Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = STED microscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1571 KB  
Review
Super-Resolution Microscopy in the Structural Analysis and Assembly Dynamics of HIV
by Aiden Jurcenko, Olesia Gololobova and Kenneth W. Witwer
Appl. Nano 2025, 6(3), 13; https://doi.org/10.3390/applnano6030013 - 31 Jul 2025
Viewed by 718
Abstract
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and [...] Read more.
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and SIM) have been applied over the past decade to study HIV structural components and assembly. By categorizing and comparing studies based on SRM methods, HIV components, and labeling strategies, we assess the strengths and limitations of each approach. Our analysis shows that PALM is most commonly used for live-cell imaging of HIV Gag, while STED is primarily used to study the viral envelope (Env). STORM and SIM have been applied to visualize various components, including Env, capsid, and matrix. Antibody labeling is prevalent in PALM and STORM studies, targeting Env and capsid, whereas fluorescent protein labeling is mainly associated with PALM and focused on Gag. A recent emphasis on Gag and Env points to deeper investigation into HIV assembly and viral membrane dynamics. Insights from SRM studies of HIV not only enhance virological understanding but also inform future research in therapeutic strategies and delivery systems, including extracellular vesicles. Full article
(This article belongs to the Collection Review Papers for Applied Nano Science and Technology)
Show Figures

Figure 1

14 pages, 6671 KB  
Article
A STEDable BF2-Azadipyrromethene Fluorophore for Nuclear Membrane and Associated Endoplasmic Reticulum Imaging
by Anaïs C. Bourgès, Massimiliano Garre, Dan Wu and Donal F. O’Shea
Membranes 2025, 15(1), 9; https://doi.org/10.3390/membranes15010009 - 1 Jan 2025
Viewed by 4026
Abstract
The endoplasmic reticulum and the internal nuclear compartments are intrinsically connected through the nuclear membrane, pores and lamina. High resolution imaging of each of these cellular features concurrently remains a significant challenge. To that end we have developed a new molecular nuclear membrane-endoplasmic [...] Read more.
The endoplasmic reticulum and the internal nuclear compartments are intrinsically connected through the nuclear membrane, pores and lamina. High resolution imaging of each of these cellular features concurrently remains a significant challenge. To that end we have developed a new molecular nuclear membrane-endoplasmic reticulum (NM-ER) staining fluorophore with emission maxima at 650 nm. NM-ER is compatible with fixed and live cell imaging and stimulated emission depletion microscopy (STED) showing significant improvement in resolution when compared to comparable confocal laser scanning microscopy. The imaging versatility of NM-ER was illustrated through its compatible use with other fluorophores for co-imaging with DNA, nuclear pores and lamina allowing cellular abnormalities to be identified. NM-ER alone, or in use with other nuclear region labels could be an important tool for the investigation of nuclear transport and associated cellular processes. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

