Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = cell killing particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1464 KB  
Article
Killer Peptide-Containing Polyelectrolytic Nanocomplexes to Fight Toxoplasma gondii Infection
by Arianna Bucella, Manuela Semeraro, Laura Giovati, Lorenza Artesani, Ruggero Bettini, Annalisa Bianchera and Alice Vismarra
Pharmaceutics 2025, 17(8), 1075; https://doi.org/10.3390/pharmaceutics17081075 - 20 Aug 2025
Viewed by 240
Abstract
Background/Objectives: Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, typically is asymptomatic in immunocompetent individuals but causes severe complications in immunocompromised subjects and during pregnancy. Current treatments such as pyrimethamine and sulfadiazine are effective for acute infections but cannot eliminate encysted bradyzoites [...] Read more.
Background/Objectives: Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, typically is asymptomatic in immunocompetent individuals but causes severe complications in immunocompromised subjects and during pregnancy. Current treatments such as pyrimethamine and sulfadiazine are effective for acute infections but cannot eliminate encysted bradyzoites and have significant side effects. The antimicrobial killer peptide (KP) has interesting therapeutic potential, but its intracellular delivery is challenging; hyaluronate-based nanoparticles loaded with KP (KP-NPs) were evaluated to target T. gondii-infected cells that overexpress CD44. Methods: KP-NPs made of chitosan and hyaluronate were produced by microfluidics and were characterized for size, surface charge, encapsulation efficiency, and stability under stress conditions. After excluding their toxicity, their activity was tested in vitro against Candida albicans and T. gondii as free tachyzoite or in infected human foreskin fibroblasts (HFFs). Results: KP was efficiently encapsulated in nanoparticles and protected from harsh acidic conditions at high temperature. Preliminary in vitro testing against C. albicans showed that, at the lowest candidacidal concentration of KP (2.5 μg/mL), KP-NPs killed 90.97% of yeast cells. KP itself proved to be non-toxic for HFFs as host cells and effective against T. gondii. Comparable results were obtained for KP-NPs and blank nanoparticles (BLK-NPs), with no observed toxicity to host cells, confirming that encapsulation did not alter peptide efficacy. The parasiticidal effect of KP alone, as well as KP-NPs at 250 µg/mL and BLK-NPs, was confirmed through tests on free T. gondii tachyzoites. Reduction rates for the number of infected cells ranged from 66% to 90% with respect to control, while the reduction in the number of intracellular tachyzoites ranged from 66% to 80%. Interestingly, KP alone was not effective against intracellular tachyzoite, while KP-NPs maintained an efficacy comparable to the extracellular model, suggesting that particles helped the internalization of the peptide. Conclusions: Encapsulation of KP into hyaluronate/chitosan nanoparticles does not alter its activity and improves its efficacy against the intracellular parasite. Notably, BLK-NPs appeared to exhibit efficacy against the parasite on its own, without the presence of KP. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

18 pages, 3127 KB  
Article
Influence of the pH Synthesis of Fe3O4 Magnetic Nanoparticles on Their Applicability for Magnetic Hyperthermia: An In Vitro Analysis
by Bárbara Costa, Eurico Pereira, Vital C. Ferreira-Filho, Ana Salomé Pires, Laura C. J. Pereira, Paula I. P. Soares, Maria Filomena Botelho, Fernando Mendes, Manuel P. F. Graça and Sílvia Soreto Teixeira
Pharmaceutics 2025, 17(7), 844; https://doi.org/10.3390/pharmaceutics17070844 - 27 Jun 2025
Viewed by 1433
Abstract
Nanotechnology, specifically magnetic nanoparticles (MNPs), is revolutionizing cancer treatment. Magnetic hyperthermia is a treatment that, using MNPs, can selectively kill cancer cells without causing damage to the surrounding tissues. Background/Objectives: This work aimed to analyze how the synthesis conditions, namely, how the [...] Read more.
Nanotechnology, specifically magnetic nanoparticles (MNPs), is revolutionizing cancer treatment. Magnetic hyperthermia is a treatment that, using MNPs, can selectively kill cancer cells without causing damage to the surrounding tissues. Background/Objectives: This work aimed to analyze how the synthesis conditions, namely, how the pH of the reaction can influence the magnetic properties of Fe3O4 nanoparticles for magnetic hyperthermia, using the hydrothermal synthesis. Methods: For the hydrothermal synthesis, FeCl3·6H2O and FeCl2·4H2O were mixed with different quantities of NaOH to adjust the pH. After obtaining a black precipitate, the samples were placed in an autoclave at 200 °C for 60 h, followed by a washing and drying phase. The obtained MNPs were analyzed using X-Ray Diffraction (XRD), Transmission Electron Microscopy, a Superconducting Quantum Interference Device, Specific Absorption Rate analysis, and cytotoxicity assays. Results: Different MNPs were analyzed (9.06 < pH < 12.75). The XRD results showed the presence of various iron oxide phases (magnetite, maghemite, and hematite), resulting from the oxidization of the iron phases present in the autoclave. In terms of the average particle size, it was verified that, by increasing the pH value, the size decreases (from 53.53 nm to 9.49 nm). Additionally, MNPs possess a superparamagnetic behaviour with high SAR values (above 69.3 W/g). Conclusions: It was found that the pH of the reaction can influence the size, morphology, magnetization, and thermal efficiency of the MNP. The MNP with the highest composition of Fe3O4 was synthesized with a pH of 12.75, with a cubic morphology and a SAR value of 92.7 ± 3.2 W/g. Full article
(This article belongs to the Special Issue Novel Drug Delivery Systems: Magnetic Gels)
Show Figures

