosensors 2024, 12(7), 116; https://doi.org/10.3390/chemosensors12070116 - 22 Jun 2024
Cited by 1 | Viewed by 2210
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are pollutants of concern due to their long-term persistence in the environment and human health effects. Among them, perfluorooctane sulfonic acid (PFOS) is very ubiquitous and dangerous for health. Currently, the detection levels required by the legislation can [...] Read more.
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are pollutants of concern due to their long-term persistence in the environment and human health effects. Among them, perfluorooctane sulfonic acid (PFOS) is very ubiquitous and dangerous for health. Currently, the detection levels required by the legislation can be achieved only with expensive laboratory equipment. Hence, there is a need for portable, in-field, and possibly real-time detection. Optical and electrochemical transduction mechanisms are mainly used for the chemical sensors. Here, we report the first gravimetric detection of small-sized molecules like PFOS (MW 500) dissolved in water. A 100 MHz quartz crystal microbalance (QCM) measured at the third harmonic and an even more sensitive 434 MHz two-port surface acoustic wave (SAW) resonator with gold electrodes were used as transducers. The PFOS selective sensing layer was prepared from the metal organic framework (MOF) MIL-101(Cr). Its nano-sized thickness and structure were optimized using the discreet Langmuir–Blodgett (LB) film deposition method. This is the first time that LB multilayers from bulk MOFs have been prepared. The measured frequency downshifts of around 220 kHz per 1 µmol/L of PFOS, a SAW resonator-loaded QL-factor above 2000, and reaction times in the minutes’ range are highly promising for an in-field sensor reaching the water safety directives. Additionally, we use the micrometer-sized interdigitated electrodes of the SAW resonator to strongly enhance the electrochemical impedance spectroscopy (EIS) of the PFOS contamination. Thus, for the first time, we combine the ultra-sensitive gravimetry of small molecules in a water environment with electrical measurements on a single device. This combination provides additional sensor selectivity. Control tests against a bare resonator and two similar compounds prove the concept’s viability. All measurements were performed with pocket-sized tablet-powered devices, thus making the system highly portable and field-deployable. While here we focus on one of the emerging water contaminants, this concept with a different selective coating can be used for other new contaminants. Full article
(This article belongs to the Special Issue Chemical Sensors and Analytical Methods for Environmental Monitoring)
Show Figures

Figure 1

19 pages, 6601 KB  
Review
Recent Progress in the Applications of Langmuir–Blodgett Film Technology
by Wenhui Gu, Qing Li, Ran Wang, Lexin Zhang, Zhiwei Liu and Tifeng Jiao
Nanomaterials 2024, 14(12), 1039; https://doi.org/10.3390/nano14121039 - 17 Jun 2024
Cited by 11 | Viewed by 7561
Abstract
Langmuir–Blodgett (LB) film technology is an advanced technique for the preparation of ordered molecular ultra-thin films at the molecular level, which transfers a single layer of film from the air/water interface to a solid substrate for the controlled assembly of molecules. LB technology [...] Read more.
Langmuir–Blodgett (LB) film technology is an advanced technique for the preparation of ordered molecular ultra-thin films at the molecular level, which transfers a single layer of film from the air/water interface to a solid substrate for the controlled assembly of molecules. LB technology has continually evolved over the past century, revealing its potential applications across diverse fields. In this study, the latest research progress of LB film technology is reviewed, with emphasis on its latest applications in gas sensors, electrochemical devices, and bionic films. Additionally, this review evaluates the strengths and weaknesses of LB technology in the application processes and discusses the promising prospects for future application of LB technology. Full article
Show Figures

