Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = Salmonella Reading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 283 KiB  
Article
Hygienic Quality of Air-Packed and Refrigerated or Frozen Stored Döner Kebab and Evaluation of the Growth of Intentionally Inoculated Listeria monocytogenes
by Francesca Coppola, Giada Ferluga, Lucilla Iacumin, Cristian Bernardi, Michela Pellegrini and Giuseppe Comi
Microorganisms 2025, 13(4), 701; https://doi.org/10.3390/microorganisms13040701 - 21 Mar 2025
Cited by 1 | Viewed by 472
Abstract
Döner kebab, a meat product of Middle-Eastern origin, has gained significant popularity and is now widely consumed across Europe. The recipe varies depending on the area, with beef, turkey, lamb, or chicken being used as main ingredients. The aim of this work was [...] Read more.
Döner kebab, a meat product of Middle-Eastern origin, has gained significant popularity and is now widely consumed across Europe. The recipe varies depending on the area, with beef, turkey, lamb, or chicken being used as main ingredients. The aim of this work was to assess the hygienic-sanitary quality of raw and cooked döner kebabs stored at 4 ± 2 °C for 10 days and at 8 ± 2 °C for the next 20 days or frozen (−18 °C) for one month. One additional aim was to determine the potential growth of Listeria monocytogenes intentionally inoculated in cooked döner kebab during storage at 4 ± 2 °C or freezing. The concentration of Total Viable Count (TVC) and the Enterobacteriaceae of the 100 samples of raw döner kebab were less than 7 log CFU/g and 4 log CFU/g, respectively. Consequently, the samples can be considered acceptable and similar to traditional raw meat. The cooked döner kebab can be considered safe for a period of 30 days, especially from a microbiological point of view, when stored under refrigerated conditions, also taking into account possible thermal abuse. Coagulase Positive Cocci (CPC), Clostridium H2S+, Salmonella spp., and Listeria monocytogenes were never found in any of the samples. After 30 days, the TVC was at the level of 6 log CFU/g and Enterobacteriaceae at less than 4 log CFU/g. The main concern was related to microbial or tissue activity, resulting in an increase in total volatile basic nitrogen (TVB-N) content. However, in the cooked samples, the TVB-N content remained below 40 mg N/100 g at the end of the shelf-life period (32.5 mg N/100 g), which is still considered an acceptable value. In addition, the level of Malondialdehyde (MDA) was found to be within acceptable limits, with a reading of 1.4 nmol/g attained after 30 days. The same product, when frozen and stored at −18 °C, can be considered stable for a minimum of 6 months, both from a microbiological and a physico-chemical point of view. No microbial growth was observed. The TVB-N and the MDA levels increased, but after 6 months, their levels were still acceptable, with values of 19.1 mg N/100 g and 1.2 nmol/g, respectively. These observations demonstrate low protein degradation and lipid oxidation during the shelf-life period. The challenge test showed that Listeria monocytogenes did not grow in döner kebab either when stored at 4 ± 2 °C for 10 days and 8 ± 2 °C for 20 days or when stored at −18 °C for 6 months. The concentration of L. monocytogenes was found to be 5.4 log CFU/g in the refrigerated products and 4.9 log CFU/g in the frozen products. At the end of the shelf-life period, the L. monocytogenes load in both products was lower than the initial concentration that had been added. Finally, the use of air-packaging has been proven to be beneficial to the preservation of the product and maintained its microbiological and physico-chemical properties intact. Despite these good results, future directions could be to investigate different plastic films and packaging such as Modified Atmosphere (MAP), Vacuum (VP), and Sous Vide packaging (SVP). Full article
(This article belongs to the Special Issue Feature Paper in Food Microbiology)
17 pages, 1473 KiB  
Article
Determination of Antimicrobial Resistance Megaplasmid-Like pESI Structures Contributing to the Spread of Salmonella Schwarzengrund in Japan
by Kanako Ishihara, Suzuka Someno, Kaoru Matsui, Chisato Nakazawa, Takahiro Abe, Hayato Harima, Tsutomu Omatsu, Manao Ozawa, Eriko Iwabuchi and Tetsuo Asai
Antibiotics 2025, 14(3), 288; https://doi.org/10.3390/antibiotics14030288 - 10 Mar 2025
Viewed by 918
Abstract
Background/Objectives: The acquisition of antimicrobial resistance by foodborne pathogens is a serious human health concern. In Japan, combinations of antimicrobial resistance genes in Salmonella from chicken meat were common among several serovars. Therefore, we hypothesized that different S. enterica serovars share a common [...] Read more.
Background/Objectives: The acquisition of antimicrobial resistance by foodborne pathogens is a serious human health concern. In Japan, combinations of antimicrobial resistance genes in Salmonella from chicken meat were common among several serovars. Therefore, we hypothesized that different S. enterica serovars share a common antimicrobial resistance plasmid. Methods: Antimicrobial resistance transfer was tested in S. Infantis and S. Schwarzengrund, the major serovars used as donors. The plasmid structure was determined by subjecting S. Infantis Sal_238 and S. Schwarzengrund Sal_249 to short- and long-read sequencing. Results: The high homology between pSal_249Sch and pSal_238Inf suggests they have a common ancestor. Because the sequences of pSal_238Inf and pSal_249Sch were highly homologous to pESI (a plasmid for emerging S. Infantis), pSal_238Inf and pSal_249Sch were identified as pESI-like plasmids. S. Schwarzengrund is the third Salmonella serovar to expand its distribution related to pESI-like plasmid acquisition. Core-genome multilocus sequence-type analysis revealed that S. Schwarzengrund isolates with pESI-like plasmids from Japan (core-genome sequence-type [cgST] 167363 and cgST287831), the UK (cgST167363), and the USA (cgST167363, cgST196045, and cgST287831) were closely related; they are also suggested to share a common ancestor. The transfer of antimicrobial resistance was observed in combinations of both serovars. Specifically, the tentative plasmid sequence obtained via short-read sequencing, PCR, and conjugation experiments identified deletions of antimicrobial resistance genes (aadA, sul1, and tetA), class 1 integron, mercury resistance operon, and/or plasmid transfer region in the pESI-like plasmid. Conclusion: These data on the structural diversity of pESI-like plasmids suggest that some time has passed since S. Schwarzengrund acquired them. Full article
Show Figures