Graphical abstract

16 pages, 2914 KB  
Article
Designing Polymeric Multifunctional Nanogels for Photothermal Inactivation: Exploiting Conjugate Polymers and Thermoresponsive Platforms
by Ignacio Velzi, Edith Ines Yslas and Maria Molina
Pharmaceutics 2025, 17(7), 827; https://doi.org/10.3390/pharmaceutics17070827 - 25 Jun 2025
Viewed by 424
Abstract
Background/Objectives: Photothermal therapy (PTT) is an emerging minimally invasive strategy in biomedicine that converts near-infrared (NIR) light into localized heat for the targeted inactivation of pathogens and tumor cells. Methods and Results: In this study, we report the synthesis and characterization [...] Read more.
Background/Objectives: Photothermal therapy (PTT) is an emerging minimally invasive strategy in biomedicine that converts near-infrared (NIR) light into localized heat for the targeted inactivation of pathogens and tumor cells. Methods and Results: In this study, we report the synthesis and characterization of thermoresponsive nanogels composed of poly (N-isopropylacrylamide-co-N-isopropylmethylacrylamide) (PNIPAM-co-PNIPMAM) semi-interpenetrated with polypyrrole (PPy), yielding monodisperse particles of 377 nm diameter. Spectroscopic analyses—including 1H-NMR, FTIR, and UV-Vis—confirmed successful copolymer formation and PPy incorporation, while TEM images revealed uniform spherical morphology. Differential scanning calorimetry established a volumetric phase transition temperature of 38.4 °C, and photothermal assays demonstrated a ΔT ≈ 10 °C upon 10 min of 850 nm NIR irradiation. In vitro antimicrobial activity tests against Pseudomonas aeruginosa (ATCC 15692) showed a dose-time-dependent reduction in bacterial viability, with up to 4 log CFU/mL. Additionally, gentamicin-loaded nanogels achieved 38.7% encapsulation efficiency and exhibited stimulus-responsive drug release exceeding 75% under NIR irradiation. Conclusions: Combined photothermal and antibiotic therapy yielded augmented bacterial killing, underscoring the potential of PPy-interpenetrated nanogels as smart, dual-mode antimicrobials. Full article
Show Figures

Graphical abstract

15 pages, 2507 KB  
Article
Selective Photothermal Therapy Using Antioxidant Nanoparticles Encapsulating Novel Near-Infrared-Absorbing Platinum(II) Complexes
by Ryota Sawamura, Hiromi Kurokawa, Atsushi Taninaka, Takuto Toriumi, Yukio Nagasaki, Hidemi Shigekawa, Hirofumi Matsui and Nobuhiko Iki
Nanomaterials 2025, 15(11), 796; https://doi.org/10.3390/nano15110796 - 25 May 2025
Viewed by 840
Abstract
Photothermal therapy (PTT) is a promising approach for cancer treatment that has minimal side effects. It locally heats tumors using agents that convert near-infrared (NIR) light energy into heat. We previously reported that the NIR-absorbing hydrophobic diradical-platinum(II) complex PtL2 (L = 3,5-dibromo-1,2-diiminobenzosemiquinonato [...] Read more.
Photothermal therapy (PTT) is a promising approach for cancer treatment that has minimal side effects. It locally heats tumors using agents that convert near-infrared (NIR) light energy into heat. We previously reported that the NIR-absorbing hydrophobic diradical-platinum(II) complex PtL2 (L = 3,5-dibromo-1,2-diiminobenzosemiquinonato radical) can kill cancer cells through its photothermal conversion ability. In this study, we developed PtL2-loading nanoparticles (PtL2@RNPs) for the delivery of the complex to tumors based on the enhanced permeability and retention effect using an amphiphilic block copolymer that can scavenge reactive oxygen species. PtL2@RNPs exhibited particle diameters of 20–30 nm, an encapsulation efficiency exceeding 90%, and loading capacities of up to 12%. Under NIR laser irradiation, PtL2@RNPs stably generated heat with almost 100% photothermal conversion efficiency. Although the particles were not modified for cancer cell targeting, their uptake by cancer cells was approximately double that by normal cells. PtL2@RNPs exhibited NIR absorption and effectively killed cancer cells at a low irradiation power (0.15 W). Normal cells treated with PtL2@RNPs remained largely undamaged under identical irradiation conditions, demonstrating a cancer-cell-specific photothermal killing effect. These findings can provide insights for future basic studies on cancer cells and the development of effective cancer treatment modalities. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

