Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = conical spiral

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4225 KB  
Article
Model-Based Tracking in a Space-Simulated Environment Using the General Loss Function
by Seongho Lee, Geemoon Noh, Jihoon Park, Hyeonik Kwon, Jaedu Park and Daewoo Lee
Aerospace 2025, 12(9), 765; https://doi.org/10.3390/aerospace12090765 - 26 Aug 2025
Viewed by 397
Abstract
The increasing demand for on-orbit servicing (OOS), such as satellite life extension and space debris removal, has highlighted the need for research into precise relative navigation between space objects. Model-based tracking (MBT) was applied using the imaging data for relative navigation, incorporating SPNv2 [...] Read more.
The increasing demand for on-orbit servicing (OOS), such as satellite life extension and space debris removal, has highlighted the need for research into precise relative navigation between space objects. Model-based tracking (MBT) was applied using the imaging data for relative navigation, incorporating SPNv2 (Spacecraft Pose Network v2) for an initial pose estimation. Furthermore, the performance of General Loss was evaluated by applying it during the model tracking processes and comparing it with seven other robust M-estimators, including Tukey, Welsch, and Huber. The simulations were conducted in a ROS–Gazebo environment that emulated a rendezvous with the International Space Station (ISS). Six approach profiles were generated by pairing three mutually different conic-section apertures with two attitude modes—boresight locked on the ISS versus boresight fixed on the inertial origin—producing six distinct spiral trajectories that bring the chaser from 500 m to 100 m along the depth axis of the camera. General Loss achieved superior estimation accuracy in most profiles. Thus, the proposed algorithm, which integrates General Loss into the MBT-based relative navigation framework, provides robust and stable performance in the presence of diverse residual distributions and outliers. In the few instances where it did not yield the very best results, the initial error arose from matching virtual edges—generated according to the sample weight distribution—to the actual edges in the image frame; notably, by the end of the simulation, when the camera reached a depth of approximately 100 m, these errors were substantially reduced. Thus, the proposed algorithm, which integrates General Loss into the MBT-based relative navigation framework, provides robust and stable performance in the presence of diverse residual distributions and outliers. Full article
Show Figures

Figure 1

24 pages, 11495 KB  
Article
A Deployable Conical Log Spiral Antenna for Small Spacecraft: Mechanical Design and Test
by Lewis R. Williams, Natanael Hjermann, Bendik Sagsveen, Arthur Romeijer, Karina Vieira Hoel and Lars Erling Bråten
Aerospace 2025, 12(4), 326; https://doi.org/10.3390/aerospace12040326 - 10 Apr 2025
Viewed by 921
Abstract
We present the design and manufacturing of a deployable conical log spiral spring antenna for small spacecraft, along with a test campaign to evaluate its suitability for space applications. The conical spring was 45.7 cm in height, with base and apex diameters of [...] Read more.
We present the design and manufacturing of a deployable conical log spiral spring antenna for small spacecraft, along with a test campaign to evaluate its suitability for space applications. The conical spring was 45.7 cm in height, with base and apex diameters of 18.9 and 2.8 cm, respectively. The spring had a mass of 0.138 kg and was constructed from a carbon fiber-infused epoxy matrix with an embedded coaxial cable. We conducted dynamic and thermal mechanical analysis to determine the coefficient of thermal expansion and glass transition temperature. The initial 10 compressions of the spring shortened the structure’s overall height, but the change had a negligible effect on the antenna’s radio frequency (RF) performance. Thermal cycling between −70 °C and 80 °C did not cause any damage or deformation to the spring structure. Outgassing tests were conducted in a thermal vacuum chamber, and the total mass loss was 0.03%. We conducted vibration tests representative for a typical launch vehicle, and all natural frequencies remained stable above 250 Hz, while the antenna was stowed, satisfying launch vehicle requirements. Post-test functional checks confirmed that there was no change in antenna functionality. The environmental test results provide confidence that the antenna is suitable for spacecraft applications. Full article
(This article belongs to the Special Issue Small Satellite Missions)
Show Figures

