Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (133)

Search Parameters:
Keywords = copper (II) detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2371 KB  
Article
Colorimetric and SERS-Based Multimode Detection Platform for Cu(II) Ions Using Peptide–Gold Nanoparticles
by Panangattukara Prabhakaran Praveen Kumar
Colorants 2025, 4(4), 29; https://doi.org/10.3390/colorants4040029 - 24 Sep 2025
Viewed by 241
Abstract
Excessive copper ions in the human body can cause a variety of diseases, such as gastrointestinal disorders, cirrhosis, and Alzheimer’s disease. Techniques like Inductively Coupled Plasma–Mass Spectroscopy and Atomic Absorption Spectroscopy are available for copper detection, but the associated cost issues for sample [...] Read more.
Excessive copper ions in the human body can cause a variety of diseases, such as gastrointestinal disorders, cirrhosis, and Alzheimer’s disease. Techniques like Inductively Coupled Plasma–Mass Spectroscopy and Atomic Absorption Spectroscopy are available for copper detection, but the associated cost issues for sample preparation and labor limit their application for on-site detection. Herein, we are reporting a versatile method for detecting copper ions using a peptide-functionalized gold nanoparticle sensor in combination with various optical spectroscopic techniques. The peptide (CW) exhibited selective sensing ability for Cu(II) with visual colorimetric and optical spectroscopic changes compared to other metal ions tested. CW showed a visual colorimetric response from colorless to light brown color after interaction with Cu(II). Converting CW to a gold nanoparticle appended (CW-AuNPs) nanoplatform enabled a multimodal detection platform for Cu (II), which utilizes colorimetric and optical spectrum changes and surface-enhanced Raman spectroscopy (SERS) to enable highly sensitive sensing of Cu(II), even at extremely low concentrations (76 nms.). CW-AuNPs exhibit a controlled aggregation property in the presence of Cu(II), resulting in the creation of hot spots for SERS-based detection. Moreover, the peptide unit attached to the gold nanoparticles serves both as a binding motif for Cu(II) and as a Raman reporter for Cu(II) sensing. Our comprehensive analysis, including solution-state and dry-mapping Raman spectroscopic studies, demonstrates remarkable picomolar sensitivity of the peptide–gold nanoparticle system for Cu(II) detection. Moreover, we prepared a paper test strip from CW-AuNPs and used it as a visual colorimetric platform for sensitive detection of copper ions. Full article
Show Figures

Figure 1

12 pages, 2021 KB  
Article
Dual-Mode Optical Detection of Sulfide Ions Using Copper-Anchored Nitrogen-Doped Graphene Quantum Dot Nanozymes
by Van Anh Ngoc Nguyen, Trung Hieu Vu, Phuong Thy Nguyen and Moon Il Kim
Biosensors 2025, 15(8), 528; https://doi.org/10.3390/bios15080528 - 13 Aug 2025
Viewed by 661
Abstract
We present a dual-mode optical sensing strategy for selective and sensitive detection of sulfide ions (S2−), employing copper-anchored nitrogen-doped graphene quantum dots (Cu@N-GQDs) as bifunctional nanozymes. The Cu@N-GQDs were synthesized via citric acid pyrolysis in the presence of ammonium hydroxide (serving [...] Read more.
We present a dual-mode optical sensing strategy for selective and sensitive detection of sulfide ions (S2−), employing copper-anchored nitrogen-doped graphene quantum dots (Cu@N-GQDs) as bifunctional nanozymes. The Cu@N-GQDs were synthesized via citric acid pyrolysis in the presence of ammonium hydroxide (serving as both nitrogen source and reductant) and copper chloride, leading to uniform incorporation of copper oxide species onto the N-GQD surface. The resulting nanohybrids exhibit two synergistic functionalities: intrinsic fluorescence comparable to pristine N-GQDs, and significantly enhanced peroxidase-like catalytic activity attributed to the anchored copper species. Upon interaction with sulfide ions, the system undergoes a dual-optical response: (i) fluorescence quenching via Cu-S complexation, and (ii) inhibition of peroxidase-like activity due to the deactivation of Cu catalytic centers via the interaction with S2−. This dual-signal strategy enables sensitive quantification of S2−, achieving detection limits of 0.5 µM (fluorescence) and 3.5 µM (colorimetry). The sensor demonstrates excellent selectivity over competing substances and high reliability and precision in real tap water samples. These findings highlight the potential of Cu@N-GQDs as robust, bifunctional, and field-deployable nanozyme probes for environmental and biomedical sulfide ion monitoring. Full article
(This article belongs to the Special Issue Advanced Optics and Photonics in Biosensing Applications)
Show Figures