31 pages, 1101 KB  
Review
Particle Therapy to Overcome Cancer Radiation Resistance: “ARCHADE” Consortium Updates in Radiation Biology
by Samuel Valable, Mathieu Césaire, Kilian Lecrosnier, Antoine Gilbert, Mihaela Tudor, Guillaume Vares, Dounia Houria Hamdi, Ousseynou Ben Diouf, Thao Nguyen Pham, Julie Coupey, Juliette Thariat, Paul Lesueur, Elodie Anne Pérès, Juliette Aury-Landas, Zacharenia Nikitaki, Siamak Haghdoost, Carine Laurent, Jean-Christophe Poully, Jacques Balosso, Myriam Bernaudin, Diana I. Savu and François Chevalieradd Show full author list remove Hide full author list
Cancers 2025, 17(9), 1580; https://doi.org/10.3390/cancers17091580 - 6 May 2025
Viewed by 1110
Abstract
Radiation therapy is a medical treatment that uses high doses of radiation to kill or damage cancer cells. It works by damaging the DNA within the cancer cells, ultimately causing cell death. Radiotherapy can be used as a primary treatment, adjuvant treatment in [...] Read more.
Radiation therapy is a medical treatment that uses high doses of radiation to kill or damage cancer cells. It works by damaging the DNA within the cancer cells, ultimately causing cell death. Radiotherapy can be used as a primary treatment, adjuvant treatment in combination with surgery or chemotherapy or palliative treatment to relieve symptoms in advanced cancer stages. Radiation therapy is constantly improving in order to enhance the effect on cancer cells and reduce the side effects on healthy tissues. Our results clearly demonstrate that proton therapy and, even more, carbon ion therapy appear as promising alternatives to overcome the radioresistance of various tumors thanks to less dependency on oxygen and a better ability to kill cancer stem cells. Interestingly, hadrons also retain the advantages of radiosensitization approaches. These data confirm the great ability of hadrons to spare healthy tissue near the tumor via various mechanisms (reduced lymphopenia, bystander effect, etc.). Technology and machine improvements such as image-guided radiotherapy or particle therapies can improve treatment quality and efficacy (dose deposition and biological effect) in tumors while increasingly sparing healthy tissues. Radiation biology can help to understand how cancer cells resist radiation (hypoxia, DNA repair mechanisms, stem cell status, cell cycle position, etc.), how normal tissues may display sensitivity to radiation and how radiation effects can be increased with either radiosensitizers or accelerated particles. All these research topics are under investigation within the ARCHADE research community in France. By focusing on these areas, radiotherapy can become more effective, targeted and safe, enhancing the overall treatment experience and outcomes for cancer patients. Our goal is to provide biological evidence of the therapeutic advantages of hadrontherapy, according to the tumor characteristics. This article aims to give an updated view of our research in radiation biology within the frame of the French “ARCHADE association” and new perspectives on research and treatment with the C400 multi-ions accelerator prototype. Full article
Show Figures

