Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = bidirectional resonant DC-DC converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2535 KiB  
Article
A Bidirectional Resonant Converter Based on Partial Power Processing
by Junfeng Liu, Zhouzhou Wu and Qinglin Zhao
Electronics 2025, 14(5), 910; https://doi.org/10.3390/electronics14050910 - 25 Feb 2025
Viewed by 533
Abstract
This article proposes a bidirectional half-bridge resonant converter based on partial power regulation. The converter adopts an LLC converter as a DC-DC transformer (LLC-DCX) in the main power circuit and works in the open loop at the resonant frequency to give full play [...] Read more.
This article proposes a bidirectional half-bridge resonant converter based on partial power regulation. The converter adopts an LLC converter as a DC-DC transformer (LLC-DCX) in the main power circuit and works in the open loop at the resonant frequency to give full play to the performance advantages of the LLC resonant converter. The partial power regulation circuit incorporates a synchronous Buck converter, enabling forward and backward power transmission by controlling the power flow direction. The converter achieves soft switching in both forward and backward directions, thereby reducing switching losses and enhancing conversion efficiency. Compared with the LLC-DCX converter, this converter can achieve wide voltage gain regulation while having high efficiency, which makes it suitable for charge–discharge applications between energy storage systems and DC Buses. In order to verify the performance of the proposed converter, a 1 kW prototype was constructed, maintaining a constant primary voltage of 400 V and a secondary voltage range of 350 V to 450 V. Experimental results indicate that the prototype achieves peak efficiencies of 97.74% in forward operation and 96.92% in backward operation, thoroughly demonstrating the feasibility and effectiveness of the proposed converter. Full article
Show Figures

Figure 1

27 pages, 13691 KiB  
Article
Novel Current-Fed Bidirectional DC-DC Converter for Battery Charging in Electric Vehicle Applications with Reduced Spikes
by Piyush Sharma, Dheeraj Kumar Palwalia, Ashok Kumar Sharma, Yatindra Gopal and Julio C. Rosas-Caro
Electricity 2024, 5(4), 1022-1048; https://doi.org/10.3390/electricity5040052 - 13 Dec 2024
Viewed by 1272
Abstract
Electric vehicles (EVs) have emerged as the best alternative to conventional fossil fuel-based vehicles due to their lower emission rate and operating cost. The escalating growth of EVs has increased the necessity for distributed charging stations. On the other hand, the fast charging [...] Read more.
Electric vehicles (EVs) have emerged as the best alternative to conventional fossil fuel-based vehicles due to their lower emission rate and operating cost. The escalating growth of EVs has increased the necessity for distributed charging stations. On the other hand, the fast charging of EVs can be improved by the use of efficient converters. Hence, the fractional order proportional resonant (FOPR) controller-based current-fed bidirectional DC-DC converter is proposed in this work for EV charging applications. The output capacitance of the switches is utilized to achieve the resonance condition for zero voltage switching (ZVS) and zero current switching (ZCS). The proposed converter topology is implemented using the MATLAB Simulink tool. The result analysis verified that the proposed converter topology provides better switching characteristics for different operating modes, which is necessary for a high-voltage EV charger. Hence, it is proved that the proposed converter is more efficient for battery charging in EVs. Full article
Show Figures