Figure 1

16 pages, 2496 KB  
Article
Silicon Nanowires Sensor Modified with Cu (II) Phthalocyanine Derivative for Phosphate Monitoring
by Milaine Jebali, Zina Fredj, Sameh Daboussi, Mounir Ben Ali and Mohamed Hassen
Chemosensors 2025, 13(8), 297; https://doi.org/10.3390/chemosensors13080297 - 9 Aug 2025
Viewed by 764
Abstract
This study reports the development of a highly sensitive electrochemical sensor for phosphate ion detection, utilizing silicon nanowires (SiNWs) as the transducing elements and a novel copper (II) phthalocyanine-acrylate polymer adduct (Cu (II) Pc-PAA) as the functional sensing layer. Silicon nanowires were fabricated [...] Read more.
This study reports the development of a highly sensitive electrochemical sensor for phosphate ion detection, utilizing silicon nanowires (SiNWs) as the transducing elements and a novel copper (II) phthalocyanine-acrylate polymer adduct (Cu (II) Pc-PAA) as the functional sensing layer. Silicon nanowires were fabricated via metal-assisted chemical etching (MACE) with etching durations of 15, 25, 35, 45, and 60 min. The SiNWs etched for 15 min exhibited the highest sensitivity, showing superior electrochemical performance. Functionalized SiNWs were systematically evaluated for phosphate ion (HPO42−) detection over a wide concentration range (10−10 to 10−6 M) using Mott–Schottky measurements. The surface morphology of the SiNWs was thoroughly characterized before and after Cu (II) Pc-PAA layer functionalization. The sensing material was analyzed using contact angle goniometry and scanning electron microscopy (SEM), confirming both its uniform distribution and effective immobilization. The sensor displayed a Nernstian behavior with a sensitivity of 28.25 mV/Decade and an exceptionally low limit of detection (LOD) of 1.5 nM. Furthermore, the capacitive sensor exhibited remarkable selectivity toward phosphate ions, even in the presence of potentially interfering anions such as Cl, NO3, SO42− and ClO4. These results confirm the sensor’s high sensitivity, selectivity, and fast response, underscoring its suitability for environmental phosphate ion monitoring. Full article
Show Figures

Figure 1

16 pages, 4006 KB  
Article
Ionic Liquid-Based Centrifuge-Less Cloud Point Extraction of a Copper(II)–4-Nitrocatechol Complex and Its Analytical Application
by Denitsa Kiradzhiyska, Nikolina Milcheva, Miglena Ruzmanova, Fatma Genç, Petya Racheva and Kiril Gavazov
Molecules 2025, 30(15), 3287; https://doi.org/10.3390/molecules30153287 - 6 Aug 2025
Viewed by 382
Abstract
A novel centrifuge-less cloud point extraction (CL-CPE) method was developed for the spectrophotometric determination of copper(II) using 4-nitrocatechol (4NC) as the chelating agent. The extraction system utilizes a mixed micellar phase composed of the nonionic surfactant Triton X-114 and the ionic liquid (IL) [...] Read more.
A novel centrifuge-less cloud point extraction (CL-CPE) method was developed for the spectrophotometric determination of copper(II) using 4-nitrocatechol (4NC) as the chelating agent. The extraction system utilizes a mixed micellar phase composed of the nonionic surfactant Triton X-114 and the ionic liquid (IL) Aliquat® 336 (A336). The extracted ternary ion-association complex, identified as (A336+)2[Cu(4NC)2], exhibits a maximum absorbance at 451 nm, with a molar absorption coefficient of 8.9 × 104 M−1 cm−1 and a Sandell’s sensitivity of 0.71 ng cm−2. The method demonstrates a linear response in the copper(II) concentration range of 32–763 ng mL−1 and a limit of detection of 9.7 ng mL−1. The logarithmic extraction constant (log Kex) was determined to be 7.9, indicating efficient extraction. Method performance, evaluated by the Blue Applicability Grade Index (BAGI) and the Click Analytical Chemistry Index (CACI), confirmed its feasibility, practicality, simplicity, convenience, cost-effectiveness, environmental friendliness, and analytical competitiveness. The proposed IL-CL-CPE method was successfully applied to the analysis of a dietary supplement, a solution for infusion, and synthetic mixtures simulating various copper alloys. Full article
(This article belongs to the Special Issue Recent Advances in Extraction Techniques for Elemental Analysis)
Show Figures