Graphical abstract

17 pages, 4093 KB  
Article
Preparation, Characterization, and Antibacterial Activity of Various Polymerylated Divalent Metal-Doped MF2O4 (M = Ni, Co, Zn) Ferrites
by Enas AlMatri, Nawal Madkhali, Sakina Mustafa, O. M. Lemine, Saja Algessair, Alia Mustafa, Rizwan Ali and Kheireddine El-Boubbou
Polymers 2025, 17(9), 1171; https://doi.org/10.3390/polym17091171 - 25 Apr 2025
Cited by 2 | Viewed by 732
Abstract
The continuous discovery of novel effective antibacterial agents using nano-based materials is of high significance. In this study, we utilized Polymerylated divalent-metal-doped ferrite nanoparticles (PMFe2O4 NPs) and studied their antibacterial inhibition effects. Different panels of PVP- and PEG-coated metal-doped MFe [...] Read more.
The continuous discovery of novel effective antibacterial agents using nano-based materials is of high significance. In this study, we utilized Polymerylated divalent-metal-doped ferrite nanoparticles (PMFe2O4 NPs) and studied their antibacterial inhibition effects. Different panels of PVP- and PEG-coated metal-doped MFe2O4 (M ≅ Co, Ni, and Zn) were prepared via the Ko-precipitation Hydrolytic Basic (KHB) methodology and thoroughly analyzed using TEM, XRD, FTIR, and VSM. The as-synthesized doped ferrites displayed stable quasi-spherical particles (7–15 nm in size), well-ordered crystalline cubic spinel phases, and high-saturation magnetizations reaching up to 68 emu/g. The antibacterial efficacy of the doped ferrites was then assessed against a Gram-negative E. coli bacterial strain. The results demonstrated that both metal doping and polymer functionalization influence the antimicrobial efficacies and performance of the ferrite NPs. The presence of the PVP polymer along with the divalent metal ions, particularly Co and Ni, resulted in the highest antibacterial inhibition and effective inactivation of the bacterial cells. The antibacterial performance was as follows: PVP-CoFe2O4 > PVP-NiFe2O4 > PVP-ZnFe2O4. Lastly, cell viability assays conducted on human breast fibroblast (HBF) cells confirmed the good safety profiles of the doped ferrites. These interesting results demonstrate the distinctive inhibitory features of the biocompatible metal-doped ferrites in enhancing bacterial killing and highlights their promising potential as effective antimicrobial agents, with possible applications in areas such as water disinfection, biomedical devices, and antimicrobial coatings. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 3899 KB  
Article
Role of Defective Interfering Particles in Complement-Mediated Lysis of Parainfluenza Virus-Infected Cells
by Jenna R. Aquino, Candace R. Fox and Griffith D. Parks
Viruses 2025, 17(4), 488; https://doi.org/10.3390/v17040488 - 28 Mar 2025
Cited by 2 | Viewed by 933
Abstract
RNA viruses pose a significant global public health burden due to their high mutation rates, zoonotic potential, and ability to evade immune responses. A common aspect of their replication is the generation of defective interfering particles (DIPs), which contain truncated defective viral genomes [...] Read more.
RNA viruses pose a significant global public health burden due to their high mutation rates, zoonotic potential, and ability to evade immune responses. A common aspect of their replication is the generation of defective interfering particles (DIPs), which contain truncated defective viral genomes (DVGs) that depend on full-length standard (STD) virus for replication. DVGs have gained recognition as they are increasingly detected in clinical samples from natural infections. While their role in modulating type I interferon (IFN-I) responses is well established, their impact on the complement (C′) system is not understood. In this study, we examined how DVGs influence C′-mediated lysis during parainfluenza virus 5 (PIV5) infection using real-time in vitro cell viability assays. Our results demonstrated that C′ effectively killed human lung epithelial cells infected with STD PIV5, whereas co-infection with DIP-enriched stocks significantly suppressed C′-mediated killing through mechanisms that were dependent on DVG replication but independent of IFN-I production. The titration of DI units in co-infection with STD PIV5 showed a strong linear relationship between DIP-mediated decreases in surface viral glycoprotein expression and the inhibition of C′-mediated lysis. Our findings reveal a previously unrecognized function of DVGs in modulating C′ pathways, shedding light on their potential role in viral persistence and immune evasion. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