Figure 1

14 pages, 4252 KiB  
Article
Vector Reconfiguration on a Bidirectional Multilevel LCL-T Resonant Converter
by Jie Shi, Zhongyi Zhang, Yi Xu, Dandan Zou and Hui Cao
Electronics 2024, 13(22), 4557; https://doi.org/10.3390/electronics13224557 - 20 Nov 2024
Viewed by 556
Abstract
With the development of distributed energy technology, the establishment of the energy internet has become a general trend, and relevant research about the core component, energy router, has also become a hotspot. Therefore, the bidirectional isolated DC–DC converter (BIDC) is widely used in [...] Read more.
With the development of distributed energy technology, the establishment of the energy internet has become a general trend, and relevant research about the core component, energy router, has also become a hotspot. Therefore, the bidirectional isolated DC–DC converter (BIDC) is widely used in AC–DC–AC energy router systems, because it can flexibly support the DC bus voltage ratio and achieve bidirectional power flow. This paper proposes a novel vector reconfiguration on a bidirectional multilevel LCL-T resonant converter in which an NPC (neutral-point clamped) multilevel structure with a flying capacitor is introduced to form a novel active bridge, and a coupling transformer is specially added into the active bridge to achieve multilevel voltage output under hybrid modulation. In addition, an LCL-T two-port vector analysis is adopted to elaborate bidirectional power flow which can generate some reactive power to realize zero-voltage switching (ZVS) on active bridges to improve the efficiency of the converter. Meanwhile, due to the symmetry of the LCL-T structure, the difficulty of the bidirectional operation analysis of the power flow is reduced. Finally, a simulation study is designed with a rated voltage of 200 V on front and rear input sources which has a rated power of 450 W with an operational efficiency of 93.8%. Then, the feasibility of the proposed converter is verified. Full article
Show Figures

Figure 1

5 pages, 961 KiB  
Proceeding Paper
Bidirectional Resonant Power Converter for Hybrid Energy Systems
by Angel Lichev, Yasen Madankov, Vasil Mihov and Dimitar Spirov
Eng. Proc. 2024, 70(1), 3; https://doi.org/10.3390/engproc2024070003 - 23 Jul 2024
Cited by 1 | Viewed by 608
Abstract
A bidirectional series DC-DC power converter with two resonant tank components is presented. A survey of a two-bridge inverter laboratory model of the device operating above resonant frequency is realized. A control technique with frequency variation at a defined range is used and [...] Read more.
A bidirectional series DC-DC power converter with two resonant tank components is presented. A survey of a two-bridge inverter laboratory model of the device operating above resonant frequency is realized. A control technique with frequency variation at a defined range is used and by which a control characteristics linearization is achieved and the efficiency of the device is improved. The behavior of the relevant converter operating at different frequency ratios is demonstrated, and the dependencies of the current through the resonant components and the output voltage are obtained. The possibility of the converter to transfer the energy in both forward and reverse directions at different input and output loads is demonstrated, which proves the applicability of the device in the area of hybrid energy systems. Full article
Show Figures

Figure 1

15 pages, 11771 KiB  
Essay
Harmonic Self-Compensation Control for Bidirectional Grid Tied Inverter Based on Crown Porcupine Optimization Algorithm
by Ao Tian, Fenghui Zhang and Peng Xiao
Electronics 2024, 13(13), 2607; https://doi.org/10.3390/electronics13132607 - 3 Jul 2024
Viewed by 844
Abstract
A self-compensating control strategy for harmonic parameters based on the crown porcupine optimization algorithm is proposed for the single-phase rectifier and two-phase inverter operation mode of the bidirectional converter. In order to improve the response speed of the inverter voltage, the instantaneous expressions [...] Read more.
A self-compensating control strategy for harmonic parameters based on the crown porcupine optimization algorithm is proposed for the single-phase rectifier and two-phase inverter operation mode of the bidirectional converter. In order to improve the response speed of the inverter voltage, the instantaneous expressions of the phase angle coefficient and amplitude coefficient of the dc-side voltage doubling fluctuation are derived, and the third harmonic is calculated based on the crown porcupine optimization algorithm according to the Proportional Integral (PI) + Quasi-Proportional Resonance (QPR) double closed-loop control method and injected into the input voltage of the inverter side to offset the influence of the bus-doubling fluctuation on the output voltage of the two-phase inverters of B and C so that the total harmonic content of the two-phase output voltages of the two-phase inverters of B and C can be reduced. The total harmonic content of the B and C inverter output voltages is reduced. The effective control of the control method for single-phase rectifier two-phase inverter mode is verified through simulation. Finally, the effectiveness of the control strategy is verified by experimenting with a 15 kW LCL-type bi-directional converter prototype. Full article
Show Figures