Figure 1

13 pages, 1278 KB  
Article
Copper Phthalocyanine Chemiresistors as Industrial NO2 Alarms
by Hadi AlQahtani, Mohammad Alshammari, Amjad M. Kamal and Martin Grell
Sensors 2025, 25(9), 2955; https://doi.org/10.3390/s25092955 - 7 May 2025
Viewed by 789
Abstract
We present a chemiresistor sensor for NO2 leaks. The sensor uses the organometallic semiconductor copper(II)phthalocyanine (CuPc), and is more easily manufactured and characterised than previously described organic transistor gas sensors. Resistance R is high but within the range of modern voltage buffers. [...] Read more.
We present a chemiresistor sensor for NO2 leaks. The sensor uses the organometallic semiconductor copper(II)phthalocyanine (CuPc), and is more easily manufactured and characterised than previously described organic transistor gas sensors. Resistance R is high but within the range of modern voltage buffers. The chemiresistor weakly responds to several gases, with either a small increase (NH3 and H2S) or decrease (SO2) in R. However, the response is low at environmental pollution levels. The response to NO2 also is near-zero for permitted long-term exposure. Our sensor is, therefore, not suited for environmental monitoring, but acceptable environmental pollutant levels do not interfere with the sensor. Above a threshold of ~87 ppb, the response to NO2 becomes very strong. This response is presumably due to the doping of CuPc by the strongly oxidising NO2, and is far stronger than for previously reported CuPc chemiresistors. We relate this to differences in the film morphology. Under 1 ppm NO2, R drops by a factor of 870 vs. non-polluted air. An amount of 1 ppm NO2 is far above the ‘background’ environmental pollution, thereby avoiding false alarms, but far below immediately life-threatening levels, thus giving time to evacuate. Our sensor is destined for leak detection in the nitrogen fertiliser industry, where NO2 is an important intermediate. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Graphical abstract

10 pages, 2399 KB  
Article
Enhanced Optoelectronic Response of TiO2 Photodetector Sensitized via CuInSe2 Quantum Dots
by Yanxu Zhang, Kexin Yu, Jin Zhao, Shuaiqi Xu, Mengqi Lv, Qiuling Zhao, Xue Du, Maorong Wang and Xia Wang
Nanomaterials 2025, 15(7), 522; https://doi.org/10.3390/nano15070522 - 30 Mar 2025
Viewed by 684
Abstract
Colloidal copper-based chalcogenide quantum dots (QDs), particularly lead-free CuInSe2 systems, have emerged as promising photosensitizers for optoelectronic de-vices due to their high extinction coefficients and solution processability. In this work, we demonstrate a TiO2 photodetector enhanced through interfacial engineering with the [...] Read more.
Colloidal copper-based chalcogenide quantum dots (QDs), particularly lead-free CuInSe2 systems, have emerged as promising photosensitizers for optoelectronic de-vices due to their high extinction coefficients and solution processability. In this work, we demonstrate a TiO2 photodetector enhanced through interfacial engineering with the size of 9.88 ± 2.49 nm CuInSe2 QDs, synthesized via controlled thermal injection. The optimized device architecture combines a 160 nm TiO2 active layer with 60 μm horizontal channel electrodes, achieving high performance metrics. The QD-sensitized device demonstrates an impressive switching ratio of approximately 105 in the 405 nm wavelength, a significant 34-times increase in responsivity at a 2 V bias, and a detection rate of 4.17 × 108 Jones. Due to the limitations imposed by the TiO2 bandgap, the TiO2 photodetector exhibits a negligible increase in photocurrent at 565 nm. The engineered type-II heterostructure enables responsivity enhancement across an extended spectral range through sensitization while maintaining equivalent performance characteristics at both 405 nm and 565 nm wavelengths. Furthermore, the sensitized architecture demonstrates superior response kinetics, enhanced specific detectivity, and exceptional operational stability, establishing a universal design framework for broadband photodetection systems. Full article
Show Figures