Figure 1

14 pages, 6001 KiB  
Article
Rapid Detection of Salmonella Typhimurium During Cell Attachment on Three Food-Contact Surfaces Using Long-Read Sequencing
by Daniela Bermudez-Aguirre, Shannon Tilman, Joseph Uknalis, Brendan A. Niemira and Katrina L. Counihan
Microorganisms 2025, 13(3), 548; https://doi.org/10.3390/microorganisms13030548 - 28 Feb 2025
Viewed by 939
Abstract
Salmonella spp. are pathogenic microorganisms linked to foodborne outbreaks associated with eggs and egg products. Salmonella can resist sanitation of egg processing equipment and form biofilms on food-contact surfaces. A major challenge for controlling Salmonella is the ability to detect the cells during [...] Read more.
Salmonella spp. are pathogenic microorganisms linked to foodborne outbreaks associated with eggs and egg products. Salmonella can resist sanitation of egg processing equipment and form biofilms on food-contact surfaces. A major challenge for controlling Salmonella is the ability to detect the cells during the early stages of attachment to indicate that interventions are needed to sanitize the surface. This research investigated the use of long-read sequencing to identify Salmonella during the early stages (0–5 h) of cell attachment to three common food-contact surfaces—stainless steel, silicone, and nylon—and compared it with traditional microbiological methods. Results of the conventional plate counts showed that the detection of Salmonella began after three hours of incubation, with less than 1 log CFU/cm2 of growth. Silicone had the highest number of Salmonella attached (0.87 log CFU/cm2), followed by stainless steel (0.70 log CFU/cm2). Long-read whole genome sequencing identified attached Salmonella on stainless steel, silicone, and nylon after only one hour of incubation. The results of this study suggest that long-read sequencing could be a very useful method for detecting Salmonella at low concentrations in the processing environment during the early stages of cell attachment to food-contact surfaces, allowing for correct sanitation intervention. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

