Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (480)

Search Parameters:
Keywords = PV3D3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2706 KiB  
Article
Yield Sensitivity of Mungbean (Vigna radiata L.) Genotypes to Different Agrivoltaic Environments in Tropical Nigeria
by Uchenna Noble Ukwu, Onno Muller, Matthias Meier-Gruell and Michael Ifeanyi Uguru
Plants 2025, 14(9), 1326; https://doi.org/10.3390/plants14091326 - 28 Apr 2025
Viewed by 171
Abstract
Genotype by environment (G × E) interaction is a magnitude change in the performance of a genotype when grown in contrasting environments. The sensitivity of a genotype to different environmental conditions is an important determinant of its suitability for cultivation in a specific [...] Read more.
Genotype by environment (G × E) interaction is a magnitude change in the performance of a genotype when grown in contrasting environments. The sensitivity of a genotype to different environmental conditions is an important determinant of its suitability for cultivation in a specific environment or across multiple environments. In many nations of the world, where the drive to achieve a net-zero CO2 emission by 2030 has spurred significant investments in clean energy sources such as photovoltaics with a resultant conversion of some agricultural lands to photovoltaic facilities, there is a need to find the right balance between addressing the food and energy crises. Agri-photovoltaics (APV) offer a sustainable solution by allowing crops to grow underneath photovoltaic panels. However, selection efficiency and repeatability of APV experimental results could be marred by the presence of G × E interaction. The study objective was to identify mungbean genotype(s) with a high yield potential and broad adaptability across APV environments. Five mungbean (Vigna radiata L.) genotypes, Tvr18, Tvr28, Tvr65, Tvr79, and Tvr 83, were assessed under six contrasting APV environments, EPV-R, EPV-D, NPV-R, NPV-D, WPV-R, and WPV-D, at the Agri-PV Food and Energy Training Center, University of Nigeria, Nsukka. The experiment was a split-plot design, with the environment as the whole-plot factor while genotype was the sub-plot factor with five replications. The additive main effects and multiplicative interaction (AMMI) and the Finlay and Wilkinson joint regression analysis confirmed significant genotype, environment, and G × E interaction effects for mungbean seed yield. Two genotypes, Tvr28 and Tvr83 expressed broad adaptability to the APV environments with higher yields (2.60 and 2.50 t ha−1), ranking first and second, respectively. In contrast, the Tvr79 genotype displayed the highest sensitivity (2.95) to environmental variation and was unstable across the environments with higher IPCA1 and ASV scores of −1.17 and 1.39, respectively. The EPV-R recorded the highest yield (2.61) with low interaction effect (0.38), whereas the WPV-D environment had the least yield (1.71) and was the most unstable (−0.48). Conclusively, the Tvr28 and Tvr83 genotypes and the EPV-R environment were the ideal genotypes and environment, respectively, and are therefore recommended for use in APV facilities. Full article
(This article belongs to the Special Issue Crop Breeding for Food and Nutrition Security)
Show Figures

Figure 1

28 pages, 10216 KiB  
Article
Stability and Degradation Issues of Manganese Violet Pigment in Polymeric Paints: Morphological and Chemical Changes Under SO2 and Humidity Exposure
by Laura Pagnin, Giulia Cardin, Valentina Pintus, Michele Back, Farkas Pintér, Katja Sterflinger and Francesca Caterina Izzo
Appl. Sci. 2025, 15(9), 4630; https://doi.org/10.3390/app15094630 - 22 Apr 2025
Viewed by 147
Abstract
This study focuses on investigating the stability of modern and contemporary paints based on manganese violet pigment PV16 (NH4MnP2O7) when exposed to atmospheric pollutants, specifically sulfur dioxide (SO2) in the presence of high relative humidity. [...] Read more.
This study focuses on investigating the stability of modern and contemporary paints based on manganese violet pigment PV16 (NH4MnP2O7) when exposed to atmospheric pollutants, specifically sulfur dioxide (SO2) in the presence of high relative humidity. In particular, this study aims to investigate the role of PV16 in increasing the degradation processes of various modern binders. Therefore, the objectives of this research can be divided into (i) evaluating the chemical modifications involving PV16, (ii) investigating the degradation processes that occur in different organic matrices (i.e., drying oil, alkyd resin, and acrylic and styrene–acrylic emulsions), and (iii) comparing the chemical stability of model and commercial paints. The paints were analyzed by 3D Optical Microscopy, Attenuated total Reflection–Fourier-Transform Infrared spectroscopy (ATR-FTIR) and μ-Raman Spectroscopy, Scanning Electron Microscope coupled with Energy Dispersive X-Ray spectroscopy (SEM-EDX), X-Ray Powder Diffraction (XRPD), Fiber Optic Reflectance Spectroscopy (FORS), Pyrolysis–Gas Chromatography–Mass Spectrometry (Py-GC/MS), and Thermally assisted Hydrolysis and Methylation (THM) of Py-GC/MS (THM-Py-GC/MS). The results show that when exposed to high relative humidity and SO2, PV16 presents a colorimetric change from violet to grey; several compounds crystallize on the surface; and, depending on the binder, various degradation reactions occur. This study highlights the susceptibility of manganese violet pigment PV16 under certain environmental conditions, which may be considered to define adequate conservation strategies for works of art containing this specific pigment. Additionally, the results obtained within this investigation point out the need to expand the chemical knowledge of this material for engineering, sensing, and industrial applications. Full article
Show Figures