Figure 1

18 pages, 5992 KB  
Article
A Deployable Conical Log Spiral Antenna for Small Spacecraft: Electronic Design and Test
by Lewis R. Williams, Karina Vieira Hoel, Lars Erling Bråten, Arthur Romeijer, Natanael Hjermann and Bendik Sagsveen
Aerospace 2025, 12(3), 218; https://doi.org/10.3390/aerospace12030218 - 7 Mar 2025
Cited by 1 | Viewed by 2208
Abstract
An ultra-high-frequency (UHF) deployable conical log spiral antenna’s design and experimental test results are presented. The antenna is a spring constructed from a carbon-fiber-infused epoxy matrix. The spring design simplified the spacecraft deployment mechanism, and the use of composite materials allowed for the [...] Read more.
An ultra-high-frequency (UHF) deployable conical log spiral antenna’s design and experimental test results are presented. The antenna is a spring constructed from a carbon-fiber-infused epoxy matrix. The spring design simplified the spacecraft deployment mechanism, and the use of composite materials allowed for the integration of radiating elements into the spring structure. A Chebyshev transformer at the base of the antenna is used to match the incoming transmission line impedance to a 95 Ω coaxial cable. The 95 Ω coaxial, which is the balun and the radiating element, is embedded into the antenna structure. The antenna is fed at the cone’s base without requiring a ground plane whilst maintaining radiation in the cone’s apex-pointing direction. This facilitated an uncomplicated deployment mechanism. Prototypes have been manufactured for 500 to 1500 MHz designs. Antenna measurements show a realized gain of between approximately 3 to 6 dBi from 500 to 1500 MHz. Full article
(This article belongs to the Special Issue Small Satellite Missions)
Show Figures

Figure 1

20 pages, 1327 KB  
Article
Generalization Process of the Integrated Mathematical Model Created for the Development of the Production Geometry of Complicated Surfaces
by Zsuzsa Balajti
Symmetry 2024, 16(12), 1618; https://doi.org/10.3390/sym16121618 - 6 Dec 2024
Cited by 2 | Viewed by 916
Abstract
Computer modelling of technical constructions is increasingly carried out using software that includes more detailed knowledge, which requires an increase in the level as well as an expansion of the scope of the geometric knowledge. A significant part of motion transmission mechanisms are [...] Read more.
Computer modelling of technical constructions is increasingly carried out using software that includes more detailed knowledge, which requires an increase in the level as well as an expansion of the scope of the geometric knowledge. A significant part of motion transmission mechanisms are worm drive pairs, for which the separation of the parts dealing with the theoretical and practical problems found in the literature can be experienced in numerous instances. Due to the different technical features, in many cases the helical surfaces are not designed and manufactured in a geometrically correct way, or the best solution is not the compulsory chosen. The geometric model describing the production process of the worm surfaces provides the basis for examining the deviation between the surface mathematically determined by the designer and the surface produced. An integrated mathematical kinematic model was developed for the production geometrical analysis of the elements of cylindrical and conical worm gear drive pairs for machining with a traditional thread grinding machine, which causes a serious pitch fluctuating error among several other problems in the case of machining the conical worm. Modelling of the production process of surfaces and the simultaneous study of the manufacturing errors is basically performed with the toolbox of descriptive geometry, including the use of the projective invariants. Knowing the inheritance of the invariants of projective geometry, the aim was the mathematical generalization of the integrated model and the creation of a projective relationship between the reference surfaces of conical and cylindrical spiral surfaces. As a result, the improved constructive geometric model was created, in which the method of analytically creating the projective geometric relationship between the reference surfaces of conical and cylindrical helicoid surfaces has been described for the first time in this article. This procedure is considered the most important result of the present article. Another significance of the further development presented is that during production of the conical helicoid surface, the thread pitch fluctuation has been eliminated. The results obtained, consisting of an improved geometric model, lead to a new geometry of the technological environment regarding the relative position of the cutting tool and the workpiece as well as the relative motion between them. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

27 pages, 55899 KB  
Article
Experimental Assessment of Hydrodynamic Behavior in a Gravitational Vortex Turbine with Different Inlet Channel and Discharge Basin Configurations
by Laura Velásquez, Juan Pablo Rengifo, José Urrego, Ainhoa Rubio-Clemente and Edwin Chica
Energies 2024, 17(22), 5773; https://doi.org/10.3390/en17225773 - 19 Nov 2024
Cited by 2 | Viewed by 1164
Abstract
Gravitational vortex turbines can provide a sustainable and efficient solution for generating renewable energy from small watercourses, minimizing environmental impact, and contributing to the decentralization of energy production. Their design allows for high energy efficiency even under low flow conditions, thus benefiting rural [...] Read more.
Gravitational vortex turbines can provide a sustainable and efficient solution for generating renewable energy from small watercourses, minimizing environmental impact, and contributing to the decentralization of energy production. Their design allows for high energy efficiency even under low flow conditions, thus benefiting rural communities and reducing their dependence on fossil fuels. This paper presents an experimental assessment of the hydrodynamic behavior of gravitational vortex turbines by examining various geometric configurations. The combinations of two types of inlet channels (spiral and tangential) and two types of discharge basins (conical and cylindrical) were investigated. Additionally, different geometries and placements of the runners were evaluated to determine their influence on the efficiency and performance of the turbine. The results indicate that the highest efficiency of 60.85% was achieved with a configuration that included a spiral inlet channel, cylindrical discharge, and a runner placement of 50%. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