22 pages, 865 KiB  
Review
Bridging Classical Methodologies in Salmonella Investigation with Modern Technologies: A Comprehensive Review
by Steven Ray Kitchens, Chengming Wang and Stuart B. Price
Microorganisms 2024, 12(11), 2249; https://doi.org/10.3390/microorganisms12112249 - 7 Nov 2024
Cited by 1 | Viewed by 2533
Abstract
Advancements in genomics and machine learning have significantly enhanced the study of Salmonella epidemiology. Whole-genome sequencing has revolutionized bacterial genomics, allowing for detailed analysis of genetic variation and aiding in outbreak investigations and source tracking. Short-read sequencing technologies, such as those provided by [...] Read more.
Advancements in genomics and machine learning have significantly enhanced the study of Salmonella epidemiology. Whole-genome sequencing has revolutionized bacterial genomics, allowing for detailed analysis of genetic variation and aiding in outbreak investigations and source tracking. Short-read sequencing technologies, such as those provided by Illumina, have been instrumental in generating draft genomes that facilitate serotyping and the detection of antimicrobial resistance. Long-read sequencing technologies, including those from Pacific Biosciences and Oxford Nanopore Technologies, offer the potential for more complete genome assemblies and better insights into genetic diversity. In addition to these sequencing approaches, machine learning techniques like decision trees and random forests provide powerful tools for pattern recognition and predictive modeling. Importantly, the study of bacteriophages, which interact with Salmonella, offers additional layers of understanding. Phages can impact Salmonella population dynamics and evolution, and their integration into Salmonella genomics research holds promise for novel insights into pathogen control and epidemiology. This review revisits the history of Salmonella and its pathogenesis and highlights the integration of these modern methodologies in advancing our understanding of Salmonella. Full article
(This article belongs to the Special Issue Salmonella Infections: Trends and Updates)
Show Figures

Figure 1

19 pages, 7385 KiB  
Article
Genomic Profiling of Antimicrobial Resistance Genes in Clinical Salmonella Isolates from Cattle in the Texas Panhandle, USA
by Max Chung, Ethan Dudley, Hatem Kittana, Alexis C. Thompson, Matthew Scott, Keri Norman and Robert Valeris-Chacin
Antibiotics 2024, 13(9), 843; https://doi.org/10.3390/antibiotics13090843 - 4 Sep 2024
Cited by 1 | Viewed by 1583
Abstract
Rising antimicrobial resistance (AMR) in Salmonella serotypes host-adapted to cattle is of increasing concern to the beef and dairy industry. The bulk of the existing literature focuses on AMR post-slaughter. In comparison, the understanding of AMR in Salmonella among pre-harvest cattle is still [...] Read more.
Rising antimicrobial resistance (AMR) in Salmonella serotypes host-adapted to cattle is of increasing concern to the beef and dairy industry. The bulk of the existing literature focuses on AMR post-slaughter. In comparison, the understanding of AMR in Salmonella among pre-harvest cattle is still limited, particularly in Texas, which ranks top five in beef and dairy exports in the United States; inherently, the health of Texas cattle has nationwide implications for the health of the United States beef and dairy industry. In this study, long-read whole genome sequencing and bioinformatic methods were utilized to analyze antimicrobial resistance genes (ARGs) in 98 isolates from beef and dairy cattle in the Texas Panhandle. Fisher exact tests and elastic net models accounting for population structure were used to infer associations between genomic ARG profiles and antimicrobial phenotypic profiles and metadata. Gene mapping was also performed to assess the role of mobile genetic elements in harboring ARGs. Antimicrobial resistance genes were found to be statistically different between the type of cattle operation and Salmonella serotypes. Beef operations were statistically significantly associated with more ARGs compared to dairy operations. Salmonella Heidelberg, followed by Salmonella Dublin isolates, were associated with the most ARGs. Additionally, specific classes of ARGs were only present within mobile genetic elements. Full article
Show Figures

Figure 1

9 pages, 4998 KiB  
Article
Detection of Salmonella Mbandaka Carrying the blaCTX-M-8 Gene Located on IncI1 Plasmid Isolated from a Broiler Flock Environment
by Magdalena Zając, Magdalena Skarżyńska, Anna Lalak, Ewelina Iwan and Dariusz Wasyl
Pathogens 2024, 13(9), 723; https://doi.org/10.3390/pathogens13090723 - 27 Aug 2024
Viewed by 1111
Abstract
Salmonella Mbandaka is one of the most globally widespread serovars, occurring in many sources and included among twenty serovars that contribute to human salmonellosis in Europe. In Poland, it has been noted in non-human sources since 1996, being found firstly in feeds and [...] Read more.
Salmonella Mbandaka is one of the most globally widespread serovars, occurring in many sources and included among twenty serovars that contribute to human salmonellosis in Europe. In Poland, it has been noted in non-human sources since 1996, being found firstly in feeds and later in waterfowl and chicken. Over the years, it gained epidemiological importance, being isolated from a wide range of animal species, including livestock. Generally, it is characterized by sensitivity to most antimicrobials and the ability to form biofilms. The occurrence of cephalosporin-resistant Salmonella in non-human sources is an extremely rare phenomenon in Poland. In this report, we characterized the full genome of the ESBL-producing S. Mbandaka strain isolated from a broiler farm environment (boot swab sample) in Poland in 2022. The isolate was serotyped as S. Mbandaka according to the White–Kaufmann–Le Minor scheme. Antimicrobial susceptibility testing performed with the microbroth dilution method showed its resistance to ampicillin, cefotaxime, ceftazidime, ciprofloxacin, and nalidixic acid. The whole-genome sequence was reconstructed using short and long reads and assembled into the complete chromosome and three plasmids: IncI1 pST113 (89,439 bp), Col(pHAD28) (2699 bp), and Col440 (2495 bp). The strain belonged to sequence type ST413. Plasmid analysis showed blaCTX-M-8 mobilization on IncI1(alpha) surrounded with insertion sequences. The analyzed genome content draws attention to the possibility of the horizontal spread of the resistance genes. To the best of our knowledge, this is the first report of blaCTX-M-8-positive Salmonella in Poland. Full article
(This article belongs to the Special Issue Detection and Epidemiology of Drug-Resistant Bacteria)
Show Figures