19 pages, 4973 KB  
Article
Temperature- and pH-Responsive Poly(NIPAM-co-HEMA-co-AAm) Nanogel as a Smart Vehicle for Doxorubicin Delivery; Combating Colorectal Cancer
by Soheila Ghasemi, Mehdi Najafi, Mohammad Doroudian, Banafsheh Rastegari, Abbas Behzad-Behbahani, Hadis Soltanimehr and Fatemeh Farjadian
Gels 2025, 11(4), 227; https://doi.org/10.3390/gels11040227 - 22 Mar 2025
Cited by 3 | Viewed by 1160
Abstract
In this project, a new class of temperature- and pH-sensitive hydrogel consisting of N-isopropyl acrylamide (NIPAM), hydroxyethyl methacrylate (HEMA), and acrylamide (AAm) was prepared via a controlled route through the reversible addition–fragmentation chain-transfer (RAFT) polymerization process. Poly(ethyleneglycol) dimethacrylate (PEG-DMA) was used as [...] Read more.
In this project, a new class of temperature- and pH-sensitive hydrogel consisting of N-isopropyl acrylamide (NIPAM), hydroxyethyl methacrylate (HEMA), and acrylamide (AAm) was prepared via a controlled route through the reversible addition–fragmentation chain-transfer (RAFT) polymerization process. Poly(ethyleneglycol) dimethacrylate (PEG-DMA) was used as a long-chain hydrophilic and biocompatible crosslinking agent. The hydrogel structure was confirmed by different characteristic techniques such as 1H NMR, FT-IR, and SEC, and the morphology and particle diameters were checked via the scanning electron microscopy (SEM) and dynamic light scattering (DLS) methods. Afterward, the as-prepared hydrogel, poly(NIPAM-co-HEMA-co-AAm), was loaded with doxorubicin (DOX) to be used as a temperature- and pH-triggered delivery carrier. The prepared system released DOX slowly at 37 °C and neutral pH, but increased DOX release significantly at 42 °C and acidic pH. The anti-cancer efficiencies of free DOX, hydrogel, and the DOX–hydrogel conjugate were tested in vitro using human colorectal adenocarcinoma HT-29 cell lines. Cytotoxicity evaluation of free DOX compared with the DOX–hydrogel conjugate revealed that more cancer cells were killed with increasing concentration. Moreover, the DOX-mediated apoptosis and ROS levels showed the beneficial effects of poly(NIPAM-co-HEMA-co-AAm) hydrogel for cancer drug delivery. Generally, the results suggest that this system can be a potential candidate for designing drug delivery systems. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogel Materials)
Show Figures

Figure 1

20 pages, 1300 KB  
Article
Venomous Cargo: Diverse Toxin-Related Proteins Are Associated with Extracellular Vesicles in Parasitoid Wasp Venom
by Jennifer Chou, Michael Z. Li, Brian Wey, Mubasshir Mumtaz, Johnny R. Ramroop, Shaneen Singh and Shubha Govind
Pathogens 2025, 14(3), 255; https://doi.org/10.3390/pathogens14030255 - 5 Mar 2025
Viewed by 1269
Abstract
Unusual membrane-bound particles are present in the venom of the parasitoid wasps that parasitize Drosophila melanogaster. These venom particles harbor about 400 proteins and suppress the encapsulation of a wasp egg. Whereas the proteins in the particles of Leptopilina boulardi venom modify host hemocyte [...] Read more.
Unusual membrane-bound particles are present in the venom of the parasitoid wasps that parasitize Drosophila melanogaster. These venom particles harbor about 400 proteins and suppress the encapsulation of a wasp egg. Whereas the proteins in the particles of Leptopilina boulardi venom modify host hemocyte properties, those in L. heterotoma kill host hemocytes. The mechanisms underlying this differential effect are not well understood. The proteome of the L. heterotoma venom particles has been described before, but that of L. boulardi has not been similarly examined. Using sequence-based programs, we report the presence of conserved proteins in both proteomes with strong enrichment in the endomembrane and exosomal cell components. Extracellular vesicle markers are present in both proteomes, as are numerous toxins. Both proteomes also contain proteins lacking any annotation. Among these, we identified the proteins with structural similarity to the ADP-ribosyltransferase enzymes involved in bacterial virulence. We propose that invertebrate fluids like parasitoid venom contain functional extracellular vesicles that deliver toxins and virulence factors from a parasite to a host. Furthermore, the presence of such vesicles may not be uncommon in the venom of other animals. An experimental verification of the predicted toxin functions will clarify the cellular mechanisms underlying successful parasitism. Full article
(This article belongs to the Special Issue Computational Approaches in Mechanisms of Pathogenesis)
Show Figures