12 pages, 3194 KB  
Case Report
Imaging-Based Molecular Interaction Between Src and Lamin A/C Mechanosensitive Proteins in the Nucleus of Laminopathic Cells
by Stefania Petrini, Giulia Bagnato, Michela Piccione, Valentina D’Oria, Valentina Apollonio, Marco Cappa, Claudia Castiglioni, Filippo Maria Santorelli, Teresa Rizza, Rosalba Carrozzo, Enrico Silvio Bertini and Barbara Peruzzi
Int. J. Mol. Sci. 2024, 25(24), 13365; https://doi.org/10.3390/ijms252413365 - 13 Dec 2024
Cited by 1 | Viewed by 1395
Abstract
Laminopathies represent a wide range of genetic disorders caused by mutations in gene-encoding proteins of the nuclear lamina. Altered nuclear mechanics have been associated with laminopathies, given the key role of nuclear lamins as mechanosensitive proteins involved in the mechanotransduction process. To shed [...] Read more.
Laminopathies represent a wide range of genetic disorders caused by mutations in gene-encoding proteins of the nuclear lamina. Altered nuclear mechanics have been associated with laminopathies, given the key role of nuclear lamins as mechanosensitive proteins involved in the mechanotransduction process. To shed light on the nuclear partners cooperating with altered lamins, we focused on Src tyrosine kinase, known to phosphorylate proteins of the nuclear lamina. Here, we demonstrated a tight relationship between lamin A/C and Src in skin fibroblasts from two laminopathic patients, assessed by advanced imaging-based microscopy techniques. With confocal laser scanning and Stimulated Emission Depletion (STED) microscopy, a statistically significant higher co-distribution between the two proteins was observed in patients’ fibroblasts. Furthermore, the time-domain fluorescence lifetime imaging microscopy, combined with Förster resonance energy transfer detection, demonstrated a decreased lifetime value of Src (as donor fluorophore) in the presence of lamin A/C (as acceptor dye) in double-stained fibroblast nuclei in both healthy cells and patients’ cells, thereby indicating a molecular interaction that resulted significantly higher in laminopathic cells. All these results demonstrate a molecular interaction between Src and lamin A/C in healthy fibroblasts and their aberrant interaction in laminopathic nuclei, thus creating the possibilities of new diagnostic and therapeutic approaches for patients. Full article
(This article belongs to the Special Issue Protein Signal Transduction in the Nucleus)
Show Figures

Figure 1

35 pages, 20847 KB  
Review
The ATTO 565 Dye and Its Applications in Microscopy
by Yuheng Wu and René M. Williams
Molecules 2024, 29(17), 4243; https://doi.org/10.3390/molecules29174243 - 6 Sep 2024
Viewed by 2000
Abstract
ATTO 565, a Rhodamine-type dye, has garnered significant attention due to its remarkable optical properties, such as a high fluorescence quantum yield, and the fact that it is a relatively stable structure and has low biotoxicity. ATTO 565 has found extensive applications in [...] Read more.
ATTO 565, a Rhodamine-type dye, has garnered significant attention due to its remarkable optical properties, such as a high fluorescence quantum yield, and the fact that it is a relatively stable structure and has low biotoxicity. ATTO 565 has found extensive applications in combination with microscopy technology. In this review, the chemical and optical properties of ATTO 565 are introduced, along with the principles behind them. The functionality of ATTO 565 in confocal microscopy, stimulated emission depletion (STED) microscopy, single-molecule tracking (SMT) techniques, two-photon excitation–stimulated emission depletion microscopy (TPE-STED) and fluorescence correlation spectroscopy (FCS) is discussed. These studies demonstrate that ATTO 565 plays a crucial role in areas such as biological imaging and single-molecule localization, thus warranting further in-depth investigations. Finally, we present some prospects and concepts for the future applications of ATTO 565 in the fields of biocompatibility and metal ion detection. This review does not include theoretical calculations for the ATTO 565 molecule. Full article
(This article belongs to the Special Issue Advances in Functional Organic Dye Chemistry)
Show Figures

Graphical abstract

15 pages, 3046 KB  
Article
β-Galactosidase- and Photo-Activatable Fluorescent Probes for Protein Labeling and Super-Resolution STED Microscopy in Living Cells
by Taukeer A. Khan, Stefan Stoldt, Mariano L. Bossi, Vladimir N. Belov and Stefan W. Hell
Molecules 2024, 29(15), 3596; https://doi.org/10.3390/molecules29153596 - 30 Jul 2024
Viewed by 2455
Abstract
We report on the synthesis of two fluorescent probes which can be activated by β-Galactosidase (β-Gal) enzymes and/or light. The probes contained 2-nitro-4-oxybenzyl and 3-nitro-4-oxybenzyl fragments, with β-Gal residues linked to C-4. We performed the enzymatic and photoactivation of the probes in a [...] Read more.
We report on the synthesis of two fluorescent probes which can be activated by β-Galactosidase (β-Gal) enzymes and/or light. The probes contained 2-nitro-4-oxybenzyl and 3-nitro-4-oxybenzyl fragments, with β-Gal residues linked to C-4. We performed the enzymatic and photoactivation of the probes in a cuvette and compared them, prior to the labeling of Vimentin–Halo fusion protein in live cells with overexpressed β-galactosidase. The dye fluorescence afforded the observation of enzyme activity by means of confocal and super-resolution optical microscopy based on stimulated emission depletion (STED). The tracing of enzymatic activity with the retention of activated fluorescent products inside cells was combined with super-resolution imaging as a tool for use in biomedicine and life science. Full article
(This article belongs to the Special Issue Fluorescence Detection of Biomolecules)
Show Figures