Figure 1

18 pages, 4156 KiB  
Article
Influence of P(V3D3-co-TFE) Copolymer Coverage on Hydrogen Detection Performance of a TiO2 Sensor at Different Relative Humidity for Industrial and Biomedical Applications
by Mihai Brinza, Lynn Schwäke, Lukas Zimoch, Thomas Strunskus, Thierry Pauporté, Bruno Viana, Tayebeh Ameri, Rainer Adelung, Franz Faupel, Stefan Schröder and Oleg Lupan
Chemosensors 2025, 13(4), 150; https://doi.org/10.3390/chemosensors13040150 - 19 Apr 2025
Viewed by 231
Abstract
The detection of hydrogen gas is crucial for both industrial fields, as a green energy carrier, and biomedical applications, where it is a biomarker for diagnosis. TiO2 nanomaterials are stable and sensitive to hydrogen gas, but their gas response can be negatively [...] Read more.
The detection of hydrogen gas is crucial for both industrial fields, as a green energy carrier, and biomedical applications, where it is a biomarker for diagnosis. TiO2 nanomaterials are stable and sensitive to hydrogen gas, but their gas response can be negatively affected by external factors such as humidity. Therefore, a strategy is required to mitigate these influences. The utilization of organic–inorganic hybrid gas sensors, specifically metal oxide gas sensors coated with ultra-thin copolymer films, is a relatively novel approach in this field. In this study, we examined the performance and long-term stability of novel TiO2-based sensors that were coated with poly(trivinyltrimethylcyclotrisiloxane-co-tetrafluoroethylene) (P(V3D3-co-TFE)) co-polymers. The P(V3D3-co-TFE)/TiO2 hybrid sensors exhibit high reliability even for more than 427 days. They exhibit excellent hydrogen selectivity, particularly in environments with high humidity. An optimum operating temperature of 300 °C to 350 °C was determined. The highest recorded response to H2 was approximately 153% during the initial set of measurements at a relative humidity of 10%. The developed organic–inorganic hybrid structures open wide opportunities for gas sensor tuning and customization, paving the way for innovative applications in industry and biomedical fields, such as exhaled breath analysis, etc. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