Figure 1

25 pages, 2570 KB  
Article
Impeding Biofilm-Forming Mediated Methicillin-Resistant Staphylococcus aureus and Virulence Genes Using a Biosynthesized Silver Nanoparticles–Antibiotic Combination
by Mohamed A. Fareid, Gamal M. El-Sherbiny, Ahmed A. Askar, Amer M. Abdelaziz, Asmaa M. Hegazy, Rosilah Ab Aziz and Fatma A. Hamada
Biomolecules 2025, 15(2), 266; https://doi.org/10.3390/biom15020266 - 11 Feb 2025
Cited by 9 | Viewed by 1773
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) continues to represent a significant clinical challenge, characterized by consistently elevated rates of morbidity and mortality. Care regimen success is still difficult and necessitates assessing new antibiotics as well as supplemental services, including source control and searching for alternative [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) continues to represent a significant clinical challenge, characterized by consistently elevated rates of morbidity and mortality. Care regimen success is still difficult and necessitates assessing new antibiotics as well as supplemental services, including source control and searching for alternative approaches to combating it. Hence, we propose to synthesize silver nanoparticles (Ag-NPs) by employing a cell-free filter (CFF) of Streptomyces sp. to augment antibiotic activity and combat biofilm-forming MRSA. Seven bacterial isolates from clinical samples were identified, antibiotics were profiled with Vitek-2, and the phenotypic detecting of biofilm with Congo red medium and microplate assay was carried out. The PCR technique was used for detecting genes (icaA and icaD) coded in biofilm forming. The characterization of Ag-NPs was performed using several analytical methods, such as UV spectroscopy, dynamic light scattering (DLS), zeta potential measurement, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antibacterial properties of Ag-NPs and oxacillin–Ag-NPs were assessed against standard strains and clinical isolates by employing the agar well diffusion technique and the microdilution assay. The biogenic synthesis Ag-NPs resulted in uniformly spherical particles, with an average size of 20 nm. These Ag-NPs demonstrated significant activity against biofilm-forming MRSA, with minimum inhibitory concentrations (MICs) ranging from 12 to 15 μg/mL. Additionally, Ag-NPs completely impede biofilm formation by MRSA at sublethal doses of 0.75 MICs. The expression levels of the icaA and icaD genes were reduced by 1.9- to 2.2- and 2.4- to 2.8-fold, respectively. A significant synergistic effect was noted when Ag-NPs were used in combination with oxacillin, leading to reduced MICs of 1.87 μg/mL for oxacillin and 4.0 μg/mL for Ag-NPs against MRSA. The FICi of 0.375 further validated the synergistic relationship between oxacillin and Ag-NPs at the concentrations of 1.87 and 4 μg/mL. Findings from the time-kill test demonstrated the highest reduction in log10 (CFU)/mL of the initial MRSA inoculum after 12-hour exposure. The cytotoxicity analysis of Ag-NPs revealed no significant cytotoxic effects on the human skin cell line HFB-4 at low concentrations, with IC50 values of 61.40 µg/mL for HFB-4 and 34.2 µg/mL for HepG-2. Comparable with oxacillin–Ag-NPs, Ag-NPs showed no cytotoxic effects on HFB-4 at different concentrations and exhibited an IC50 value of 31.2 against HepG-2-cells. In conclusion, the biosynthesis of Ag-NPs has demonstrated effective antibacterial activity against MRSA and has completely hindered biofilm formation, suggesting a valuable alternative for clinical applications. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 3241 KB  
Article
Fluorescent Neutron Track Detectors for Boron-10 Microdistribution Measurement in BNCT: A Feasibility Study
by Laura Galuzzi, Gabriele Parisi, Valeria Pascali, Martin Niklas, Davide Bortot, Nicoletta Protti and Saverio Altieri
Materials 2025, 18(3), 621; https://doi.org/10.3390/ma18030621 - 29 Jan 2025
Viewed by 1097
Abstract
Boron Neutron-Capture Therapy (BNCT) is a form of radiation therapy that relies on the highly localized and enhanced biological effects of the 10B neutron capture (BNC) reaction products to selectively kill cancer cells. The efficacy of BNCT is, therefore, strongly dependent on [...] Read more.
Boron Neutron-Capture Therapy (BNCT) is a form of radiation therapy that relies on the highly localized and enhanced biological effects of the 10B neutron capture (BNC) reaction products to selectively kill cancer cells. The efficacy of BNCT is, therefore, strongly dependent on the 10B spatial microdistribution at a subcellular level. Fluorescent Nuclear Track Detectors (FNTDs) could be a promising technology for measuring 10B microdistribution. They allow the measurement of the tracks of charged particles, and their biocompatibility allows cell samples to be deposited and grown on their surfaces. If a layer of borated cells is deposited and irradiated by a neutron field, the energy deposited by the BNC products and their trajectories can be measured by analyzing the corresponding tracks. This allows the reconstruction of the position where the measured particles were generated, hence the microdistribution of 10B. With respect to other techniques developed to measure 10B microdistribution, FNTDs would be a non-destructive, biocompatible, relatively easy-to-use, and accessible method, allowing the simultaneous measurement of the 10B microdistribution, the LET of particles, and the evolution of the related biological response on the very same cell sample. An FNTD was tested in three irradiation conditions to study the feasibility of FNTDs for BNCT applications. The FNTD allowed the successful measurement of the correct alpha particle range and mean penetration depth expected for all the radiation fields employed. This work proved the feasibility of FNTD in reconstructing the tracks of the alpha particles produced in typical BNCT conditions, thus the 10B microdistribution. Further experiments are planned at the University of Pavia’s LENA (Applied Nuclear Energy Laboratory) to test the final set-up coupling the FNTD with borated cell samples. Full article
Show Figures