Graphical abstract

23 pages, 5717 KB  
Review
Recent Advances in Fluorescent Nanoparticles for Stimulated Emission Depletion Imaging
by Liqing Qi, Songlin Liu, Jiantao Ping, Xingxing Yao, Long Chen, Dawei Yang, Yijun Liu, Chenjing Wang, Yating Xiao, Lubin Qi, Yifei Jiang and Xiaohong Fang
Biosensors 2024, 14(7), 314; https://doi.org/10.3390/bios14070314 - 21 Jun 2024
Cited by 6 | Viewed by 2704
Abstract
Stimulated emission depletion (STED) microscopy, as a popular super-resolution imaging technique, has been widely used in bio-structure analysis and resolving the dynamics of biological processes beyond the diffraction limit. The performance of STED critically depends on the optical properties of the fluorescent probes. [...] Read more.
Stimulated emission depletion (STED) microscopy, as a popular super-resolution imaging technique, has been widely used in bio-structure analysis and resolving the dynamics of biological processes beyond the diffraction limit. The performance of STED critically depends on the optical properties of the fluorescent probes. Ideally, the probe should process high brightness and good photostability, and exhibit a sensitive response to the depletion beam. Organic dyes and fluorescent proteins, as the most widely used STED probes, suffer from low brightness and exhibit rapid photobleaching under a high excitation power. Recently, luminescent nanoparticles (NPs) have emerged as promising fluorescent probes in biological imaging due to their high brightness and good photostability. STED imaging using various kinds of NPs, including quantum dots, polymer dots, carbon dots, aggregation-induced emission dots, etc., has been demonstrated. This review will comprehensively review recent advances in fluorescent NP-based STED probes, discuss their advantages and pitfalls, and outline the directions for future development. Full article
(This article belongs to the Special Issue Activatable Probes for Biosensing, Imaging, and Photomedicine)
Show Figures

Figure 1

11 pages, 2537 KB  
Article
The Expression of Cell Cycle Cyclins in a Human Megakaryoblast Cell Line Exposed to Simulated Microgravity
by Alisa A. Sokolovskaya, Ekaterina A. Sergeeva, Arkadiy A. Metelkin, Mikhail A. Popov, Irina A. Zakharova and Sergey G. Morozov
Int. J. Mol. Sci. 2024, 25(12), 6484; https://doi.org/10.3390/ijms25126484 - 12 Jun 2024
Cited by 1 | Viewed by 1565
Abstract
The study of the physiological and pathophysiological processes under extreme conditions facilitates a better understanding of the state of a healthy organism and can also shed light on the pathogenesis of diseases. In recent years, it has become evident that gravitational stress affects [...] Read more.
The study of the physiological and pathophysiological processes under extreme conditions facilitates a better understanding of the state of a healthy organism and can also shed light on the pathogenesis of diseases. In recent years, it has become evident that gravitational stress affects both the whole organism and individual cells. We have previously demonstrated that simulated microgravity inhibits proliferation, induces apoptosis, changes morphology, and alters the surface marker expression of megakaryoblast cell line MEG-01. In the present work, we investigate the expression of cell cycle cyclins in MEG-01 cells. We performed several experiments for 24 h, 72 h, 96 h and 168 h. Flow cytometry and Western blot analysis demonstrated that the main change in the levels of cyclins expression occurs under conditions of simulated microgravity after 96 h. Thus, the level of cyclin A expression showed an increase in the RPM group during the first 4 days, followed by a decrease, which, together with the peak of cyclin D, may indicate inhibition of the cell cycle in the G2 phase, before mitosis. In addition, based on the data obtained by PCR analysis, we were also able to see that both cyclin A and cyclin B expression showed a peak at 72 h, followed by a gradual decrease at 96 h. STED microscopy data also confirmed that the main change in cyclin expression of MEG-01 cells occurs at 96 h, under simulated microgravity conditions, compared to static control. These results suggested that the cell cycle disruption induced by RPM-simulated microgravity in MEG-01 cells may be associated with the altered expression of the main regulators of the cell cycle. Thus, these data implicate the development of cellular stress in MEG-01 cells, which may be important for proliferating human cells exposed to microgravity in real space. Full article
Show Figures