12 pages, 10633 KiB  
Review
Splenic Diffuse Red Pulp Small B-Cell Lymphoma with Overlapping Clinical and Immunophenotypic Features with Hairy Cell Leukaemia: A Case Report and a Review of the Literature
by Mirette Hanna, Michola Trus and Erica DiMaria
Genes 2025, 16(4), 467; https://doi.org/10.3390/genes16040467 - 19 Apr 2025
Viewed by 225
Abstract
Background: Splenic B-cell lymphomas and leukaemias include hairy cell leukaemia, splenic marginal zone lymphoma, splenic diffuse red pulp small B-cell lymphoma, and splenic B-cell lymphoma/leukaemia with prominent nucleoli. The main diagnostic challenge is to differentiate between splenic B-cell lymphomas and leukaemias due to [...] Read more.
Background: Splenic B-cell lymphomas and leukaemias include hairy cell leukaemia, splenic marginal zone lymphoma, splenic diffuse red pulp small B-cell lymphoma, and splenic B-cell lymphoma/leukaemia with prominent nucleoli. The main diagnostic challenge is to differentiate between splenic B-cell lymphomas and leukaemias due to highly overlapping clinical, morphologic, and phenotypic features in the absence of splenectomies for diagnostic purposes. Case presentation: We describe a case of a 78-year-old woman who presented with weight loss and was subsequently found to have pancytopenia, lymphocytosis, and splenomegaly. Peripheral blood smear showed a homogenous population of small- to medium-sized lymphocytes having oval nuclei, condensed chromatin, and villous cytoplasmic projections. Bone marrow showed B-cell infiltrate in a predominantly intrasinusoidal pattern. Except for cyclin D1 and BRAF, the immunophenotype was similar to that of hairy cell leukaemia. This was further supported by the lack of BRAF p.V600E mutation by polymerase chain reaction. A diagnosis of splenic diffuse red pulp small B-cell lymphoma was thus favored based on the lack of cyclin D1 expression and pattern of infiltration in the bone marrow biopsy. Conclusions: Awareness of this infrequent clinical presentation and immunophenotype of splenic diffuse red pulp small B-cell lymphoma is crucial for diagnosis and devising appropriate therapeutic strategies for the patient. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

18 pages, 2729 KiB  
Article
Genetic Features of Tumours Arising in the Context of Suspected Hereditary Cancer Syndromes with RAD50, RAD51C/D, and BRIP1 Germline Mutations, Results of NGS-Reanalysis of BRCA/MMR-Negative Families
by Mónica Arranz-Ledo, Mar Infante, Enrique Lastra, Amaya Olaverri, Marta Orozco, Lucia C. Mateo, Noemí Martínez, Lara Hernández and Mercedes Durán
Genes 2025, 16(4), 458; https://doi.org/10.3390/genes16040458 - 16 Apr 2025
Viewed by 375
Abstract
Background and Objectives: Despite the well-established role of the BRCA and mismatch repair (MMR) genes in DNA damage repair pathways, a substantial proportion of familial cancer cases still lack pathogenic variants in those genes. Next Generation Sequencing (NGS) panels have emerged as a [...] Read more.
Background and Objectives: Despite the well-established role of the BRCA and mismatch repair (MMR) genes in DNA damage repair pathways, a substantial proportion of familial cancer cases still lack pathogenic variants in those genes. Next Generation Sequencing (NGS) panels have emerged as a powerful tool to identify hereditary cancer at-risk individuals and subsequently provide them with accurate management. Materials and Methods: Families harbouring PVs in RAD50, RAD51C, RAD51D, and BRIP1 were identified by analysing a cancer-predisposing genes panel using Ion S5 system technology. A retrospective cohort of 155 families tested only for the BRCAs of MMR genes were reanalysed, prompted by an increase in familial cases or new cancer diagnoses among index cases. Results: We identified 40 families through molecular reanalysis (33 with Hereditary Breast and Ovarian Cancer (HBOC) and 7 with Lynch Syndrome (LS)), with positive test results among 155 families lacking BRCA or MMR mutations. The most frequently mutated genes after ATM and CHEK2 were BRIP1, RAD51D, and RAD51C with 16, 13, and 9 positive families, respectively. The phenotype–genotype correlations not only revealed ovarian and HER-negative breast cancer predispositions but also other cancer types, particularly lung and gastric, and individuals with a second or third distinct cancer episode. Conclusions: Broader ranges of malignancies, including gastric, lung, and bladder, have been identified among BRIP1, RAD51D, and RAD51C positive families. The results generated using NGS provide a comprehensive genetic landscape in each patient that could explain the diversity of phenotypes shown in PV families that, combined with non-genetic factors, might enable accurate surveillance and personalized treatments. NGS reanalysis doubled our diagnostic yield and was a good strategy to identify hereditary cancer families that would otherwise be overlooked. Full article
Show Figures