9 pages, 5882 KB  
Article
Topological Defect Evolutions Guided by Varying the Initial Azimuthal Orientation
by Yanchun Shen, Jinbing Wu, Jingge Wang, Saibo Wu and Wei Hu
Appl. Sci. 2024, 14(21), 9869; https://doi.org/10.3390/app14219869 - 29 Oct 2024
Viewed by 1219
Abstract
Topological defects are a key concern in numerous branches of physics. It is meaningful to exploit the topological defect evolutions during the phase transitions of condensed matter. Here, via varying the initial azimuthal orientation of the square alignment lattice in a hybrid cell, [...] Read more.
Topological defects are a key concern in numerous branches of physics. It is meaningful to exploit the topological defect evolutions during the phase transitions of condensed matter. Here, via varying the initial azimuthal orientation of the square alignment lattice in a hybrid cell, the topological defect evolution of liquid crystal during the nematic (N)–smectic A (SmA) phase transition is investigated. The director fields surrounding ±1 point defects are manipulated by predesigning the initial azimuthal orientation. When further cooled to the SmA phase, spiral toric focal conic domain (TFCD) arrays are formed as a result of twisted deformation suppression and unique symmetry breaking after the phase transition. The variation in the azimuthal orientation causes the TFCDs to degenerate from infinite rotational symmetry to quadruple rotational symmetry, thus releasing new textures for the SmA phase. Landau–de Gennes numerical modeling is adopted to reproduce the director distributions in the N phase and reveal the evolution of the topological defects. This work enriches the knowledge on the self-organization of soft matter, enhances the capability for the manipulations of topological defects, and may inspire new intriguing applications. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

15 pages, 23150 KB  
Article
3D Optical Wedge and Movable Optical Axis LC Lens
by Qi Wu, Hongxia Zhang, Dagong Jia and Tiegen Liu
Crystals 2024, 14(10), 843; https://doi.org/10.3390/cryst14100843 - 27 Sep 2024
Viewed by 1265
Abstract
Current liquid crystal (LC) lenses cannot achieve lossless arbitrary movement of the optical axis without mechanical movement. This article designs a novel bottom electrode through simulation and optimization, which forms a special LC lens with an Archimedean spiral electrode, realizing a 3D LC [...] Read more.
Current liquid crystal (LC) lenses cannot achieve lossless arbitrary movement of the optical axis without mechanical movement. This article designs a novel bottom electrode through simulation and optimization, which forms a special LC lens with an Archimedean spiral electrode, realizing a 3D LC wedge and an arbitrarily movable LC lens. When only the bottom electrode is controlled, it achieves a maximum beam steering angle of 0.164°, which is nearly an order of magnitude larger than the current design. When the top and bottom electrodes are controlled jointly, a 0.164° movement of the lens optical axis is achieved. With focal length varies, the movement of the optical axis ranges from zero to infinity, and the lens surface remains unchanged during movement. The focus can move in a 3D conical area. When the thickness of the LC layer is 30 μm, the fastest response time reaches only 0.635 s, much faster than now. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Figure 1

14 pages, 6516 KB  
Article
Design and Discrete-Element-Method Simulation of Helix Hole-Forming Machine for Deep Planting with Large Holes
by Lihua Yu, Le Zheng, Pengfei Liang, Xuemei Wu, Fugui Zhang and Limei Zhao
Agriculture 2024, 14(6), 801; https://doi.org/10.3390/agriculture14060801 - 22 May 2024
Cited by 1 | Viewed by 1182
Abstract
This study centered around the practical problem that there is no machine available for deep planting with large holes in hilly and mountainous areas of China. According to the principle of spiral lifting, a conical, double-spiral hole-forming machine was innovatively designed. The structural [...] Read more.
This study centered around the practical problem that there is no machine available for deep planting with large holes in hilly and mountainous areas of China. According to the principle of spiral lifting, a conical, double-spiral hole-forming machine was innovatively designed. The structural design and parameter calculation were completed. By discrete-element-method (DEM) simulation, the optimal lead and rotation speed of the hole former were obtained, and the hole-forming mechanisms of soil cutting, soil lifting, soil discharging, soil extruding, and soil returning were further revealed. The field test results indicated that the prototype had the advantages of convenient operation and good performance, and the formed holes met the agronomic requirements, with a qualification rate of 88.5%. In addition, it was found that the soil moisture content has a great influence on the formation of holes. Under the condition of low moisture content, the residence time at the bottom of a hole should be appropriately increased to improve the qualification rate of the holes formed. Our research results provided theoretical guidance and technical support for the design, optimization, popularization, and application of a hole-forming machine for deep planting with large holes (DPLH). Full article
(This article belongs to the Special Issue Application of Modern Agricultural Equipment in Crop Cultivation)
Show Figures