Figure 1

15 pages, 3580 KB  
Article
Immunogenicity of HIV-1 Env mRNA and Env-Gag VLP mRNA Vaccines in Mice
by Qi Ma, Jing Yang, Xiaoguang Zhang, Hongxia Li, Yanzhe Hao and Xia Feng
Vaccines 2025, 13(1), 84; https://doi.org/10.3390/vaccines13010084 - 17 Jan 2025
Viewed by 2048
Abstract
Background: The development of a protective vaccine is critical for conclusively ending the human immunodeficiency virus (HIV) epidemic. Methods: We constructed nucleotide-modified mRNA vaccines expressing HIV-1 Env and Gag proteins. Env–gag virus-like particles (VLPs) were generated through co-transfection with env and gag mRNA [...] Read more.
Background: The development of a protective vaccine is critical for conclusively ending the human immunodeficiency virus (HIV) epidemic. Methods: We constructed nucleotide-modified mRNA vaccines expressing HIV-1 Env and Gag proteins. Env–gag virus-like particles (VLPs) were generated through co-transfection with env and gag mRNA vaccines. BALB/c mice were immunized with env mRNA, env–gag VLP mRNA, env plasmid DNA vaccine, or lipid nanoparticle (LNP) controls. HIV Env-specific binding and neutralizing antibodies in mouse sera were assessed via enzyme-linked immunosorbent assay (ELISA) and pseudovirus-based neutralization assays, respectively. Env-specific cellular immune responses in mouse splenocytes were evaluated using an Enzyme-linked immunosorbent assay (ELISpot) and in vivo cytotoxic T cell-killing assays. Results: The Env-specific humoral and cellular immune responses elicited by HIV-1 env mRNA and env–gag VLP mRNA vaccine were stronger than those induced by the DNA vaccine. Specific immune responses induced by the env mRNA vaccine were significantly stronger in the high-dose group than in the low-dose group. Immunization with co-formulated env and gag mRNAs elicited superior cellular immune responses compared to env mRNA alone. Conclusions: These findings suggest that the env–gag VLP mRNA platform holds significant promise for HIV-1 vaccine development. Full article
(This article belongs to the Special Issue Research on HIV/AIDS Vaccine)
Show Figures

Figure 1

14 pages, 1503 KB  
Article
Synergistic Antifungal Activity of Terbinafine in Combination with Light-Activated Gelatin–Silver Nanoparticles Against Candida albicans Strains
by Atif Ullah, Fawad Ali, Farman Ullah, Sajid Khan Sadozai, Saeed Ahmed Khan, Sajid Hussain, Abdulwahed Fahad Alrefaei and Sajid Ali
Pharmaceutics 2025, 17(1), 125; https://doi.org/10.3390/pharmaceutics17010125 - 17 Jan 2025
Cited by 3 | Viewed by 1859
Abstract
The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by Candida albicans (C. albicans). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine [...] Read more.
The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by Candida albicans (C. albicans). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy. Silver nanoparticles were produced through a light-activated, gelatin-based method, resulting in particle sizes ranging from 56.8 nm to 66.2 nm, confirmed by dynamic light scattering and scanning electron microscopy. Stability studies indicated that AgNPs produced with 30 mg of silver nitrate (AgNO₃) exhibited the greatest stability over 60 days across different temperature conditions. The analysis through UV-visible spectrophotometry revealed a notable shift in the absorption spectra as AgNO₃ concentrations increased, which was associated with a strengthening of plasmon resonance. The effectiveness of the AgNPs and Terbinafine combination was assessed against three strains of C. albicans (ATCC 10231, ATCC 90028, and ATCC 18804). Terbinafine demonstrated strong antifungal properties with minimum inhibitory concentrations (MIC) values ranging from 2–4 µg/mL, whereas AgNPs on their own displayed moderate effectiveness. The integrated formulation notably enhanced effectiveness, especially against strain ATCC 90028, revealing a synergistic effect (FIFi = 0.369). These results were complemented by the findings of the time-to-kill assay, where the same strain showed a 3.2 log₁₀ CFU/mL decrease in viable cell count. The process by which AgNPs boost activity entails the disruption of the fungal cell membrane and its internal components, probably as a result of silver ion release and the generation of free radicals. The results indicate that the combination of Terbinafine and AgNPs may act as a powerful alternative for addressing resistant fungal infections, presenting an encouraging direction for future antifungal treatments. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