Figure 1

15 pages, 11766 KiB  
Article
Occurrence State and Time-Shift Characteristics of Residual Oil in Low-Permeability Reservoirs After Long-Term Waterflooding in Changqing Oilfield
by Yangnan Shangguan, Boying Li, Chunning Gao, Junhong Jia, Yongqiang Zhang, Jinghua Wang and Tao Xu
Energies 2025, 18(8), 2001; https://doi.org/10.3390/en18082001 - 14 Apr 2025
Viewed by 208
Abstract
This study focuses on a low-permeability sandstone reservoir in the Changqing Oilfield, aiming to elucidate the formation mechanism and occurrence state of residual oil during late-stage waterflooding development, thereby providing theoretical guidance for refined residual oil recovery. By integrating scanning electron microscopy (SEM), [...] Read more.
This study focuses on a low-permeability sandstone reservoir in the Changqing Oilfield, aiming to elucidate the formation mechanism and occurrence state of residual oil during late-stage waterflooding development, thereby providing theoretical guidance for refined residual oil recovery. By integrating scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and digital core analysis, the oil–water occurrence state and dynamic characteristics during waterflooding were systematically investigated. NMR was employed to determine fluid distribution within core pores, while CT scanning was utilized to construct a 3D digital core model, enabling the identification of microscopic residual oil displacement and occurrence states at different flooding stages. The oil displacement efficiency was further analyzed based on variations in oil–water distribution and occurrence states within the core. The results demonstrate that pore and throat size and connectivity are the primary factors governing reservoir permeability. After high-pore-volume (PV) waterflooding, microscopic residual oil predominantly exists as dispersed droplets, films, and small-scale clusters or columns. Although prolonged high-PV waterflooding effectively expands the sweep volume, localized displacement efficiency declines, and reservoir heterogeneity adversely affects sweep volume maintenance. The post-flooding residual oil characteristics are collectively determined by the core’s local connectivity, wettability, and pore–throat morphology. This research systematically analyzes the occurrence patterns and evolutionary trends of residual oil in low-permeability reservoirs during long-term waterflooding, providing critical theoretical insights and technical support for enhanced oil recovery and residual oil exploitation. Full article
(This article belongs to the Special Issue Digitization and Low Carbon Transformation of Petroleum Engineering)
Show Figures

Figure 1

25 pages, 8536 KiB  
Review
Three-Dimensional Solar Harvesting with Transparent Spectral Selective Photovoltaics in Agrivoltaics
by Donglu Shi
Energies 2025, 18(7), 1788; https://doi.org/10.3390/en18071788 - 2 Apr 2025
Viewed by 550
Abstract
Although photovoltaic (PV) solar cells have been widely used for a variety of applications, several critical issues are yet to be addressed, including further enhanced power conversion efficiency (PCE) and their 2D solar harvesting with limited land availability. It has been reported that [...] Read more.
Although photovoltaic (PV) solar cells have been widely used for a variety of applications, several critical issues are yet to be addressed, including further enhanced power conversion efficiency (PCE) and their 2D solar harvesting with limited land availability. It has been reported that traditional PV installations require approximately 22,000 square miles to power the entire United States—posing a significant barrier, particularly in urban and agricultural settings. A unique dual modality of PV system has been proposed and implemented for both power generation and crop photosynthesis, namely, agrivoltaics. This system installs PV panels over the crops while harvesting solar for PV electricity generation and, at the same time, integrates with crop cultivation, which is a promising solution to optimize land utilization. However, for opaque PV panels, sunlight is often obstructed, potentially impacting plant growth and yield. To address this critical issue, a 3D solar harvesting concept has been proposed and experimentally investigated. By placing multiple layers of transparent PV panels parallel, sunlight can penetrate multiple layers and generate electricity on each PV, significantly enhancing the solar harvesting surface area. Most importantly, sunlight can also be collected by the crops underneath for effective photosynthesis. Among various PV materials, dye-sensitized solar cells (DSSCs) using porphyrin-based dyes have demonstrated potential for spectral modulation, optimizing both electricity generation and crop illumination. This review focuses on a novel approach to a 3D solar harvesting system via a multi-layered PV architecture for agrivoltaics. Also discussed are the current challenges in agrivoltaics, spectral selective mechanisms, and 3D solar harvesting architecture that show promise for sustainable energy production and land-efficient solar power deployment. Full article
Show Figures