Figure 1

22 pages, 7552 KB  
Article
Design and Experimental Study of a Drilling Tool for Mars Rock Sampling
by Yafang Liu, Lu Zhang, Ye Tian, Weiwei Zhang, Junyue Tang, Jiahang Zhang, Zhangqing Duan and Jie Ji
Aerospace 2024, 11(4), 272; https://doi.org/10.3390/aerospace11040272 - 30 Mar 2024
Cited by 1 | Viewed by 2174
Abstract
Martian rocks contain crucial information about the genesis of Mars and the historical evolution of Martian climate change. Consequently, extracting and examining Martian rocks are pivotal in advancing our comprehensive understanding of the red planet. However, the current core drill string is prone [...] Read more.
Martian rocks contain crucial information about the genesis of Mars and the historical evolution of Martian climate change. Consequently, extracting and examining Martian rocks are pivotal in advancing our comprehensive understanding of the red planet. However, the current core drill string is prone to wear and tear, and the samples are susceptible to thermal denaturation. To address these challenges, we introduce two novel types of drill bits, the conical straight junk slot and the conical spiral junk slot, both employing impregnated diamond as the primary material. Comparative experiments were meticulously conducted to evaluate the influence of different junk configurations on drilling parameters, including speed, abrasion resistance, drilling force loading, and sample temperature rise. The findings unequivocally demonstrate the superior performance of the spiral junk slot. Furthermore, simulations were performed to examine the drilling process on basalt using a fixed configuration drill bit, validating the occurrence of the sample temperature rise. The research presented in this paper offers valuable programmatic references and essential data support for future Martian rock coring drilling missions. Full article
Show Figures

Figure 1

17 pages, 6335 KB  
Article
Design and Experimental Study of Longitudinal-Torsional Composite Ultrasonic Internal Grinding Horn
by Hongyin Zhang, Feng Jiao, Ying Niu, Chenglong Li, Ziqiang Zhang and Jinglin Tong
Micromachines 2023, 14(11), 2056; https://doi.org/10.3390/mi14112056 - 2 Nov 2023
Cited by 1 | Viewed by 2375
Abstract
Longitudinal-torsional composite ultrasonic vibration has been widely used in grinding. This paper aims to solve the problem that the resonance frequency deviates greatly from the theoretical design frequency and the vibration mode is poor when the horn is matched with a larger tool [...] Read more.
Longitudinal-torsional composite ultrasonic vibration has been widely used in grinding. This paper aims to solve the problem that the resonance frequency deviates greatly from the theoretical design frequency and the vibration mode is poor when the horn is matched with a larger tool head. This paper presents how the longitudinal-torsional composite ultrasonic conical transition horn was designed and optimized by the transfer matrix theory and finite element simulation. For this purpose, the spiral groove parameters were optimized and selected by finite element simulation. Then, the modal analysis and transient dynamic analysis of the horn with grinding wheel were carried out to verify the correctness of the theoretical calculation. The impedance analysis and amplitude test of the horn with grinding wheel were carried out. The test results were in very good agreement with the theoretical and simulation results. Finally, the grinding experiment was carried out. The surface roughness of the workpiece in longitudinal-torsional ultrasonic vibration grinding was obviously reduced compared to that of ordinary grinding. All these obtained results demonstrate that the designed longitudinal-torsional composite ultrasonic horn has very good operational performance for practical applications. Full article
(This article belongs to the Special Issue Recent Advance in Piezoelectric Actuators and Motors 2023)
Show Figures