Figure 1

12 pages, 4657 KB  
Article
In Situ Structural Characterization of Cardiomyocyte Microenvironment by Multimodal STED Microscopy
by Zhao Zhang, Bruce Z. Gao and Tong Ye
Photonics 2024, 11(6), 533; https://doi.org/10.3390/photonics11060533 - 3 Jun 2024
Cited by 1 | Viewed by 4667
Abstract
Within the myocardium, cardiomyocytes reside in a complex and dynamic extracellular matrix (ECM) consisting of a basement membrane (BM) and interstitial matrix. The interactions between cardiomyocytes and the myocardial ECM play a critical role in maintaining cardiac geometry and function throughout cardiac development [...] Read more.
Within the myocardium, cardiomyocytes reside in a complex and dynamic extracellular matrix (ECM) consisting of a basement membrane (BM) and interstitial matrix. The interactions between cardiomyocytes and the myocardial ECM play a critical role in maintaining cardiac geometry and function throughout cardiac development and in adult hearts. Understanding how the structural changes of the myocardial ECM affect cardiomyocyte function requires knowledge of pericellular structures. These structures are of a size beyond the resolution of conventional optical microscopy. Here, we demonstrated multi-scale and multi-aspect characterization of the cardiomyocyte microenvironment in myocardial tissue sections using multimodal stimulated emission depletion (STED) microscopy. Second harmonic generation and autofluorescence facilitated multiplexed imaging, enabling the interpretation of protein distribution in 3D. STED imaging modality revealed BM structures of cardiomyocytes and myocardial capillaries at the subdiffractional level. Moreover, meaningful measurements retrieved from acquired images, such as sarcomere length and capillary density, enabled quantitative assessment of myocardial structures. Full article
(This article belongs to the Special Issue Advanced Optical Microscopy and Imaging Technology)
Show Figures