Figure 1

10 pages, 5187 KiB  
Brief Report
Genomic Characterization of a Plasmid-Free and Highly Drug-Resistant Salmonella enterica Serovar Indiana Isolate in China
by Jiansen Gong, Ximin Zeng, Jingxiao Xu, Di Zhang, Xinhong Dou, Jun Lin and Chengming Wang
Vet. Sci. 2024, 11(1), 46; https://doi.org/10.3390/vetsci11010046 - 20 Jan 2024
Viewed by 2487
Abstract
The emergence of multi-drug resistant (MDR) Salmonella enterica serovar Indiana (S. Indiana) strains in China is commonly associated with the presence of one or more resistance plasmids harboring integrons pivotal in acquiring antimicrobial resistance (AMR). This study aims to elucidate the genetic [...] Read more.
The emergence of multi-drug resistant (MDR) Salmonella enterica serovar Indiana (S. Indiana) strains in China is commonly associated with the presence of one or more resistance plasmids harboring integrons pivotal in acquiring antimicrobial resistance (AMR). This study aims to elucidate the genetic makeup of this plasmid-free, highly drug-resistant S. Indiana S1467 strain. Genomic sequencing was performed using Illumina HiSeq 2500 sequencer and PacBio RS II System. Prodigal software predicted putative protein-coding sequences while BLASTP analysis was conducted. The S1467 genome comprises a circular 4,998,300 bp chromosome with an average GC content of 51.81%, encompassing 4709 open reading frames (ORFs). Fifty-four AMR genes were identified, conferring resistance across 16 AMR categories, aligning closely with the strain’s antibiotic susceptibility profile. Genomic island prediction unveiled an approximately 51 kb genomic island housing a unique YeeVU toxin–antitoxin system (TAS), a rarity in Salmonella species. This suggests that the AMR gene cluster on the S1467 genomic island may stem from the integration of plasmids originating from other Enterobacteriaceae. This study contributes not only to the understanding of the genomic characteristics of a plasmid-free, highly drug-resistant S. Indiana strain but also sheds light on the intricate mechanisms underlying antimicrobial resistance. The implications of our findings extend to the broader context of horizontal gene transfer between bacterial species, emphasizing the need for continued surveillance and research to address the evolving challenges posed by drug-resistant pathogens. Full article
Show Figures

Figure 1

14 pages, 6286 KiB  
Article
Salmonella Typhimurium with Eight Tandem Copies of blaNDM-1 on a HI2 Plasmid
by Huijuan Song, Siyu Zou, Yi Huang, Cui Jian, Weiyong Liu, Lei Tian, Lu Gong, Zhongju Chen, Ziyong Sun and Yue Wang
Microorganisms 2024, 12(1), 20; https://doi.org/10.3390/microorganisms12010020 - 22 Dec 2023
Cited by 4 | Viewed by 1745
Abstract
Carbapenem-resistant Salmonella has recently aroused increasing attention. In this study, a total of four sequence type 36 Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) isolates were consecutively isolated from an 11-month-old female patient with a gastrointestinal infection, of which one was [...] Read more.
Carbapenem-resistant Salmonella has recently aroused increasing attention. In this study, a total of four sequence type 36 Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) isolates were consecutively isolated from an 11-month-old female patient with a gastrointestinal infection, of which one was sensitive to carbapenems and three were resistant to carbapenems. Via antibiotic susceptibility testing, a carbapenemases screening test, plasmid conjugation experiments, Illumina short-reads, and PacBio HiFi sequencing, we found that all four S. Typhimurium isolates contained a blaCTX-M-14-positive IncI1 plasmid. One carbapenem-sensitive S. Typhimurium isolate then obtained an IncHI2 plasmid carrying blaNDM-1 and an IncP plasmid without any resistance genes during the disease progression. The blaNDM-1 gene was located on a new 30 kb multiple drug resistance region, which is flanked by IS26 and TnAs2, respectively. In addition, the ST_F0903R isolate contained eight tandem copies of the ISCR1 unit (ISCR1-dsbD-trpF-ble-blaNDM-1-ISAba125Δ1), but an increase in MICs to carbapenems was not observed. Our work further provided evidence of the rapid spread and amplification of blaNDM-1 through plasmid. Prompting the recognition of carbapenem-resistant Enterobacterales and the initiation of appropriate infection control measures are essential to avoid the spread of these organisms. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