Figure 1

10 pages, 5735 KB  
Communication
Equipment-Free Fabrication of Thiolated Reduced Graphene Oxide Langmuir–Blodgett Films: A Novel Approach for Versatile Surface Engineering
by Injoo Hwang and Ki-Wan Jeon
Molecules 2024, 29(11), 2464; https://doi.org/10.3390/molecules29112464 - 23 May 2024
Viewed by 1322
Abstract
This research presents a novel method for the fabrication of mercapto reduced graphene oxide (m-RGO) Langmuir–Blodgett (LB) films without the need for specialized equipment. The conventional LB technique offers precise control over the deposition of thin films onto solid substrates, but its reliance [...] Read more.
This research presents a novel method for the fabrication of mercapto reduced graphene oxide (m-RGO) Langmuir–Blodgett (LB) films without the need for specialized equipment. The conventional LB technique offers precise control over the deposition of thin films onto solid substrates, but its reliance on sophisticated instrumentation limits its accessibility. In this study, we demonstrate a simplified approach that circumvents the necessity for such equipment, thereby democratizing the production of m-RGO LB films. Thiolation of reduced graphene oxide (rGO) imparts enhanced stability and functionality to the resulting films, rendering them suitable for a wide range of applications in surface engineering, sensing, and catalysis. The fabricated m-RGO LB films exhibit favorable morphological, structural, and surface properties, as characterized by various analytical techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). Furthermore, the performance of the m-RGO LB films is evaluated in terms of their surface wettability, electrochemical behavior, and chemical reactivity. The equipment-free fabrication approach presented herein offers a cost-effective and scalable route for the production of functionalized graphene-based thin films, thus broadening the scope for their utilization in diverse technological applications. Full article
(This article belongs to the Special Issue Graphene-Like 2D Materials)
Show Figures

Figure 1

16 pages, 9116 KB  
Article
Interfacing Langmuir–Blodgett and Pickering Emulsions for the Synthesis of 2D Nanostructured Films: Applications in Copper Ion Adsorption
by Andrei Honciuc, Oana-Iuliana Negru and Mirela Honciuc
Nanomaterials 2024, 14(9), 809; https://doi.org/10.3390/nano14090809 - 6 May 2024
Viewed by 1923
Abstract
This research focuses on developing a 2D thin film comprising a monolayer of silica nanoparticles functionalized with polyethyleneimine (PEI), achieved through a novel integration of Langmuir–Blodgett (L-B) and Pickering emulsion techniques. The primary aim was to create a nanostructured film that exhibits dual [...] Read more.
This research focuses on developing a 2D thin film comprising a monolayer of silica nanoparticles functionalized with polyethyleneimine (PEI), achieved through a novel integration of Langmuir–Blodgett (L-B) and Pickering emulsion techniques. The primary aim was to create a nanostructured film that exhibits dual functionality: iridescence and efficient metal ion adsorption, specifically Cu(II) ions. The methodology combined L-B and Pickering emulsion polymerization to assemble and stabilize a nanoparticle monolayer at an oil/water interface, which was then polymerized under UV radiation to form an asymmetrically structured film. The results demonstrate that the film possesses a high adsorption efficiency for Cu(II) ions, with the enhanced mechanical durability provided by a reinforcing layer of polyvinyl alcohol/glycerol. The advantage of combining L-B and Pickering emulsion technology is the ability to generate 2D films from functional nanoparticle monolayers that are sufficiently sturdy to be deployed in applications. The 2D film’s practical applications in environmental remediation were confirmed through its ability to adsorb and recover Cu(II) ions from aqueous solutions effectively. We thus demonstrate the film’s potential as a versatile tool in water treatment applications owing to its combined photonic and adsorptive properties. This work paves the way for future research on the use of nanoengineered films in environmental and possibly photonic applications focusing on enhancing the film’s structural robustness and exploring its broader applicability to other pollutants and metal ions. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Figure 1