Figure 1

29 pages, 2237 KiB  
Article
Average Modeling of High Frequency AC Link Three-Port DC/DC/DC Converters
by Eduardo Vasquez Mayen and Emmanuel De Jaeger
Electricity 2024, 5(2), 397-425; https://doi.org/10.3390/electricity5020021 - 17 Jun 2024
Viewed by 1655
Abstract
The current transition towards renewable energies has led to an increased utilization of Photovoltaic (PV) sources and battery energy storage systems to complement the PV panels. To facilitate energy transfer among PVs, batteries, and loads, multiple converters are required. Thus, this transformation in [...] Read more.
The current transition towards renewable energies has led to an increased utilization of Photovoltaic (PV) sources and battery energy storage systems to complement the PV panels. To facilitate energy transfer among PVs, batteries, and loads, multiple converters are required. Thus, this transformation in the energy system has resulted in an increase in converter-interfaced elements. Within this context, three-port converters allow for replacing multiple converters with a single one. These three-port converters use a high-frequency AC resonant link for the bidirectional transfer of energy across the different ports. This architecture uses multiple switches and has a variable operating frequency. These characteristics make the simulation of these converters computationally heavy. Thus, averaged models are required, especially for simulating multiple converters connected in parallel or composing a microgrid. In this paper, an averaged model for this type of converter is developed. The methodology is first demonstrated and applied to a two-port DC/DC converter, and subsequently extended to the three-port DC/DC/DC version. Afterwards, control strategies for three-port DC/DC/DC converters are proposed based on the elements connected to their ports. The developed model for three-port DC/DC/DC converters is then implemented in an islanded DC microgrid to demonstrate their parallel operation. The proposed developed averaged models and the test DC microgrid are implemented in MATLAB/Simulink. Full article
Show Figures

Figure 1

29 pages, 7577 KiB  
Review
Overview of Isolated Bidirectional DC–DC Converter Topology and Switching Strategies for Electric Vehicle Applications
by Zhenkun Wang, Xianjin Su, Nianyin Zeng and Jiahui Jiang
Energies 2024, 17(10), 2434; https://doi.org/10.3390/en17102434 - 20 May 2024
Cited by 10 | Viewed by 3876
Abstract
Isolated bidirectional DC–DC converters are becoming increasingly important in various applications, particularly in the electric vehicle sector, due to their ability to achieve bidirectional power flow and their safety features. This paper aims to review the switch strategies and topologies of isolated bidirectional [...] Read more.
Isolated bidirectional DC–DC converters are becoming increasingly important in various applications, particularly in the electric vehicle sector, due to their ability to achieve bidirectional power flow and their safety features. This paper aims to review the switch strategies and topologies of isolated bidirectional DC–DC converters, with a specific focus on their applications in the field of electric vehicles. From the perspective of topology, PWM-type isolated bidirectional DC–DC converters, dual active bridge converters, and resonant-type isolated bidirectional DC–DC converters constitute the three main categories of these converters. The paper further examines the traditional switch strategies of these converters and discusses how specific switch technologies, such as single-phase shift, expanding-phase shift, double-phase shift, and triple-phase shift, can enhance the overall performance of isolated bidirectional DC–DC converters. The paper meticulously examines the characteristics of each topology and control scheme, as well as their typical use cases in practical applications. Particularly, the paper delves into the applications of isolated bidirectional DC–DC converters in the electric vehicle sector and draws conclusions regarding their potential and trends in future electric vehicle technology. Full article
Show Figures