14 pages, 2818 KiB  
Article
Characterization and Functional Evaluation of NK-lysin from Clownfish (Amphiprion ocellaris)
by Dapeng Yu, Haohang Zhao, Yiming Wen, Tao Li, Hongli Xia, Zhiwen Wang, Zhen Gan, Liqun Xia, Jianlin Chen and Yishan Lu
Fishes 2023, 8(11), 533; https://doi.org/10.3390/fishes8110533 - 25 Oct 2023
Viewed by 1958
Abstract
In previous studies, natural killer lysin (NK-lysin) emerged as a crucial antimicrobial peptide (AMP) discharged by NK cells and CTLs. The sequence of NK-lysin was cloned and discovered in some fishes, but its function remains unclear. In our study, we obtained a copy [...] Read more.
In previous studies, natural killer lysin (NK-lysin) emerged as a crucial antimicrobial peptide (AMP) discharged by NK cells and CTLs. The sequence of NK-lysin was cloned and discovered in some fishes, but its function remains unclear. In our study, we obtained a copy of NK-lysin from the spleen of the healthy clownfish (Amphiprion ocellaris; AoNK-lysin) through cloning and proceeded to investigate its potential functions and activities. The findings showed that the AoNK-lysin gene’s open reading frame (ORF) had a length of 465 base pairs (bp) and encoded 154 amino acids (aa), which included a saposin B domain and six cysteine residues that are highly conserved, forming three intrachain disulfide bonds to carry out antimicrobial activity. The AoNK-lysin gene was widely present in different tissues, with the skin showing the highest expression, followed by the eye, intestine, and muscle. Additionally, the expression of AoNK-lysin was significantly upregulated in the immune organs (spleen, gill, intestine, and head kidney) of A. ocellaris after being challenged by Singapore group iridovirus (SGIV). Furthermore, a 399 base pair cDNA sequence that encodes the fully developed peptide of AoNK-lysin was successfully inserted into a secretion plasmid called pPIC9K. Subsequently, a significant amount of the recombinant AoNK-lysin protein was efficiently manufactured using the Pichia pastoris expression system. The antibacterial test demonstrated that the AoNK-lysin protein significantly suppressed the growth of various pathogens, particularly Streptococcus agalactiae, Streptococcus iniae, Salmonella typhi, Shigella sonnei, Pseudomonas aeruginosa, and Aeromonas caviae. The minimal inhibitory concentration (MIC) was found to be 7.81 μg/mL. Further analysis of antiviral assays showed all the viral mRNA of SGIV to be significantly reduced after AoNK-lysin protein stimuli in FHM cells. Collectively, these discoveries indicate that AoNK-lysin exhibits features of both direct pathogen-killing abilities and inhibited virus replication. Full article
(This article belongs to the Special Issue Relationship between Nutrition and the Immune Response of Fish)
Show Figures