Figure 1

16 pages, 15649 KB  
Article
3D Computational Modeling of Defective Early Endosome Distribution in Human iPSC-Based Cardiomyopathy Models
by Hafiza Nosheen Saleem, Nadezda Ignatyeva, Christiaan Stuut, Stefan Jakobs, Michael Habeck and Antje Ebert
Cells 2024, 13(11), 923; https://doi.org/10.3390/cells13110923 - 27 May 2024
Cited by 1 | Viewed by 2113
Abstract
Intracellular cargo delivery via distinct transport routes relies on vesicle carriers. A key trafficking route distributes cargo taken up by clathrin-mediated endocytosis (CME) via early endosomes. The highly dynamic nature of the endosome network presents a challenge for its quantitative analysis, and theoretical [...] Read more.
Intracellular cargo delivery via distinct transport routes relies on vesicle carriers. A key trafficking route distributes cargo taken up by clathrin-mediated endocytosis (CME) via early endosomes. The highly dynamic nature of the endosome network presents a challenge for its quantitative analysis, and theoretical modelling approaches can assist in elucidating the organization of the endosome trafficking system. Here, we introduce a new computational modelling approach for assessment of endosome distributions. We employed a model of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with inherited mutations causing dilated cardiomyopathy (DCM). In this model, vesicle distribution is defective due to impaired CME-dependent signaling, resulting in plasma membrane-localized early endosomes. We recapitulated this in iPSC-CMs carrying two different mutations, TPM1-L185F and TnT-R141W (MUT), using 3D confocal imaging as well as super-resolution STED microscopy. We computed scaled distance distributions of EEA1-positive vesicles based on a spherical approximation of the cell. Employing this approach, 3D spherical modelling identified a bi-modal segregation of early endosome populations in MUT iPSC-CMs, compared to WT controls. Moreover, spherical modelling confirmed reversion of the bi-modal vesicle localization in RhoA II-treated MUT iPSC-CMs. This reflects restored, homogeneous distribution of early endosomes within MUT iPSC-CMs following rescue of CME-dependent signaling via RhoA II-dependent RhoA activation. Overall, our approach enables assessment of early endosome distribution in cell-based disease models. This new method may provide further insight into the dynamics of endosome networks in different physiological scenarios. Full article
Show Figures

Figure 1

13 pages, 10354 KB  
Article
Click Chemistry with Cell-Permeable Fluorophores Expands the Choice of Bioorthogonal Markers for Two-Color Live-Cell STED Nanoscopy
by Carola Gregor, Florian Grimm, Jasmin Rehman, Christian A. Wurm and Alexander Egner
Cells 2024, 13(8), 683; https://doi.org/10.3390/cells13080683 - 15 Apr 2024
Cited by 2 | Viewed by 2671
Abstract
STED nanoscopy allows for the direct observation of dynamic processes in living cells and tissues with diffraction-unlimited resolution. Although fluorescent proteins can be used for STED imaging, these labels are often outperformed in photostability by organic fluorescent dyes. This feature is especially crucial [...] Read more.
STED nanoscopy allows for the direct observation of dynamic processes in living cells and tissues with diffraction-unlimited resolution. Although fluorescent proteins can be used for STED imaging, these labels are often outperformed in photostability by organic fluorescent dyes. This feature is especially crucial for time-lapse imaging. Unlike fluorescent proteins, organic fluorophores cannot be genetically fused to a target protein but require different labeling strategies. To achieve simultaneous imaging of more than one protein in the interior of the cell with organic fluorophores, bioorthogonal labeling techniques and cell-permeable dyes are needed. In addition, the fluorophores should preferentially emit in the red spectral range to reduce the potential phototoxic effects that can be induced by the STED light, which further restricts the choice of suitable markers. In this work, we selected five different cell-permeable organic dyes that fulfill all of the above requirements and applied them for SPIEDAC click labeling inside living cells. By combining click-chemistry-based protein labeling with other orthogonal and highly specific labeling methods, we demonstrate two-color STED imaging of different target structures in living specimens using different dye pairs. The excellent photostability of the dyes enables STED imaging for up to 60 frames, allowing the observation of dynamic processes in living cells over extended time periods at super-resolution. Full article
(This article belongs to the Special Issue Recent Advances in Intravital and Live Cell Imaging)
Show Figures