14 pages, 2040 KB  
Article
C-undecylcalix[4]resorcinarene Langmuir–Blodgett/Porous Reduced Graphene Oxide Composite Film as a Electrochemical Sensor for the Determination of Tryptophan
by Yanju Wu, Keyu Chen and Fei Wang
Biosensors 2023, 13(12), 1024; https://doi.org/10.3390/bios13121024 - 10 Dec 2023
Cited by 5 | Viewed by 1998
Abstract
In this study, a composite film was developed for the electrochemical sensing of tryptophan (Trp). Porous reduced graphene oxide (PrGO) was utilized as the electron transfer layer, and a C-undecylcalix[4]resorcinarene Langmuir–Blodgett (CUCR-LB) film served as the molecular recognition layer. Atomic force microscopy (AFM), [...] Read more.
In this study, a composite film was developed for the electrochemical sensing of tryptophan (Trp). Porous reduced graphene oxide (PrGO) was utilized as the electron transfer layer, and a C-undecylcalix[4]resorcinarene Langmuir–Blodgett (CUCR-LB) film served as the molecular recognition layer. Atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, scanning electron microscopy (SEM), and electrochemical experiments were employed to analyze the characteristics of the CUCR-LB/PrGO composite film. The electrochemical behavior of Trp on the CUCR-LB/PrGO composite film was investigated, revealing a Trp linear response range of 1.0 × 10−7 to 3.0 × 10−5 mol L−1 and a detection limit of 3.0 × 10−8 mol L−1. Furthermore, the developed electroanalytical method successfully determined Trp content in an amino acid injection sample. This study not only introduces a rapid and reliable electrochemical method for the determination of Trp but also presents a new strategy for constructing high-performance electrochemical sensing platforms. Full article
Show Figures

Figure 1

12 pages, 3483 KB  
Article
Construction of Amphiphilic Indocyanine–Green–Based Langmuir Film and Drop–Casting Film with Photoelectric Conversion Properties
by Jing Chen, Na Li, Lin Li, Chongling Wang, Dongxue Han and Tifeng Jiao
Coatings 2023, 13(8), 1423; https://doi.org/10.3390/coatings13081423 - 14 Aug 2023
Cited by 2 | Viewed by 1752
Abstract
Molecular self–assembly is the automatic formation of functional assemblies of different structural components through weak, reversible, non–covalent interactions on the basis of molecular recognition. Amphiphilic molecules have a natural advantage in self–assembly at the gas/liquid interface. In this work, two amphiphilic molecules with [...] Read more.
Molecular self–assembly is the automatic formation of functional assemblies of different structural components through weak, reversible, non–covalent interactions on the basis of molecular recognition. Amphiphilic molecules have a natural advantage in self–assembly at the gas/liquid interface. In this work, two amphiphilic molecules with a special molecular structure, indocyanine green (ICG) and a derivative of indocyanine green (CCS), were combined with two dye molecules (tetraphenylporphyrin tetrasulfonic acid hydrate (TPPS) and nickel (II) phthalocyanine–tetrasulfonic acid tetrasodium salt (TsNiPc) for self–assembly through the Langmuir–Blodgett (LB) technique. The nanostructure and assembly behavior in ordered self–assembled films are effectively regulated by inducing dye molecules to form different types of aggregates (H– and J–aggregates). In addition, we prepared composite films containing the same functional components using the conventional drop–casting technique and performed a series of comparative experiments with LB films. The degree of hydrophilicity was found to be related to roughness, with LB composite films being flatter and denser, with the lowest roughness and the best hydrophobicity compared to drop–casting films. Notably, the LB films showed better optoelectronic properties under the same conditions, providing new clues for the application of optoelectronic functional ultrathin film devices. Full article
(This article belongs to the Special Issue Innovative Thin Films for Opto/Electronic Devices)
Show Figures