Figure 1

15 pages, 762 KiB  
Article
Strategies for Recurrent Atrial Fibrillation in Patients Despite Durable Pulmonary Vein Isolation
by Jana Ackmann, Jonas Wörmann, Jakob Lüker, Friederike Pavel, Cornelia Scheurlen, Theodoros Maximidou, Jan-Hendrik van den Bruck, Jan-Hendrik Schipper, Daniel Steven and Arian Sultan
J. Clin. Med. 2025, 14(7), 2250; https://doi.org/10.3390/jcm14072250 - 26 Mar 2025
Viewed by 313
Abstract
Background/Objectives: Pulmonary vein isolation (PVI) is the cornerstone in the treatment of atrial fibrillation (AF). Despite initially successful PVI patients experience recurrence of AF potentially due to reconnection of pulmonary veins (PVs). However, a certain number of patients present with recurrent AF, [...] Read more.
Background/Objectives: Pulmonary vein isolation (PVI) is the cornerstone in the treatment of atrial fibrillation (AF). Despite initially successful PVI patients experience recurrence of AF potentially due to reconnection of pulmonary veins (PVs). However, a certain number of patients present with recurrent AF, despite durable PVI. The optimal ablation strategy for these patients has yet to be discerned. The aim of this study was to compare outcomes for different ablation strategies for recurrent AF despite persistent PVI. Methods: All redo procedures for the recurrence of atrial fibrillation from March 2018–May 2023 were analyzed. Only patients with proven durable PVI (entrance/exit block and high density (HD) mapping) who received linear ablation or CFAE (complex fractionated atrial electrogram)/low-voltage area ablation were included. Patients were excluded if re-PVI or ablation of atrial tachycardia (AT) was necessary. In all procedures, a 3D-HD map and radiofrequency ablation (RFA) were performed. The ablation strategy was at the operators’ discretion. Data from a routinely performed 12-month follow-up were obtained. Results: A total of 847 repeat ablation procedures for atrial arrhythmias were analyzed. In 170 (20.1%) procedures, all PVs were still isolated. Of these, 51 (30.0%) patients were excluded due to AT or because they did not receive further left atrial linear ablation or substrate modification. In total, 119 patients were included in the final analysis, and 71 out of 119 patients (59.7%) were male. The majority (89 patients, 74.8%) suffered from persistent AF. In 72 patients (60.5%), LA-scar (voltage < 0.4 mV) was detectable (81.9% persAF). The ablation strategies were either linear ablation (n = 55), a non-linear substrate modification strategy (CFAE ablation/ablation of low-voltage areas, n = 21) or a combination of both (n = 43). In the Kaplan–Meier analysis, none of the ablation strategies showed a significantly superior outcome. After 370.0 ± 144.9 days, 56.0% (48.1% vs. 61.9% vs. 62.8%, p = 0.3) were free from any arrhythmia. 15.4% vs. 9.5% vs. 9.3% developed an AT (p = 0.3). Left atrial dilatation correlated with recurrence of AF. Conclusions: In patients suffering from a recurrence of AF despite durable pulmonary vein isolation, different substrate modification strategies did not show any superiority for one or the other. Despite the necessity of additional ablation beyond PVI, the optimal ablation strategy has yet to be determined to improve the outcome of redo procedures. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

22 pages, 11865 KiB  
Article
Detection and Optimization of Photovoltaic Arrays’ Tilt Angles Using Remote Sensing Data
by Niko Lukač, Sebastijan Seme, Klemen Sredenšek, Gorazd Štumberger, Domen Mongus, Borut Žalik and Marko Bizjak
Appl. Sci. 2025, 15(7), 3598; https://doi.org/10.3390/app15073598 - 25 Mar 2025
Viewed by 309
Abstract
Maximizing the energy output of photovoltaic (PV) systems is becoming increasingly important. Consequently, numerous approaches have been developed over the past few years that utilize remote sensing data to predict or map solar potential. However, they primarily address hypothetical scenarios, and few focus [...] Read more.
Maximizing the energy output of photovoltaic (PV) systems is becoming increasingly important. Consequently, numerous approaches have been developed over the past few years that utilize remote sensing data to predict or map solar potential. However, they primarily address hypothetical scenarios, and few focus on improving existing installations. This paper presents a novel method for optimizing the tilt angles of existing PV arrays by integrating Very High Resolution (VHR) satellite imagery and airborne Light Detection and Ranging (LiDAR) data. At first, semantic segmentation of VHR imagery using a deep learning model is performed in order to detect PV modules. The segmentation is refined using a Fine Optimization Module (FOM). LiDAR data are used to construct a 2.5D grid to estimate the modules’ tilt (inclination) and aspect (orientation) angles. The modules are grouped into arrays, and tilt angles are optimized using a Simulated Annealing (SA) algorithm, which maximizes simulated solar irradiance while accounting for shadowing, direct, and anisotropic diffuse irradiances. The method was validated using PV systems in Maribor, Slovenia, achieving a 0.952 F1-score for module detection (using FT-UnetFormer with SwinTransformer backbone) and an estimated electricity production error of below 6.7%. Optimization results showed potential energy gains of up to 4.9%. Full article
Show Figures