Figure 1

20 pages, 8366 KB  
Article
Dynamic Mode Decomposition of Multiphoton and Stimulated Emission Depletion Microscopy Data for Analysis of Fluorescent Probes in Cellular Membranes
by Daniel Wüstner, Jacob Marcus Egebjerg and Line Lauritsen
Sensors 2024, 24(7), 2096; https://doi.org/10.3390/s24072096 - 25 Mar 2024
Cited by 1 | Viewed by 1777
Abstract
An analysis of the membrane organization and intracellular trafficking of lipids often relies on multiphoton (MP) and super-resolution microscopy of fluorescent lipid probes. A disadvantage of particularly intrinsically fluorescent lipid probes, such as the cholesterol and ergosterol analogue, dehydroergosterol (DHE), is their low [...] Read more.
An analysis of the membrane organization and intracellular trafficking of lipids often relies on multiphoton (MP) and super-resolution microscopy of fluorescent lipid probes. A disadvantage of particularly intrinsically fluorescent lipid probes, such as the cholesterol and ergosterol analogue, dehydroergosterol (DHE), is their low MP absorption cross-section, resulting in a low signal-to-noise ratio (SNR) in live-cell imaging. Stimulated emission depletion (STED) microscopy of membrane probes like Nile Red enables one to resolve membrane features beyond the diffraction limit but exposes the sample to a lot of excitation light and suffers from a low SNR and photobleaching. Here, dynamic mode decomposition (DMD) and its variant, higher-order DMD (HoDMD), are applied to efficiently reconstruct and denoise the MP and STED microscopy data of lipid probes, allowing for an improved visualization of the membranes in cells. HoDMD also allows us to decompose and reconstruct two-photon polarimetry images of TopFluor-cholesterol in model and cellular membranes. Finally, DMD is shown to not only reconstruct and denoise 3D-STED image stacks of Nile Red-labeled cells but also to predict unseen image frames, thereby allowing for interpolation images along the optical axis. This important feature of DMD can be used to reduce the number of image acquisitions, thereby minimizing the light exposure of biological samples without compromising image quality. Thus, DMD as a computational tool enables gentler live-cell imaging of fluorescent probes in cellular membranes by MP and STED microscopy. Full article
Show Figures

Figure 1

17 pages, 7783 KB  
Article
Differential Mitochondrial, Oxidative Stress and Inflammatory Responses to SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung Microvascular, Coronary Artery Endothelial and Bronchial Epithelial Cells
by Gabrielė Kulkovienė, Deimantė Narauskaitė, Agilė Tunaitytė, Augusta Volkevičiūtė, Zbigniev Balion, Olena Kutakh, Dovydas Gečys, Milda Kairytė, Martyna Uldukytė, Edgaras Stankevičius and Aistė Jekabsone
Int. J. Mol. Sci. 2024, 25(6), 3188; https://doi.org/10.3390/ijms25063188 - 10 Mar 2024
Cited by 1 | Viewed by 3661
Abstract
Recent evidence indicates that the SARS-CoV-2 spike protein affects mitochondria with a cell type-dependent outcome. We elucidate the effect of the SARS-CoV-2 receptor binding domain (RBD) on the mitochondrial network and cristae morphology, oxygen consumption, mitoROS production, and inflammatory cytokine expression in cultured [...] Read more.
Recent evidence indicates that the SARS-CoV-2 spike protein affects mitochondria with a cell type-dependent outcome. We elucidate the effect of the SARS-CoV-2 receptor binding domain (RBD) on the mitochondrial network and cristae morphology, oxygen consumption, mitoROS production, and inflammatory cytokine expression in cultured human lung microvascular (HLMVECs), coronary artery endothelial (HCAECs), and bronchial epithelial cells (HBECs). Live Mito Orange staining, STED microscopy, and Fiji MiNa analysis were used for mitochondrial cristae and network morphometry; an Agilent XFp analyser for mitochondrial/glycolytic activity; MitoSOX fluorescence for mitochondrial ROS; and qRT-PCR plus Luminex for cytokines. HLMVEC exposure to SARS-CoV-2 RBD resulted in the fragmentation of the mitochondrial network, mitochondrial swelling, increased cristae area, reduced cristae density, and suppressed mitochondrial oxygen consumption and glycolysis. No significant mitochondrial morphology or oxygen consumption changes were observed in HCAECs and HBECs. SARS-CoV-2 RBD induced mitoROS-mediated expression of cytokines GM-CSF and IL-1β in all three investigated cell types, along with IL-8 expression in both endothelial cell types. The findings suggest mitochondrial ROS control SARS-CoV-2 RBD-induced inflammation in HLMVECs, HCAECs, and HBECs, with the mitochondria of HLMVECs being more sensitive to SARS-CoV-2 RBD. Full article
(This article belongs to the Special Issue Mitochondria in Human Health and Disease 2.0)
Show Figures