10 pages, 1494 KB  
Article
Platinum–Iron Nanoparticles for Oxygen-Enhanced Sonodynamic Tumor Cell Suppression
by Qianya Dong and Zhenqi Jiang
Inorganics 2024, 12(12), 331; https://doi.org/10.3390/inorganics12120331 - 18 Dec 2024
Cited by 90 | Viewed by 1463
Abstract
A type of nanoparticle has been developed to simultaneously alleviate tumor hypoxia and enhance the effectiveness of sonodynamic therapy aimed at improving cancer treatment outcomes. Small-sized iron–platinum nanoparticles were prepared using a thermal reduction method, and their particle size and crystal structure were [...] Read more.
A type of nanoparticle has been developed to simultaneously alleviate tumor hypoxia and enhance the effectiveness of sonodynamic therapy aimed at improving cancer treatment outcomes. Small-sized iron–platinum nanoparticles were prepared using a thermal reduction method, and their particle size and crystal structure were characterized. The ability of these nanoparticles to decompose hydrogen peroxide to produce oxygen and generate singlet oxygen under ultrasound irradiation was further tested. The effect of iron–platinum nanoparticles on inhibition of the proliferation of MCF-7 tumor cells under hypoxic conditions was also evaluated. The prepared iron–platinum nanoparticles effectively decomposed hydrogen peroxide to produce oxygen, reversing the hypoxic environment of tumors. Additionally, they generated singlet oxygen under ultrasound irradiation, which killed tumor cells and inhibited their proliferation. This study successfully developed small-sized iron–platinum nanoparticles that can alleviate tumor hypoxia by decomposing excess hydrogen peroxide in tumor cells to produce oxygen. Under ultrasound irradiation, these nanoparticles generate singlet oxygen, inhibiting tumor growth. The nanoparticles demonstrated good safety and are potentially valuable in enhancing oxygen-enhanced sonodynamic cancer therapy. Full article
Show Figures

Figure 1

14 pages, 2811 KB  
Article
Carbon Dot Micelles Synthesized from Leek Seeds in Applications for Cobalt (II) Sensing, Metal Ion Removal, and Cancer Therapy
by Teh-Hua Tsai, Wei Lo, Hsiu-Yun Wang and Tsung-Lin Tsai
J. Funct. Biomater. 2024, 15(11), 347; https://doi.org/10.3390/jfb15110347 - 15 Nov 2024
Cited by 3 | Viewed by 1606
Abstract
Popular photoluminescent (PL) nanomaterials, such as carbon dots, have attracted substantial attention from scientists due to their photophysical properties, biocompatibility, low cost, and diverse applicability. Carbon dots have been used in sensors, cell imaging, and cancer therapy. Leek seeds with anticancer, antimicrobial, and [...] Read more.
Popular photoluminescent (PL) nanomaterials, such as carbon dots, have attracted substantial attention from scientists due to their photophysical properties, biocompatibility, low cost, and diverse applicability. Carbon dots have been used in sensors, cell imaging, and cancer therapy. Leek seeds with anticancer, antimicrobial, and antioxidant functions serve as traditional Chinese medicine. However, leek seeds have not been studied as a precursor of carbon dots. In this study, leek seeds underwent a supercritical fluid extraction process. Leek seed extract was obtained and then carbonized using a dry heating method, followed by hydrolysis to form carbon dot micelles (CD-micelles). CD-micelles exhibited analyte-induced PL quenching against Co2+ through the static quenching mechanism, with the formation of self-assembled Co2+-CD-micelle sphere particles. In addition, CD-micelles extracted metal ion through liquid–liquid extraction, with removal efficiencies of >90% for Pb2+, Al3+, Fe3+, Cr3+, Pd2+, and Au3+. Moreover, CD-micelles exhibited ABTS•+ radical scavenging ability and cytotoxicity for cisplatin-resistant lung cancer cells. CD-micelles killed cisplatin-resistant small-cell lung cancer cells in a dose-dependent manner with a cancer cell survival rate down to 12.8 ± 4.2%, with a similar treatment function to that of cisplatin. Consequently, CD-micelles functionalized as novel antioxidants show great potential as anticancer nanodrugs in cancer treatment. Full article
(This article belongs to the Section Biomaterials for Cancer Therapies)
Show Figures

Graphical abstract

Back to TopTop