Figure 1

16 pages, 7730 KB  
Article
Harnessing Skyrmion Hall Effect by Thickness Gradients in Wedge-Shaped Samples of Cubic Helimagnets
by Takayuki Shigenaga and Andrey O. Leonov
Nanomaterials 2023, 13(14), 2073; https://doi.org/10.3390/nano13142073 - 14 Jul 2023
Cited by 8 | Viewed by 2090
Abstract
The skyrmion Hall effect, which is regarded as a significant hurdle for skyrmion implementation in thin-film racetrack devices, is theoretically shown to be suppressed in wedge-shaped nanostructures of cubic helimagnets. Under an applied electric current, ordinary isolated skyrmions with the topological charge 1 [...] Read more.
The skyrmion Hall effect, which is regarded as a significant hurdle for skyrmion implementation in thin-film racetrack devices, is theoretically shown to be suppressed in wedge-shaped nanostructures of cubic helimagnets. Under an applied electric current, ordinary isolated skyrmions with the topological charge 1 were found to move along the straight trajectories parallel to the wedge boundaries. Depending on the current density, such skyrmion tracks are located at different thicknesses uphill along the wedge. Numerical simulations show that such an equilibrium is achieved due to the balance between the Magnus force, which instigates skyrmion shift towards the wedge elevation, and the force, which restores the skyrmion position near the sharp wedge boundary due to the minimum of the edge–skyrmion interaction potential. Current-driven dynamics is found to be highly non-linear and to rest on the internal properties of isolated skyrmions in wedge geometries; both the skyrmion size and the helicity are modified in a non-trivial way with an increasing sample thickness. In addition, we supplement the well-known theoretical phase diagram of states in thin layers of chiral magnets with new characteristic lines; in particular, we demonstrate the second-order phase transition between the helical and conical phases with mutually perpendicular wave vectors. Our results are useful from both the fundamental point of view, since they systematize the internal properties of isolated skyrmions, and from the point of view of applications, since they point to the parameter region, where the skyrmion dynamics could be utilized. Full article
Show Figures

Figure 1

12 pages, 5392 KB  
Article
Scanning Three-Dimensional X-ray Diffraction Microscopy with a Spiral Slit
by Yujiro Hayashi, Daigo Setoyama, Kunio Fukuda, Katsuharu Okuda, Naoki Katayama and Hidehiko Kimura
Quantum Beam Sci. 2023, 7(2), 16; https://doi.org/10.3390/qubs7020016 - 29 May 2023
Cited by 9 | Viewed by 3097
Abstract
Recently, nondestructive evaluation of the stresses localized in grains was achieved for plastically deformed low-carbon steel using scanning three-dimensional X-ray diffraction (S3DXRD) microscopy with a conical slit. However, applicable metals and alloys were restricted to a single phase and evaluated stress was underestimated [...] Read more.
Recently, nondestructive evaluation of the stresses localized in grains was achieved for plastically deformed low-carbon steel using scanning three-dimensional X-ray diffraction (S3DXRD) microscopy with a conical slit. However, applicable metals and alloys were restricted to a single phase and evaluated stress was underestimated due to the fixed Bragg angles of the conical slit optimized to αFe. We herein propose S3DXRD with a rotating spiral slit adaptable to various metals and alloys and accurate stress evaluation with sweeping Bragg angles. Validation experiments with a 50-keV X-ray microbeam were conducted for low-carbon steel as a body-centered cubic (BCC) phase and pure Cu as a face-centered cubic (FCC) phase. As a result of orientation mapping, polygonal grain shapes and clear grain boundaries were observed for both BCC and FCC metals. Thus, it was demonstrated that S3DXRD with a rotating spiral slit will be applicable to various metals and alloys, multiphase alloys, and accurate stress evaluation using a X-ray microbeam with a higher photon energy within an energy range determined by X-ray focusing optics. In principle, this implies that S3DXRD becomes applicable to larger and thicker metal and alloy samples instead of current miniature test or wire-shaped samples if a higher-energy X-ray microbeam is available. Full article
Show Figures

Figure 1

9 pages, 4780 KB  
Communication
Controllable Helico-Conical Beam Generated with the Bored Phase
by Xuejuan Liu, Shuo Liu and Shubo Cheng
Photonics 2023, 10(5), 577; https://doi.org/10.3390/photonics10050577 - 15 May 2023
Cited by 2 | Viewed by 1616
Abstract
A controllable helico-conical beam is proposed in this paper. The intensity patterns and the local spatial frequency of the controllable helico-conical beams in the focal region are analyzed in detail. The results show that the length of the helico-conical beams can be customized [...] Read more.
A controllable helico-conical beam is proposed in this paper. The intensity patterns and the local spatial frequency of the controllable helico-conical beams in the focal region are analyzed in detail. The results show that the length of the helico-conical beams can be customized by the variable parameter k, and the angular dimension of the bored spiral trajectory is dependent on the proportion k/l. Moreover, the focal-field energy flow density and orbital angular momentum distributions of the controllable helico-conical beams are also analyzed. The proposed helico-conical beams with controllable lengths can be potentially applied in the field of optical guiding. Full article
(This article belongs to the Special Issue Beam Propagation)
Show Figures