Graphical abstract

19 pages, 3319 KB  
Article
3D Super-Resolution Nuclear Q-FISH Imaging Reveals Cell-Cycle-Related Telomere Changes
by Tatiana V. Pochechueva, Niko Schwenzer, Tobias Kohl, Sören Brandenburg, Gesa Kaltenecker, Bernd Wollnik and Stephan E. Lehnart
Int. J. Mol. Sci. 2024, 25(6), 3183; https://doi.org/10.3390/ijms25063183 - 10 Mar 2024
Cited by 4 | Viewed by 3107
Abstract
We present novel workflows for Q-FISH nanoscopy with the potential for prognostic applications and resolving novel chromatin compaction changes. DNA-fluorescence in situ hybridization (DNA-FISH) is a routine application to visualize telomeres, repetitive terminal DNA sequences, in cells and tissues. Telomere attrition is associated [...] Read more.
We present novel workflows for Q-FISH nanoscopy with the potential for prognostic applications and resolving novel chromatin compaction changes. DNA-fluorescence in situ hybridization (DNA-FISH) is a routine application to visualize telomeres, repetitive terminal DNA sequences, in cells and tissues. Telomere attrition is associated with inherited and acquired diseases, including cancer and cardiomyopathies, and is frequently analyzed by quantitative (Q)-FISH microscopy. Recently, nanoscopic imaging techniques have resolved individual telomere dimensions and their compaction as a prognostic marker, in part leading to conflicting conclusions still unresolved to date. Here, we developed a comprehensive Q-FISH nanoscopy workflow to assess telomeres with PNA telomere probes and 3D-Stimulated Emission Depletion (STED) microscopy combined with Dynamic Intensity Minimum (DyMIN) scanning. We achieved single-telomere resolution at high, unprecedented telomere coverage. Importantly, our approach revealed a decrease in telomere signal density during mitotic cell division compared to interphase. Innovatively expanding FISH-STED applications, we conducted double FISH targeting of both telomere- and chromosome-specific sub-telomeric regions and accomplished FISH-STED in human cardiac biopsies. In summary, this work further advanced Q-FISH nanoscopy, detected a new aspect of telomere compaction related to the cell cycle, and laid the groundwork for future applications in complex cell types such as post-mitotic neurons and muscle cells. Full article
(This article belongs to the Special Issue Telomeres in Development, Senescence and Genome Instability)
Show Figures