Figure 1

27 pages, 12794 KiB  
Article
An EV SRM Drive and Its Interconnected Operations Integrated into Grid, Microgrid, and Vehicle
by Wei-Kai Gu, Chen-Wei Yang and Chang-Ming Liaw
Appl. Sci. 2024, 14(7), 3032; https://doi.org/10.3390/app14073032 - 4 Apr 2024
Cited by 3 | Viewed by 1430
Abstract
This paper presents an electric vehicle (EV) switched reluctance motor (SRM) drive with incorporated operation capabilities integrated into the utility grid, the microgrid, and another EV. The motor drive DC-link voltage is established from the battery through an interleaved boost/buck converter with fault [...] Read more.
This paper presents an electric vehicle (EV) switched reluctance motor (SRM) drive with incorporated operation capabilities integrated into the utility grid, the microgrid, and another EV. The motor drive DC-link voltage is established from the battery through an interleaved boost/buck converter with fault tolerance. The varied DC-link voltage can improve driving performance and reduce battery energy consumption over a wide speed range. Through a well-designed current control scheme, speed control scheme, and dynamic commutation tuning scheme, the established SRM drive possesses good performance in the motor driving mode. During deceleration, the regenerative braking energy can be effectively recovered to the battery. When the EV is in idle mode, the grid-to-vehicle (G2V) charging operation can be conducted through the bidirectional switch mode rectifier (SMR) and CLLC resonant converter. Satisfactory charging performance with good line drawn power quality and galvanic isolation is preserved. Conversely, the vehicle-to-grid (V2G) discharging operation can be performed. The EV can make movable energy storage device applications. Finally, the interconnected operations of the developed EV SRM drive to vehicle and microgrid are presented. Through vehicle-to-vehicle (V2V) operation, it can supply energy to the nearby EV when the battery is exhausted and needs roadside assistance. In addition, microgrid-to-vehicle (M2V) and vehicle-to-microgrid (V2M) operations can also be conductible. The EV battery can be charged from the microgrid. Conversely, it can also provide energy support to the microgrid. Full article
Show Figures

Figure 1

24 pages, 2929 KiB  
Article
Effective Design Methodology of CLLC Resonant Converter Based on the Minimal Area Product of High-Frequency Transformer
by Magdalena Bartecka, Mariusz Kłos and Józef Paska
Energies 2024, 17(1), 55; https://doi.org/10.3390/en17010055 - 21 Dec 2023
Cited by 2 | Viewed by 4825
Abstract
In DC microgrids, CLLC topology is commonly applied for battery integration. It provides galvanic separation, the ability to integrate a high-frequency transformer into the resonance circuit, and the ability to operate in a wide range of voltage. Moreover, it assures zero voltage switching [...] Read more.
In DC microgrids, CLLC topology is commonly applied for battery integration. It provides galvanic separation, the ability to integrate a high-frequency transformer into the resonance circuit, and the ability to operate in a wide range of voltage. Moreover, it assures zero voltage switching conditions for all switches and zero current switching conditions for secondary side switches, which enables obtaining high efficiency. This paper presents a clear and effective approach to design a methodology for a CLLC DC/DC converter, especially a resonant tank. High-frequency transformer is fully integrated in a resonant tank. Its size is minimal and based on area product parameter Ap. An equivalent scheme for first harmonic approximation analysis is presented with inclusion of parasitic elements. Based on it, the analytical formulas are provided, which enable graphical determination of working characteristics. It was proved that the model increases the accuracy of the results. The conditions of ZVS and maximal magnetizing inductance are established, including parasitic capacitances of secondary side switches and transformer parasitic capacitances. Based on the proposed design methodology, as the proof of concept, a small-power prototype with a GaN transistor was built operating at 364 kHz. Converter losses were determined through analytical expressions and compared with the experimental and simulation results. Full article
(This article belongs to the Special Issue Applications of High-Efficiency Converters)
Show Figures