Figure 1

22 pages, 77655 KB  
Article
A Mathematical Model for Mollusc Shells Based on Parametric Surfaces and the Construction of Theoretical Morphospaces
by Gabriela Contreras-Figueroa and José L. Aragón
Diversity 2023, 15(3), 431; https://doi.org/10.3390/d15030431 - 15 Mar 2023
Cited by 5 | Viewed by 6317
Abstract
In this study, we propose a mathematical model based on parametric surfaces for the shell morphology of the phylum Mollusca. Since David Raup’s pioneering works, many mathematical models have been proposed for different contexts to describe general shell morphology; however, there has been [...] Read more.
In this study, we propose a mathematical model based on parametric surfaces for the shell morphology of the phylum Mollusca. Since David Raup’s pioneering works, many mathematical models have been proposed for different contexts to describe general shell morphology; however, there has been a gap in the practicality of models that allow the estimation of their parameter values in real specimens. Our model collects ideas from previous pioneering studies; it rests on the equation of the logarithmic spiral, uses a fixed coordinate system (coiling axis), and defines the position of the generating curve with a local moving system using the Frenet frame. However, it improves upon previous models by applying apex formation, rotations, and substantially different parameter definitions. Furthermore, the most conspicuous improvement is the development of a simple and standardized methodology to obtain the six theoretical parameters from shell images from different mollusc classes and to generate useful theoretical morphospaces. The model was applied to reproduce the shape of real mollusc-shell specimens from Gasteropoda, Cephaloda and Bivalvia, which represent important classes in geological time. We propose a specific methodology to obtain the parameters in four morphological groups: helicoidal, planispiral, conic, and valve-like shells, thereby demonstrating that the model offers an adequate representation of real shells. Finally, possible improvements to the model are discussed along with further work. Based on the above considerations, the capacity of the model to allow the construction of theoretical morphospaces, the methodology to estimate parameters and from the comparison between several existing models for shells, we believe that our model can contribute to future research on the development, diversity and evolutionary processes that generated the diversity in mollusc shells. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Figure 1

13 pages, 4433 KB  
Article
Mechanism of Skyrmion Attraction in Chiral Magnets near the Ordering Temperatures
by Andrey O. Leonov and Ulrich K. Rößler
Nanomaterials 2023, 13(5), 891; https://doi.org/10.3390/nano13050891 - 27 Feb 2023
Cited by 8 | Viewed by 2661
Abstract
Isolated chiral skyrmions are investigated within the phenomenological Dzyaloshinskii model near the ordering temperatures of quasi-two-dimensional chiral magnets with Cnv symmetry and three-dimensional cubic helimagnets. In the former case, isolated skyrmions (IS) perfectly blend into the homogeneously magnetized state. The interaction [...] Read more.
Isolated chiral skyrmions are investigated within the phenomenological Dzyaloshinskii model near the ordering temperatures of quasi-two-dimensional chiral magnets with Cnv symmetry and three-dimensional cubic helimagnets. In the former case, isolated skyrmions (IS) perfectly blend into the homogeneously magnetized state. The interaction between these particle-like states, being repulsive in a broad low-temperature (LT) range, is found to switch into attraction at high temperatures (HT). This leads to a remarkable confinement effect: near the ordering temperature, skyrmions exist only as bound states. This is a consequence of the coupling between the magnitude and the angular part of the order parameter, which becomes pronounced at HT. The nascent conical state in bulk cubic helimagnets, on the contrary, is shown to shape skyrmion internal structure and to substantiate the attraction between them. Although the attracting skyrmion interaction in this case is explained by the reduction of the total pair energy due to the overlap of skyrmion shells, which are circular domain boundaries with the positive energy density formed with respect to the surrounding host phase, additional magnetization “ripples” at the skyrmion outskirt may lead to attraction also at larger length scales. The present work provides fundamental insights into the mechanism for complex mesophase formation near the ordering temperatures and constitutes a first step to explain the phenomenon of multifarious precursor effects in that temperature region. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

Back to TopTop