Figure 1

13 pages, 2562 KiB  
Article
A Colorimetric/Fluorescent Dual-Mode Aptasensor for Salmonella Based on the Magnetic Separation of Aptamers and a DNA-Nanotriangle Programmed Multivalent Aptamer
by Na Ma, Mengni Sun, Hanxing Shi, Liangliang Xue, Min Zhang, Wenge Yang, Yali Dang and Zhaohui Qiao
Foods 2023, 12(20), 3853; https://doi.org/10.3390/foods12203853 - 20 Oct 2023
Cited by 7 | Viewed by 2317
Abstract
Salmonella infection has emerged as a global health threat, causing death, disability, and socioeconomic disruption worldwide. The rapid and sensitive detection of Salmonella is of great significance in guaranteeing food safety. Herein, we developed a colorimetric/fluorescent dual-mode method based on a DNA-nanotriangle programmed [...] Read more.
Salmonella infection has emerged as a global health threat, causing death, disability, and socioeconomic disruption worldwide. The rapid and sensitive detection of Salmonella is of great significance in guaranteeing food safety. Herein, we developed a colorimetric/fluorescent dual-mode method based on a DNA-nanotriangle programmed multivalent aptamer for the sensitive detection of Salmonella. In this system, aptamers are precisely controlled and assembled on a DNA nanotriangle structure to fabricate a multivalent aptamer (NTri-Multi-Apt) with enhanced binding affinity and specificity toward Salmonella. The NTri-Multi-Apt was designed to carry many streptavidin-HRPs for colorimetric read-outs and a large load of Sybr green I in the dsDNA scaffold for the output of a fluorescent signal. Therefore, combined with the magnetic separation of aptamers and the prefabricated NTri-Multi-Apt, the dual-mode approach achieved simple and sensitive detection, with LODs of 316 and 60 CFU/mL for colorimetric and fluorescent detection, respectively. Notably, the fluorescent mode provided a self-calibrated and fivefold-improved sensitivity over colorimetric detection. Systematic results also revealed that the proposed dual-mode method exhibited high specificity and applicability for milk, egg white, and chicken meat samples, serving as a promising tool for real bacterial sample testing. As a result, the innovative dual-mode detection method showed new insights for the detection of other pathogens. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

13 pages, 1570 KiB  
Article
Genomic Characterization of Salmonella Isangi: A Global Perspective of a Rare Serovar
by Anamaria Mota Pereira dos Santos, Pedro Panzenhagen, Rafaela G. Ferrari, Ana Carolina S. de Jesus, Ana Beatriz Portes, Alan Clavelland Ochioni, Dalia dos Prazeres Rodrigues and Carlos Adam Conte-Junior
Antibiotics 2023, 12(8), 1309; https://doi.org/10.3390/antibiotics12081309 - 11 Aug 2023
Cited by 3 | Viewed by 2172
Abstract
Salmonella Isangi is an infrequent serovar that has recently been reported in several countries due to nosocomial infections. A considerable number of reports indicate Salmonella Isangi multidrug resistance, especially to cephalosporins, which could potentially pose a risk to public health worldwide. Genomic analysis [...] Read more.
Salmonella Isangi is an infrequent serovar that has recently been reported in several countries due to nosocomial infections. A considerable number of reports indicate Salmonella Isangi multidrug resistance, especially to cephalosporins, which could potentially pose a risk to public health worldwide. Genomic analysis is an excellent tool for monitoring the emergence of microorganisms and related factors. In this context, the aim of this study was to carry out a genomic analysis of Salmonella Isangi isolated from poultry in Brazil, and to compare it with the available genomes from the Pathogen Detection database and Sequence Read Archive. A total of 142 genomes isolated from 11 different countries were investigated. A broad distribution of extended-spectrum beta-lactamase (ESBL) genes was identified in the Salmonella Isangi genomes examined (blaCTX-M-15, blaCTX-M-2, blaDHA-1, blaNDM-1, blaOXA-10, blaOXA-1, blaOXA-48, blaSCO-1, blaSHV-5, blaTEM-131, blaTEM-1B), primarily in South Africa. Resistome analysis revealed predicted resistance to aminoglycoside, sulfonamide, macrolide, tetracycline, trimethoprim, phenicol, chloramphenicol, and quaternary ammonium. Additionally, PMQR (plasmid-mediated quinolone resistance) genes qnr19, qnrB1, and qnrS1 were identified, along with point mutations in the genes gyrAD87N, gyrAS83F, and gyrBS464F, which confer resistance to ciprofloxacin and nalidixic acid. With regard to plasmids, we identified 17 different incompatibility groups, including IncC, Col(pHAD28), IncHI2, IncHI2A, IncM2, ColpVC, Col(Ye4449), Col156, IncR, IncI1(Alpha), IncFIB (pTU3), Col(B5512), IncQ1, IncL, IncN, IncFIB(pHCM2), and IncFIB (pN55391). Phylogenetic analysis revealed five clusters grouped by sequence type and antimicrobial gene distribution. The study highlights the need for monitoring rare serovars that may become emergent due to multidrug resistance. Full article
(This article belongs to the Special Issue Antibiotic Resistance: One Health Issue)
Show Figures