Figure 1

34 pages, 21817 KiB  
Article
A Control Design Technology of Isolated Bidirectional LLC Resonant Converter for Energy Storage System in DC Microgrid Applications
by You-Kun Tai and Kuo-Ing Hwu
Energies 2023, 16(19), 6877; https://doi.org/10.3390/en16196877 - 29 Sep 2023
Cited by 3 | Viewed by 2596
Abstract
This paper presents a new control method for a bidirectional DC–DC LLC resonant topology converter. The proposed converter can be applied to power the conversion between an energy storage system and a DC bus in a DC microgrid or bidirectional power flow conversion [...] Read more.
This paper presents a new control method for a bidirectional DC–DC LLC resonant topology converter. The proposed converter can be applied to power the conversion between an energy storage system and a DC bus in a DC microgrid or bidirectional power flow conversion between vehicle-to-grid (V2G) behavior and grid-to-vehicle (G2V) behavior. Furthermore, such a converter can be applied to energy storage systems for decentralized renewable energy generation systems, such as solar and wind power. In addition, this converter can be combined with a bidirectional inverter to allow energy storage in the system to improve the safety, stability, and power quality of the microgrid. In the proposed circuit structure, we use a bidirectional DC–DC LLC, which has the advantages of a higher voltage conversion ratio, lower part count, simpler control than similar converters such as DAB, CLLC, and L–LLC converters, and bidirectional power flow and electrical isolation. Specifically, to extend the battery life, it can be employed as a control strategy for discharging the energy stored in the battery (SOC) and reducing the temperature rise generated by the internal solid electrolyte interphase (SEI) when discharging the battery under the variation in distributed energy resource (DER) generation and load demand. To realize the bidirectional power conversion without using any auxiliary inductor and only changing the control strategy, the forward step-down power conversion was based on pulse frequency modulation (PFM) control, and the reverse step-up power conversion was based on pulse width modulation (PWM) control. In this paper, we introduce the bidirectional converter topology and its control strategy for the DC microgrid battery energy storage system. Finally, a 500 W prototype is built to verify the effectiveness of the proposed converter. Full article
(This article belongs to the Special Issue Optimal Design and Application of High-Performance Power Converters)
Show Figures

Figure 1

32 pages, 28399 KiB  
Article
Voltage-Oriented Control-Based Three-Phase, Three-Leg Bidirectional AC–DC Converter with Improved Power Quality for Microgrids
by Moshammed Nishat Tasnim, Tofael Ahmed, Monjila Afrin Dorothi, Shameem Ahmad, G. M. Shafiullah, S. M. Ferdous and Saad Mekhilef
Energies 2023, 16(17), 6188; https://doi.org/10.3390/en16176188 - 25 Aug 2023
Cited by 14 | Viewed by 2674
Abstract
Renewable energy sources (RESs) and energy storage schemes (ESSs) integrated into a microgrid (MG) system have been widely used in power generation and distribution to provide a constant supply of electricity. The power electronics converters, particularly the bidirectional power converters (BPCs), are promising [...] Read more.
Renewable energy sources (RESs) and energy storage schemes (ESSs) integrated into a microgrid (MG) system have been widely used in power generation and distribution to provide a constant supply of electricity. The power electronics converters, particularly the bidirectional power converters (BPCs), are promising interfaces for MG infrastructure because they control the power management of the whole MG system. The controller of BPCs can be designed using several different control strategies. However, all the existing controllers have system stability, dynamics, and power quality issues. Therefore, this study demonstrates the development of an LCL-filtered grid-connected bidirectional AC–DC converter’s (BADC) control strategy based on voltage-oriented control (VOC) to overcome these issues. The proposed VOC-based inner current control loop (ICCL) is implemented in synchronous dq-coordinate with the help of proportional-integral (PI) controllers. An observer-based active damping (AD) is also developed in order to estimate the filter capacitor current from the capacitor voltage instead of directly measuring it. This developed AD system helps to damp the resonance effect of the LCL filter, improves system stability, and also eliminates the practical challenges of measuring capacitor current. The proposed controller with AD is able to realize bidirectional power transfer (BPT) with reduced power losses due to the elimination of passive damping and improved power quality, system dynamics, and stability. The mathematical modeling of the suggested system was developed, and the structure of the system model was established in the MATLAB/Simulink environment. The performance of the proposed system was validated with real-time software-in-the-loop (RT-SIL) simulation using the OPAL-RT simulator for a 16 kVA converter system. The real-time (RT) simulation results show that the BADC with the proposed control scheme can provide better dynamic performance and operate with tolerable total harmonic distortion (THD) of 2.62% and 2.71% for inverter and rectifier modes of operation, respectively. Full article
(This article belongs to the Special Issue Development Strategies of Distributed Power Generation)
Show Figures