Figure 1

19 pages, 2080 KiB  
Article
Genetic Alterations in Atypical Cerebral Palsy Identified Through Chromosomal Microarray and Exome Sequencing
by Ji Yoon Han, Jin Gwack, Jong Hun Kim, Min Kyu Park and Joonhong Park
Int. J. Mol. Sci. 2025, 26(7), 2929; https://doi.org/10.3390/ijms26072929 - 24 Mar 2025
Viewed by 353
Abstract
This study investigated the genetic causes of atypical cerebral palsy (CP) through chromosomal microarray (CMA) and exome sequencing (ES) in a cohort of 10 Korean patients to identify variants and expand the spectrum of mutations associated with atypical cerebral palsy. Whole ES and/or [...] Read more.
This study investigated the genetic causes of atypical cerebral palsy (CP) through chromosomal microarray (CMA) and exome sequencing (ES) in a cohort of 10 Korean patients to identify variants and expand the spectrum of mutations associated with atypical cerebral palsy. Whole ES and/or genome sequencing (GS) after routine karyotyping and CMA was performed to identify causative variants and expand the spectrum of mutations associated with atypical CP. In cases of atypical CP, scoliosis and/or kyphosis, ranging from mild to severe, were present in all patients. Epilepsy was a comorbidity in seven patients (70%), and intellectual disability (ID) was observed in varying degrees. This study identified three copy number variations (CNVs), including 15q11.2 microdeletion (n = 1), 17p11.2 duplication (n = 1), and 12p13.33p11.23 duplication/18p11.32 microdeletion (n = 1), and six likely pathogenic variants (LPVs) or pathogenic variants (PVs) detected in the SLC2A1, PLAA, CDC42BPB, CACNA1D, ALG12, and SACS genes (n = 6). These findings emphasize the significance of incorporating genetic testing into the diagnostic process for atypical CP to improve our understanding of its molecular basis and inform personalized treatment strategies. To further advance this research, future studies should focus on exploring genotype–phenotype correlations, assessing the functional impact of identified variants, and increasing the sample size to validate the observed patterns. Full article
Show Figures

Figure 1

14 pages, 2629 KiB  
Article
Analytical Solutions for Current–Voltage Properties of PSCs and Equivalent Circuit Approximation
by Marc Al Atem, Yahia Makableh and Mohamad Arnaout
Eng 2025, 6(4), 62; https://doi.org/10.3390/eng6040062 - 23 Mar 2025
Viewed by 170
Abstract
Perovksite solar cells have emerged as a promising photovoltaic technology due to their high increasing power conversion efficiency (PCE). However, challenges related to thermal instability and material toxicity, especially in lead-based perovskites, bring the need to investigate alternative materials and structural designs. This [...] Read more.
Perovksite solar cells have emerged as a promising photovoltaic technology due to their high increasing power conversion efficiency (PCE). However, challenges related to thermal instability and material toxicity, especially in lead-based perovskites, bring the need to investigate alternative materials and structural designs. This study investigated the current–voltage and power–voltage characteristics of lead-free PSCs based on tin- and germanium using a two-diode equivalent circuit model. The novelty of this work was based on the intensive evaluation of three different electron transport layers (ETLs)—titanium dioxide (TiO2), zinc oxide (ZnO), and tungsten trioxide (WO3)—under different ambient temperature conditions (5 °C, 25 °C, and 55 °C) to study their impacts on device performance and the thermal stability. SCAPS-1D simulations were used to model the electrical and optical behaviors of the proposed perovskite structures, and the results were validated by using the two-diode model. The main performance parameters that were considered were open-circuit voltage, short-circuit current, maximum power point, and fill factor. The results showed that TiO2 was better than ZnO and WO3 as an ETL, achieving a PCE of 24.83% for Sn-based perovskites, and ZnO was the better choice for Ge-based perovskites at 25 °C, with an efficiency reaching ~15.39%. The three ETL materials showed high thermal stability when analyzing them at high ambient temperatures reaching 55 °C. Full article
Show Figures