Figure 1

16 pages, 2030 KiB  
Article
Plasmid Composition, Antimicrobial Resistance and Virulence Genes Profiles of Ciprofloxacin- and Third-Generation Cephalosporin-Resistant Foodborne Salmonella enterica Isolates from Russia
by Anna Egorova, Andrey Shelenkov, Konstantin Kuleshov, Nina Kulikova, Aleksey Chernyshkov, Igor Manzeniuk, Yulia Mikhaylova and Vasiliy Akimkin
Microorganisms 2023, 11(2), 347; https://doi.org/10.3390/microorganisms11020347 - 30 Jan 2023
Cited by 6 | Viewed by 2643
Abstract
Salmonella enterica is an important foodborne pathogen worldwide. Ciprofloxacin and extended-spectrum cephalosporins are the common first-line antimicrobial drugs for the treatment of salmonellosis, antimicrobial resistance genes for which are mostly transferred via plasmids. The goal of this work was to perform genomic analysis [...] Read more.
Salmonella enterica is an important foodborne pathogen worldwide. Ciprofloxacin and extended-spectrum cephalosporins are the common first-line antimicrobial drugs for the treatment of salmonellosis, antimicrobial resistance genes for which are mostly transferred via plasmids. The goal of this work was to perform genomic analysis of plasmids from foodborne S. enterica isolates obtained in Russia based on whole-genome sequencing. In the current study, 11 multidrug-resistant samples isolated in 2021 from 8 regions of Russia were selected based on their resistance to ciprofloxacin and third-generation cephalosporins (CIP-3rd). Whole-genome short-read sequencing (WGS) was performed for all isolates; the samples belonged to five different sequence types (ST32, ST469, ST11, ST142, and ST548) which had different profiles of antimicrobial resistance (AMR) and virulence genes. We have performed additional long-read sequencing of four representative S. enterica isolates, which showed that they carried pESI-like megaplasmids of 202–280 kb length harboring extended-spectrum β-lactamase genes, fluoroquinolone, tetracycline, and aminoglycosides resistance genes, as well as several virulence determinants. We believe that the WGS data obtained will greatly facilitate further studies of foodborne S. enterica isolates epidemiology in terms of their self-transmissible plasmid composition that mediated antimicrobial resistance and virulence determinants conferring selective advantages of this important bacterial pathogen. Full article
Show Figures

Figure 1

16 pages, 3250 KiB  
Article
Comparative Genomics of a Polyvalent Escherichia-Salmonella Phage fp01 and In Silico Analysis of Its Receptor Binding Protein and Conserved Enterobacteriaceae Phage Receptor
by Ignacio Vasquez, Julio Retamales, Barbara Parra, Vimbai Machimbirike, James Robeson and Javier Santander
Viruses 2023, 15(2), 379; https://doi.org/10.3390/v15020379 - 28 Jan 2023
Cited by 4 | Viewed by 3013
Abstract
The polyvalent bacteriophage fp01, isolated from wastewater in Valparaiso, Chile, was described to have lytic activity across bacterial species, including Escherichia coli and Salmonella enterica serovars. Due to its polyvalent nature, the bacteriophage fp01 has potential applications in the biomedical, food and agricultural [...] Read more.
The polyvalent bacteriophage fp01, isolated from wastewater in Valparaiso, Chile, was described to have lytic activity across bacterial species, including Escherichia coli and Salmonella enterica serovars. Due to its polyvalent nature, the bacteriophage fp01 has potential applications in the biomedical, food and agricultural industries. Also, fundamental aspects of polyvalent bacteriophage biology are unknown. In this study, we sequenced and described the complete genome of the polyvalent phage fp01 (MH745368.2) using long- (MinION, Nanopore) and short-reads (MiSeq, Illumina) sequencing. The bacteriophage fp01 genome has 109,515 bp, double-stranded DNA with an average G+C content of 39%, and 158 coding sequences (CDSs). Phage fp01 has genes with high similarity to Escherichia coli, Salmonella enterica, and Shigella sp. phages. Phylogenetic analyses indicated that the phage fp01 is a new Tequintavirus fp01 specie. Receptor binding protein gp108 was identified as potentially responsible for fp01 polyvalent characteristics, which binds to conserved amino acid regions of the FhuA receptor of Enterobacteriaceae. Full article
(This article belongs to the Special Issue Viruses of Microbes 2022)
Show Figures