Figure 1

17 pages, 9271 KiB  
Article
State-Plane Trajectory-Based Duty Control of a Resonant Bidirectional DC/DC Converter with Balanced Capacitors Stress
by Abd Ur Rehman, Minsung Kim and Jin-Woo Jung
Mathematics 2023, 11(14), 3222; https://doi.org/10.3390/math11143222 - 22 Jul 2023
Cited by 1 | Viewed by 1734
Abstract
This paper presents the design, analysis, and control of a dual transformer-based bidirectional DC/DC resonant converter featuring balanced voltage stress across all the resonant capacitors. Compared to existing topologies, the proposed converter has a dual-rectifier structure on the secondary side, which allows operation [...] Read more.
This paper presents the design, analysis, and control of a dual transformer-based bidirectional DC/DC resonant converter featuring balanced voltage stress across all the resonant capacitors. Compared to existing topologies, the proposed converter has a dual-rectifier structure on the secondary side, which allows operation over a wide load range with balanced voltage stress across all resonant components. The transformer stress is greatly reduced by employing two small transformers, thus greatly lowering thermal as well electrical stresses on the transformers’ windings. Furthermore, by operating the primary-side interleaved converter at a fixed 50% duty, input current ripples are significantly reduced. The proposed controller consists of a feedforward control part for effective system uncertainty compensation and a feedback control part for the convergence of system error dynamics. Notably, state-plane trajectory theory is employed to derive accurate feedforward compensation terms. Additionally, the effect of resonant elements’ parameter mismatch is analyzed in detail. The designed controller was implemented using the TI TMS320F28377D DSP on a 3.3 kW prototype hardware board. Detailed experimental investigations under tough, practical operating conditions corroborate an effective bidirectional power transfer operation with a balanced voltage stress distribution in each resonant element. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

25 pages, 8018 KiB  
Article
High-Order Sliding-Mode Control Strategy for Improving Robustness of Three-Phase Interleaved Bidirectional Converter
by Yifan Jia, Dazhi Wang, Guofeng Sun, Yongliang Ni, Keling Song and Yanming Li
Sustainability 2023, 15(12), 9720; https://doi.org/10.3390/su15129720 - 18 Jun 2023
Cited by 2 | Viewed by 1818
Abstract
In response to the era background of “comprehensive electrification” and “dual carbon plan” of electric vehicles, DC/DC converters have a good performance in terms of weight, volume, and efficiency and are widely used in fields such as solar power generation, UPS, communication, computers, [...] Read more.
In response to the era background of “comprehensive electrification” and “dual carbon plan” of electric vehicles, DC/DC converters have a good performance in terms of weight, volume, and efficiency and are widely used in fields such as solar power generation, UPS, communication, computers, and electric vehicles. At present, the DC bus voltage is an important indicator for measuring the safe and stable operation of high-voltage DC power systems in electric vehicles. Therefore, regulating the stability of bus voltage through converters has good economic benefits for the sustainable development of electric vehicles in terms of maintenance costs and effective energy management. In order to solve the problem of bus voltage resonance instability caused by negative impedance characteristics of constant power load in an electric vehicle DC power system, a sliding-mode control design strategy of three-phase interleaved bidirectional converter under constant power load was proposed. Firstly, a GPI observer was designed to estimate the state and concentrated disturbances of the system. Then, the estimated value was introduced into the controller for feedforward compensation, thereby achieving fast-tracking of the output voltage to the reference voltage. Finally, the simulation results show that the controller can effectively maintain the influence of disturbances and better improve tracking characteristics and robustness to disturbances and uncertainties. Full article
Show Figures