Figure 1

18 pages, 19984 KiB  
Article
A Cooperative Adaptive VSG Control Strategy Based on Virtual Inertia and Damping for Photovoltaic Storage System
by Yan Xia, Yao Wang, Yang Chen, Jinhui Shi, Yiqiang Yang, Wei Li and Ke Li
Energies 2025, 18(6), 1505; https://doi.org/10.3390/en18061505 - 18 Mar 2025
Viewed by 281
Abstract
This research proposes a novel adaptive virtual synchronous generator (VSG) control strategy for a photovoltaic-energy storage (PV-storage) hybrid system. In comparison to the traditional VSG control approach, the adaptive control strategy presented in this research markedly diminishes the fluctuations in output power. This [...] Read more.
This research proposes a novel adaptive virtual synchronous generator (VSG) control strategy for a photovoltaic-energy storage (PV-storage) hybrid system. In comparison to the traditional VSG control approach, the adaptive control strategy presented in this research markedly diminishes the fluctuations in output power. This improvement is accomplished through the dynamic adjustment of virtual inertia (J) and damping coefficient (D), which enables real-time responsiveness to variations in light intensity, converter power, and load power factors that traditional VSG controls are unable to address promptly. Initially, a small signal model of VSG’s active power closed-loop system is established and analyzed for a grid-connected converter in a PV-storage hybrid system. The influence of these parameters on the response speed and stability of the PV-storage system is discussed by analyzing the step response and root locus corresponding to varying J and D conditions. Then, this study employs the power angle and frequency oscillation characteristics of synchronous generators (SGs) to formulate criteria for selecting the J and D. Based on the established criteria, a parameter-adaptive VSG control strategy is proposed. Ultimately, the efficacy of the proposed strategy is validated in MATLAB/Simulink under three distinct conditions: abrupt changes in light intensity, converter power, and load power. The results indicate that the strategy is capable of diminishing power oscillation amplitude, effectively mitigating instantaneous impulse current, and notably alleviating frequency overshoot. Full article
Show Figures

Figure 1

33 pages, 9705 KiB  
Article
Assessment of the Energy Efficiency and Cost of Low-Income Housing Based on BIM Considering Material Properties and Energy Modeling in a Tropical Climate
by Vicente Macas-Espinosa, Israel Portilla-Sanchez, David Gomez, Ruben Hidalgo-Leon, Julio Barzola-Monteses and Guillermo Soriano
Energies 2025, 18(6), 1500; https://doi.org/10.3390/en18061500 - 18 Mar 2025
Viewed by 378
Abstract
This work analyzes the potential impact of thirteen passive and active factors on a low-income housing (LIH) model in a tropical climate. For this purpose, a study of material properties and energy modeling using Building Information Modelling (BIM) is carried out, which helps [...] Read more.
This work analyzes the potential impact of thirteen passive and active factors on a low-income housing (LIH) model in a tropical climate. For this purpose, a study of material properties and energy modeling using Building Information Modelling (BIM) is carried out, which helps to evaluate these factors’ energetic and economic implications. Two significant assessments are highlighted, namely active and passive factor analysis and dominant factor analysis. The research studied the architectural design of a one-story house measuring thirty-six square meters outlined by the Ecuadorian Construction Standard (NEC) chapter 15 part 4. A 3D architectural model was generated using Revit 2024 simulation software and subsequently employed to establish an energy model used in Autodesk Insight Software 2024 to assess the factors influencing energy consumption and annual energy expenses. The analysis included a comparison with a model of the house based on the ASHRAE 90.2 standard. The active and passive factors were ranked according to their impact on energy efficiency in the model. The results show that Energy Use Intensity (EUI) has a higher reduction for the ASHRAE model of 4.63%, with 21.60% for the Energy cost. The active factors exhibited a greater impact on the energy performance of the LIH than the passive factors, with the PV-Surface coverage being the factor that generated the highest EUI reduction, with 39.66% and 78.51% for both models. The study concluded by emphasizing the importance of adopting active strategies to achieve energy efficiency and economical house design. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Performance in Buildings)
Show Figures