Figure 1

16 pages, 7856 KB  
Article
Langmuir–Blodgett Films with Immobilized Glucose Oxidase Enzyme Molecules for Acoustic Glucose Sensor Application
by Ilya Gorbachev, Andrey Smirnov, George R. Ivanov, Tony Venelinov, Anna Amova, Elizaveta Datsuk, Vladimir Anisimkin, Iren Kuznetsova and Vladimir Kolesov
Sensors 2023, 23(11), 5290; https://doi.org/10.3390/s23115290 - 2 Jun 2023
Cited by 10 | Viewed by 2610
Abstract
In this work, a sensitive coating based on Langmuir–Blodgett (LB) films containing monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) with an immobilized glucose oxidase (GOx) enzyme was created. The immobilization of the enzyme in the LB film occurred during the formation of the monolayer. The effect [...] Read more.
In this work, a sensitive coating based on Langmuir–Blodgett (LB) films containing monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) with an immobilized glucose oxidase (GOx) enzyme was created. The immobilization of the enzyme in the LB film occurred during the formation of the monolayer. The effect of the immobilization of GOx enzyme molecules on the surface properties of a Langmuir DPPE monolayer was investigated. The sensory properties of the resulting LB DPPE film with an immobilized GOx enzyme in a glucose solution of various concentrations were studied. It has shown that the immobilization of GOx enzyme molecules into the LB DPPE film leads to a rising LB film conductivity with an increasing glucose concentration. Such an effect made it possible to conclude that acoustic methods can be used to determine the concentration of glucose molecules in an aqueous solution. It was found that for an aqueous glucose solution in the concentration range from 0 to 0.8 mg/mL the phase response of the acoustic mode at a frequency of 42.7 MHz has a linear form, and its maximum change is 55°. The maximum change in the insertion loss for this mode was 18 dB for a glucose concentration in the working solution of 0.4 mg/mL. The range of glucose concentrations measured using this method, from 0 to 0.9 mg/mL, corresponds to the corresponding range in the blood. The possibility of changing the conductivity range of a glucose solution depending on the concentration of the GOx enzyme in the LB film will make it possible to develop glucose sensors for higher concentrations. Such technological sensors would be in demand in the food and pharmaceutical industries. The developed technology can become the basis for creating a new generation of acoustoelectronic biosensors in the case of using other enzymatic reactions. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2023)
Show Figures

Figure 1

18 pages, 4699 KB  
Article
Dual-Responsive and Reusable Optical Sensors Based on 2,3-Diaminoquinoxalines for Acidity Measurements in Low-pH Aqueous Solutions
by Elizaveta V. Ermakova, Anastasia V. Bol’shakova and Alla Bessmertnykh-Lemeune
Sensors 2023, 23(6), 2978; https://doi.org/10.3390/s23062978 - 9 Mar 2023
Cited by 3 | Viewed by 2030
Abstract
This work is focused on the age-old challenge of developing optical sensors for acidity measurements in low-pH aqueous solutions (pH < 5). We prepared halochromic (3-aminopropyl)amino-substituted quinoxalines QC1 and QC8 possessing different hydrophilic–lipophilic balance (HLB) and investigated them as molecular components of pH [...] Read more.
This work is focused on the age-old challenge of developing optical sensors for acidity measurements in low-pH aqueous solutions (pH < 5). We prepared halochromic (3-aminopropyl)amino-substituted quinoxalines QC1 and QC8 possessing different hydrophilic–lipophilic balance (HLB) and investigated them as molecular components of pH sensors. Embedding the hydrophilic quinoxaline QC1 into the agarose matrix by sol-gel process allows for fabrication of pH responsive polymers and paper test strips. The emissive films thus obtained can be used for a semi-quantitative dual-color visualization of pH in aqueous solution. Being exposed to acidic solutions with pH in the range of 1–5, they rapidly give different color changes when the analysis is performed in daylight or under irradiation at 365 nm. Compared with classical non-emissive pH indicators, these dual-responsive pH sensors allow for an increase in the accuracy of pH measurements, particularly in complex environmental samples. pH indicators for quantitative analysis can be prepared by the immobilization of amphiphilic quinoxaline QC8 using Langmuir–Blodgett (LB) and Langmuir–Schäfer (LS) techniques. Compound QC8 possessing two long alkyl chains (n-C8H17) forms stable Langmuir monolayers at the air–water interface, and these monolayers can be successfully transferred onto hydrophilic quartz and hydrophobic polyvinylchlorid (PVC) substrates using LB and LS techniques, respectively. The 30-layer films thus obtained are emissive, reveal excellent stability, and can be used as dual-responsive pH indicators for quantitative measurements in real-world samples with pH in the range of 1–3. The films can be regenerated by immersing them in basic aqueous solution (pH = 11) and can be reused at least five times. Full article
(This article belongs to the Special Issue Colorimetric Sensors: Methods and Applications)
Show Figures