Graphical abstract

18 pages, 4074 KB  
Article
Phosphodiesterases 4B and 4D Differentially Regulate cAMP Signaling in Calcium Handling Microdomains of Mouse Hearts
by Axel E. Kraft, Nadja I. Bork, Hariharan Subramanian, Nikoleta Pavlaki, Antonio V. Failla, Bernd Zobiak, Marco Conti and Viacheslav O. Nikolaev
Cells 2024, 13(6), 476; https://doi.org/10.3390/cells13060476 - 8 Mar 2024
Cited by 4 | Viewed by 2822
Abstract
The ubiquitous second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts [...] Read more.
The ubiquitous second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts has been shown to result in arrhythmias and heart failure. Here, we sought to systematically investigate specific roles of PDE4B and PDE4D in the regulation of cAMP dynamics in three distinct subcellular microdomains, one of them located at the caveolin-rich plasma membrane which harbors the L-type calcium channels (LTCCs), as well as at two sarco/endoplasmic reticulum (SR) microdomains centered around SR Ca2+-ATPase (SERCA2a) and cardiac ryanodine receptor type 2 (RyR2). Transgenic mice expressing Förster Resonance Energy Transfer (FRET)-based cAMP-specific biosensors targeted to caveolin-rich plasma membrane, SERCA2a and RyR2 microdomains were crossed to PDE4B-KO and PDE4D-KO mice. Direct analysis of the specific effects of both PDE4 subfamilies on local cAMP dynamics was performed using FRET imaging. Our data demonstrate that all three microdomains are differentially regulated by these PDE4 subfamilies. Whereas both are involved in cAMP regulation at the caveolin-rich plasma membrane, there are clearly two distinct cAMP microdomains at the SR formed around RyR2 and SERCA2a, which are preferentially controlled by PDE4B and PDE4D, respectively. This correlates with local cAMP-dependent protein kinase (PKA) substrate phosphorylation and arrhythmia susceptibility. Immunoprecipitation assays confirmed that PDE4B is associated with RyR2 along with PDE4D. Stimulated Emission Depletion (STED) microscopy of immunostained cardiomyocytes suggested possible co-localization of PDE4B with both sarcolemmal and RyR2 microdomains. In conclusion, our functional approach could show that both PDE4B and PDE4D can differentially regulate cardiac cAMP microdomains associated with calcium homeostasis. PDE4B controls cAMP dynamics in both caveolin-rich plasma membrane and RyR2 vicinity. Interestingly, PDE4B is the major regulator of the RyR2 microdomain, as opposed to SERCA2a vicinity, which is predominantly under PDE4D control, suggesting a more complex regulatory pattern than previously thought, with multiple PDEs acting at the same location. Full article
(This article belongs to the Collection Compartmentilisation of Cellular Signaling)
Show Figures

Figure 1

27 pages, 18416 KB  
Article
High-Resolution Microscopic Characterization of Tunneling Nanotubes in Living U87 MG and LN229 Glioblastoma Cells
by Nicole Matejka, Asieh Amarlou, Jessica Neubauer, Sarah Rudigkeit and Judith Reindl
Cells 2024, 13(5), 464; https://doi.org/10.3390/cells13050464 - 6 Mar 2024
Cited by 3 | Viewed by 3229
Abstract
Tunneling nanotubes (TNTs) are fine, nanometer-sized membrane connections between distant cells that provide an efficient communication tool for cellular organization. TNTs are thought to play a critical role in cellular behavior, particularly in cancer cells. The treatment of aggressive cancers such as glioblastoma [...] Read more.
Tunneling nanotubes (TNTs) are fine, nanometer-sized membrane connections between distant cells that provide an efficient communication tool for cellular organization. TNTs are thought to play a critical role in cellular behavior, particularly in cancer cells. The treatment of aggressive cancers such as glioblastoma remains challenging due to their high potential for developing therapy resistance, high infiltration rates, uncontrolled cell growth, and other aggressive features. A better understanding of the cellular organization via cellular communication through TNTs could help to find new therapeutic approaches. In this study, we investigate the properties of TNTs in two glioblastoma cell lines, U87 MG and LN229, including measurements of their diameter by high-resolution live-cell stimulated emission depletion (STED) microscopy and an analysis of their length, morphology, lifetime, and formation by live-cell confocal microscopy. In addition, we discuss how these fine compounds can ideally be studied microscopically. In particular, we show which membrane-labeling method is suitable for studying TNTs in glioblastoma cells and demonstrate that live-cell studies should be preferred to explore the role of TNTs in cellular behavior. Our observations on TNT formation in glioblastoma cells suggest that TNTs could be involved in cell migration and serve as guidance. Full article
(This article belongs to the Special Issue Recent Advances in Intravital and Live Cell Imaging)
Show Figures

Figure 1

Back to TopTop