Figure 1

25 pages, 2851 KiB  
Article
Self-Created Film as a Resource in a Multimodal Conversational Narrative
by Mascha Legel, Stijn R. J. M. Deckers, Gloria Soto, Nicola Grove, Annalu Waller, Hans van Balkom, Ronald Spanjers, Christopher S. Norrie and Bert Steenbergen
Multimodal Technol. Interact. 2025, 9(3), 25; https://doi.org/10.3390/mti9030025 - 10 Mar 2025
Viewed by 622
Abstract
When access to natural speech is limited or challenging, as is the case for people with complex communication needs, self-created digital film can be practical to use as one of the resources within a multimodal conversation about a personal experience. The detailed and [...] Read more.
When access to natural speech is limited or challenging, as is the case for people with complex communication needs, self-created digital film can be practical to use as one of the resources within a multimodal conversation about a personal experience. The detailed and contextual information such audiovisual media offers with today’s available technology may assist the utility of other communication modes, such as (computerized) spoken, written or signed language, to foster mutual understanding and story growth. To promote the use of self-created film, here named a personal-video-scene (PVS), in the practice of augmentative and alternative communication (AAC), a greater understanding is required of how such media can operate as a resource within social interactions, such as daily conversations. This study therefore introduces a multimodal coding model developed to study the employment of a PVS within a film-elicited conversational narrative, relating to four aspects of conversational control: (a) topic development, (b) conversational structure, (c) conversational repair and (d) conversational maintenance. A case study illustrates how the use of a PVS in story-sharing was instrumental in establishing common ground between narrators, boosting the frequency of comments and questions, mitigating instances of conversational repair and expanding topic development. Full article
Show Figures

Graphical abstract

15 pages, 7338 KiB  
Article
Development of Double Haploid Lines from Cucumber mosaic virus Resistant Pepper Germplasm by Anther Culture
by Zhana Ivanova, Gancho Pasev, Veronica Pashkoulova, Vesela Radeva and Stanislava Grozeva
Horticulturae 2025, 11(3), 293; https://doi.org/10.3390/horticulturae11030293 - 7 Mar 2025
Viewed by 491
Abstract
Cucumber mosaic virus (CMV) is one of the most dangerous viral diseases threatening Solanaceae crops, in particular Capsicum sp. This study aims to develop double haploid (DH) pepper lines from germplasm resistant to CMV in order to speed up the breeding process. For [...] Read more.
Cucumber mosaic virus (CMV) is one of the most dangerous viral diseases threatening Solanaceae crops, in particular Capsicum sp. This study aims to develop double haploid (DH) pepper lines from germplasm resistant to CMV in order to speed up the breeding process. For this purpose, six genotypes previously tested for CMV resistance were used. Two induction mediums (17-2 and 17-3) with different concentrations of 2,4-Dichlorophenoxyacetic acid (2,4-D) for anther incubation and further plant regeneration were applied. L10 was the most responsive genotype, exhibiting the highest direct embryogenesis and the most plant regenerants on both mediums. Medium-specific response was observed in genotype L9 where regenerants were observed only on 17-2. Further, eight DH lines were evaluated with two CMV isolates (L-BG and PV-0418) and checked for local and systemic presence of the pathogen in leaves and fruits for a period of 60 days by DAS-ELISA. Of the tested DH lines, four (DH2, DH6, DH7 and DH9) were resistant to both strains, two (DH5 and DH14) were resistant to L-BG, and two (DH19 and DH21) were susceptible to both isolates. Field evaluation of DH7, DH9, and DH14 for some agronomic and morphological traits divided them into two groups according to the original genotypes. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Graphical abstract

Back to TopTop