Graphical abstract

31 pages, 5692 KB  
Article
Preparation and Surface Characterization of Chitosan-Based Coatings for PET Materials
by Klaudia Szafran, Małgorzata Jurak, Robert Mroczka and Agnieszka Ewa Wiącek
Molecules 2023, 28(5), 2375; https://doi.org/10.3390/molecules28052375 - 4 Mar 2023
Cited by 7 | Viewed by 3693
Abstract
Poly(ethylene terephthalate)—PET—is one of the most frequently used polymers in biomedical applications. Due to chemical inertness, PET surface modification is necessary to gain specific properties, making the polymer biocompatible. The aim of this paper is to characterize the multi-component films containing chitosan (Ch), [...] Read more.
Poly(ethylene terephthalate)—PET—is one of the most frequently used polymers in biomedical applications. Due to chemical inertness, PET surface modification is necessary to gain specific properties, making the polymer biocompatible. The aim of this paper is to characterize the multi-component films containing chitosan (Ch), phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), immunosuppressant cyclosporine A (CsA) and/or antioxidant lauryl gallate (LG) which can be utilized as a very attractive material for developing the PET coatings. Chitosan was employed owing to its antibacterial activity and also its ability to promote cell adhesion and proliferation favorable for tissue engineering and regeneration purposes. Moreover, the Ch film can be additionally modified with other substances of biological importance (DOPC, CsA and LG). The layers of varying compositions were prepared using the Langmuir—Blodgett (LB) technique on the air plasma-activated PET support. Then their nanostructure, molecular distribution, surface chemistry and wettability were determined by atomic force microscopy (AFM), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), contact angle (CA) measurements and the surface free energy and its components’ determination, respectively. The obtained results show clearly the dependence of the surface properties of the films on the molar ratio of components and allow for a better understanding of the coating organization and mechanisms of interactions at the molecular level both inside the films and between the films and the polar/apolar liquids imitating the environment of different properties. The organized layers of this type can be helpful in gaining control over the surface properties of the biomaterial, thus getting rid of the limitations in favor of increased biocompatibility. This is a good basis for further investigations on the correlation of the immune system response to the presence of biomaterial and its physicochemical properties. Full article
(This article belongs to the Special Issue Chitosan, Chitosan Derivatives and Their Applications)
Show Figures