Figure 1

19 pages, 2346 KiB  
Article
Critical Assessment of Short-Read Assemblers for the Metagenomic Identification of Foodborne and Waterborne Pathogens Using Simulated Bacterial Communities
by Zhao Chen and Jianghong Meng
Microorganisms 2022, 10(12), 2416; https://doi.org/10.3390/microorganisms10122416 - 6 Dec 2022
Cited by 4 | Viewed by 2702
Abstract
Metagenomics offers the highest level of strain discrimination of bacterial pathogens from complex food and water microbiota. With the rapid evolvement of assembly algorithms, defining an optimal assembler based on the performance in the metagenomic identification of foodborne and waterborne pathogens is warranted. [...] Read more.
Metagenomics offers the highest level of strain discrimination of bacterial pathogens from complex food and water microbiota. With the rapid evolvement of assembly algorithms, defining an optimal assembler based on the performance in the metagenomic identification of foodborne and waterborne pathogens is warranted. We aimed to benchmark short-read assemblers for the metagenomic identification of foodborne and waterborne pathogens using simulated bacterial communities. Bacterial communities on fresh spinach and in surface water were simulated by generating paired-end short reads of Illumina HiSeq, MiSeq, and NovaSeq at different sequencing depths. Multidrug-resistant Salmonella Indiana SI43 and Pseudomonas aeruginosa PAO1 were included in the simulated communities on fresh spinach and in surface water, respectively. ABySS, IDBA-UD, MaSuRCA, MEGAHIT, metaSPAdes, and Ray Meta were benchmarked in terms of assembly quality, identifications of plasmids, virulence genes, Salmonella pathogenicity island, antimicrobial resistance genes, chromosomal point mutations, serotyping, multilocus sequence typing, and whole-genome phylogeny. Overall, MEGHIT, metaSPAdes, and Ray Meta were more effective for metagenomic identification. We did not obtain an optimal assembler when using the extracted reads classified as Salmonella or P. aeruginosa for downstream genomic analyses, but the extracted reads showed consistent phylogenetic topology with the reference genome when they were aligned with Salmonella or P. aeruginosa strains. In most cases, HiSeq, MiSeq, and NovaSeq were comparable at the same sequencing depth, while higher sequencing depths generally led to more accurate results. As assembly algorithms advance and mature, the evaluation of assemblers should be a continuous process. Full article
(This article belongs to the Special Issue Foodborne and Waterborne Pathogens)
Show Figures

Figure 1

20 pages, 4860 KiB  
Article
Genome Analysis and Therapeutic Evaluation of a Novel Lytic Bacteriophage of Salmonella Typhimurium: Suggestive of a New Genus in the Subfamily Vequintavirinae
by Sadia Sattar, Inam Ullah, Sofia Khanum, Marc Bailie, Bushra Shamsi, Ibrar Ahmed, Tahir Abbas Shah, Sundus Javed, Aamir Ghafoor, Amna Pervaiz, Fakiha Sohail, Kaleem Imdad, Aamira Tariq, Nazish Bostan, Ijaz Ali and Eric Altermann
Viruses 2022, 14(2), 241; https://doi.org/10.3390/v14020241 - 25 Jan 2022
Cited by 4 | Viewed by 4072
Abstract
Salmonella Typhimurium, a foodborne pathogen, is a major concern for food safety. Its MDR serovars of animal origin pose a serious threat to the human population. Phage therapy can be an alternative for the treatment of such MDR Salmonella serovars. In this study, [...] Read more.
Salmonella Typhimurium, a foodborne pathogen, is a major concern for food safety. Its MDR serovars of animal origin pose a serious threat to the human population. Phage therapy can be an alternative for the treatment of such MDR Salmonella serovars. In this study, we report on detailed genome analyses of a novel Salmonella phage (Salmonella-Phage-SSBI34) and evaluate its therapeutic potential. The phage was evaluated for latent time, burst size, host range, and bacterial growth reduction in liquid cultures. The phage stability was examined at various pH levels and temperatures. The genome analysis (141.095 Kb) indicated that its nucleotide sequence is novel, as it exhibited only 1–7% DNA coverage. The phage genome features 44% GC content, and 234 putative open reading frames were predicted. The genome was predicted to encode for 28 structural proteins and 40 enzymes related to nucleotide metabolism, DNA modification, and protein synthesis. Further, the genome features 11 tRNA genes for 10 different amino acids, indicating alternate codon usage, and hosts a unique hydrolase for bacterial lysis. This study provides new insights into the subfamily Vequintavirinae, of which SSBI34 may represent a new genus. Full article
(This article belongs to the Special Issue Bacteriophages in Food Applications)
Show Figures

Figure 1

Back to TopTop