Figure 1

20 pages, 12376 KiB  
Article
Performance Assessment of a Grid-Connected Two-Stage Bidirectional Converter for a Combined PV–Battery Energy Storage System
by Md. Mahamudul Hasan, Shahid Jaman, Thomas Geury and Omar Hegazy
Energies 2023, 16(11), 4486; https://doi.org/10.3390/en16114486 - 1 Jun 2023
Cited by 3 | Viewed by 2368
Abstract
This paper presents a comprehensive performance assessment of a two-stage power electronic (PE) converter for interfacing the grid of a lithium-ion battery energy storage system (Li-BESS) for building-integrated PV (BIPV) applications. A performance assessment of the control system was conducted for the two-stage [...] Read more.
This paper presents a comprehensive performance assessment of a two-stage power electronic (PE) converter for interfacing the grid of a lithium-ion battery energy storage system (Li-BESS) for building-integrated PV (BIPV) applications. A performance assessment of the control system was conducted for the two-stage PE interface with a common DC-link, which consisted of a bi-directional boost converter with a cascaded PI controller and an AC/DC converter with proportional-integral (PI) and proportional-resonant (PR) controllers. The assessment covered loss analysis and useful lifetime estimation for the 10 kW PE interface with a wide-bandgap SiC power MOSFET at different loads for both the charging and discharging modes of a 50 kWh lithium-ion battery system. Additionally, a performance comparison of various switching frequencies was performed. It was observed that the system was stable up to a switching frequency of 30 kHz, and that increasing the switching frequency improved the responsiveness of the converter by decreasing the settling time; however, there were diminishing returns at higher switching frequencies. To obtain a proper balance between responsiveness and lower loss, a switching frequency of 10 kHz was selected. Full article
Show Figures

Figure 1

21 pages, 14950 KiB  
Article
An Input-Series-Output-Parallel Cascaded Converter System Applied to DC Microgrids
by Menghan Lv, Peng Wang, Yaoquan Wei, Chunxue Wen, Jianlin Li, Pengyu Jia and Qingxuan Wei
Symmetry 2023, 15(6), 1174; https://doi.org/10.3390/sym15061174 - 30 May 2023
Cited by 5 | Viewed by 2299
Abstract
Direct current transformer (DCT) is a key piece of equipment in direct current (DC) microgrids, and the mainstream topologies mainly include LLC resonant converter (LLC) and dual active bridge (DAB). In this paper, a novel bi-directional buck/boost + CLLLC cascade topology is proposed [...] Read more.
Direct current transformer (DCT) is a key piece of equipment in direct current (DC) microgrids, and the mainstream topologies mainly include LLC resonant converter (LLC) and dual active bridge (DAB). In this paper, a novel bi-directional buck/boost + CLLLC cascade topology is proposed for the input-series-output-parallel cascade converter system of a DC microgrid. To solve the problem that frequency variation causes the converter to deviate from the optimal operating point, resulting in low efficiency, and the inability to achieve a soft switching function. The CLLLC converter operates near the resonant frequency point as a DCT, only providing electrical isolation and voltage matching, while the buck/boost converter controls the output voltage and the voltage and current sharing of each module. Compared to other cascaded converter systems, the cascaded converter proposed in this paper has high efficiency, simplifies the parameter design, and is suitable for wide input and wide output operating conditions. The system adopts a three-loop control strategy, establishes the small-signal modeling of the system, and its stability is verified by theoretical analysis and simulation. The simulation and experimental results verify the correctness of the proposed cascaded converter based on buck/boost + CLLLC and the effectiveness of the control strategy. Full article
Show Figures

Figure 1

Back to TopTop