Graphical abstract

20 pages, 10155 KB  
Article
Langmuir-Blodgett Films of Arachidic and Stearic Acids as Sensitive Coatings for Chloroform HF SAW Sensors
by Ilya Gorbachev, Andrey Smirnov, George Ivanov, Ivan Avramov, Elizaveta Datsuk, Tony Venelinov, Evgenija Bogdanova, Vladimir Anisimkin, Vladimir Kolesov and Iren Kuznetsova
Sensors 2023, 23(1), 100; https://doi.org/10.3390/s23010100 - 22 Dec 2022
Cited by 10 | Viewed by 4067
Abstract
Properties of the Langmuir-Blodgett (LB) films of arachidic and stearic acids, versus the amount of the films’ monolayers were studied and applied for chloroform vapor detection with acoustoelectric high-frequency SAW sensors, based on an AT quartz two-port Rayleigh type SAW resonator (414 MHz) [...] Read more.
Properties of the Langmuir-Blodgett (LB) films of arachidic and stearic acids, versus the amount of the films’ monolayers were studied and applied for chloroform vapor detection with acoustoelectric high-frequency SAW sensors, based on an AT quartz two-port Rayleigh type SAW resonator (414 MHz) and ST-X quartz SAW delay line (157.5 MHz). Using both devices, it was confirmed that the film with 17 monolayers of stearic acid deposited on the surface of the SAW delay line at a surface pressure of 30 mN/m in the solid phase has the best sensitivity towards chloroform vapors, compared with the same films with other numbers of monolayers. For the SAW resonator sensing using slightly longer arachidic acid molecules, the optimum performance was reached with 17 LB film layers due to a sharper decrease in the Q-factor with mass loading. To understand the background of the result, Atomic Force Microscopy (AFM) in intermittent contact mode was used to study the morphology of the films, depending on the number of monolayers. The presence of the advanced morphology of the film surface with a maximal average roughness (9.3 nm) and surface area (29.7 µm2) was found only for 17-monolayer film. The effects of the chloroform vapors on the amplitude and the phase of the acoustic signal for both SAW devices at 20 °C were measured and compared with those for toluene and ethanol vapors; the largest responses were detected for chloroform vapor. For the film with an optimal number of monolayers, the largest amplitude response was measured for the resonator-based device. Conversely, the largest change in the acoustic phase produced by chloroform adsorption was measured for delay-line configuration. Finally, it was established that the gas responses for both devices coated with the LB films are completely restored 60 s after chamber cleaning with dry air. Full article
Show Figures

Figure 1

25 pages, 15127 KB  
Article
Surface Properties of the Polyethylene Terephthalate (PET) Substrate Modified with the Phospholipid-Polypeptide-Antioxidant Films: Design of Functional Biocoatings
by Klaudia Szafran, Małgorzata Jurak, Robert Mroczka and Agnieszka Ewa Wiącek
Pharmaceutics 2022, 14(12), 2815; https://doi.org/10.3390/pharmaceutics14122815 - 15 Dec 2022
Cited by 11 | Viewed by 3150
Abstract
Surface properties of polyethylene terephthalate (PET) coated with the ternary monolayers of the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the immunosuppressant cyclosporine A (CsA), and the antioxidant lauryl gallate (LG) were examined. The films were deposited, by means of the Langmuir–Blodgett (LB) technique, on [...] Read more.
Surface properties of polyethylene terephthalate (PET) coated with the ternary monolayers of the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the immunosuppressant cyclosporine A (CsA), and the antioxidant lauryl gallate (LG) were examined. The films were deposited, by means of the Langmuir–Blodgett (LB) technique, on activated by air low temperature plasma PET plates (PETair). Their topography and surface chemistry were determined with the help of atomic force microscopy (AFM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS), respectively, while wettability was evaluated by the contact angle measurements. Then, the surface free energy and its components were calculated from the Lifshitz–van der Waals/Acid–Base (LWAB) approach. The AFM imaging showed that the Langmuir monolayers were transferred effectively and yielded smoothing of the PETair surface. Mass spectrometry confirmed compatibility of the quantitative and qualitative compositions of the monolayers before and after the transfer onto the substrate. Moreover, the molecular arrangement in the LB films and possible mechanisms of DOPC-CsA-LG interactions were determined. The wettability studies provided information on the type and magnitude of the interactions that can occur between the biocoatings and the liquids imitating different environments. It was found that the changes from open to closed conformation of CsA molecules are driven by the hydrophobic environment ensured by the surrounding DOPC and LG molecules. This process is of significance to drug delivery where the CsA molecules can be released directly from the biomaterial surface by passive diffusion. The obtained results showed that the chosen techniques are complementary for the characterization of the molecular organization of multicomponent LB films at the polymer substrate as well as for designing biocompatible coatings with precisely defined wettability. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology)
Show Figures

Graphical abstract

Back to TopTop