Figure 1

10 pages, 2466 KB  
Data Descriptor
Analysis of Minerals Using Handheld Laser-Induced Breakdown Spectroscopy Technology
by Naila Mezoued, Cécile Fabre, Jean Cauzid, YongHwi Kim and Marjolène Jatteau
Data 2025, 10(3), 40; https://doi.org/10.3390/data10030040 - 20 Mar 2025
Cited by 1 | Viewed by 1488
Abstract
Laser-induced breakdown spectroscopy (LIBS), a rapid and versatile analytical technique, is becoming increasingly widespread within the geoscience community. Suitable for fieldwork analyses using handheld analyzers, the elemental composition of a sample is revealed by generating plasma using a high-energy laser, providing a practical [...] Read more.
Laser-induced breakdown spectroscopy (LIBS), a rapid and versatile analytical technique, is becoming increasingly widespread within the geoscience community. Suitable for fieldwork analyses using handheld analyzers, the elemental composition of a sample is revealed by generating plasma using a high-energy laser, providing a practical solution to numerous geological challenges, including identifying and discriminating between different mineral phases. This data paper presents over 12,000 reference mineral spectra acquired using a handheld LIBS analyzer (© SciAps), including those of silicates (e.g., beryl, quartz, micas, spodumene, vesuvianite, etc.), carbonates (e.g., dolomite, magnesite, aragonite), phosphates (e.g., amblygonite, apatite, topaz), oxides (e.g., hematite, magnetite, rutile, chromite, wolframite), sulfates (e.g., baryte, gypsum), sulfides (e.g., chalcopyrite, pyrite, pyrrhotite), halides (e.g., fluorite), and native elements (e.g., sulfur and copper). The datasets were collected from 170 pure mineral samples in the form of crystals, powders, and rock specimens, during three research projects: NEXT, Labex Ressources 21, and ARTeMIS. The extensive spectral range covered by the analyzer spectrometers (190–950 nm) allowed for the detection of both major (>1 wt.%) and trace (<1 wt.%) elements, recording a unique spectral signature for each mineral. Mineral spectra can serve as reference data to (i) identify relevant emission lines and spectral ranges for specific minerals, (ii) be compared to unknown LIBS spectra for mineral identification, or (iii) constitute input data for machine learning algorithms. Full article
Show Figures

Figure 1

13 pages, 3972 KB  
Article
Optimized Sensitivity in Copper(II) Ion Detection: Sustainable Fabrication of Fluorescence Red-Shifted Graphene Quantum Dots via Electron-Withdrawing Modulation
by Weitao Li, Qian Niu, Xinglong Pang, Shang Li, Yang Liu, Boyu Li, Shuangyan Li, Lei Wang, Huazhang Guo and Liang Wang
Molecules 2025, 30(6), 1244; https://doi.org/10.3390/molecules30061244 - 10 Mar 2025
Cited by 3 | Viewed by 998
Abstract
Graphene quantum dots (GQDs) represent a class of promising nanomaterials characterized by adjustable optical properties, making them well suited for applications in biosensing and chemical detection. However, challenges persist in achieving scalable, cost-effective synthesis and enhancing detection sensitivity. In this study, we have [...] Read more.
Graphene quantum dots (GQDs) represent a class of promising nanomaterials characterized by adjustable optical properties, making them well suited for applications in biosensing and chemical detection. However, challenges persist in achieving scalable, cost-effective synthesis and enhancing detection sensitivity. In this study, we have developed a simple and environmentally friendly method to prepare blue graphene quantum dots, c-GQDs, using nitronaphthalene as a precursor, and yellow graphene quantum dots, y-GQDs, using nitronaphthalene doped acid. The quantum yield is 29.75%, and the average thickness is 2.08 nm and 3.95 nm, respectively. The synthesized c-GQDs exhibit a prominent cyan fluorescence at a wavelength of 490 nm under excitation at 380 nm, while the y-GQDs show a distinct yellow fluorescence at a wavelength of 540 nm under excitation at 494 nm. The introduction of p-aminobenzoic acid (PABA) introduced a marked red shift in fluorescence, attributed to the electron-withdrawing effect of the carboxyl groups on PABA. This key finding significantly enhanced the sensitivity of GQDs for detecting trace copper(II) ions (Cu2+), a heavy metal contaminant posing serious environmental risks. The fluorescence of the GQDs was selectively quenched in the presence of Cu2+, facilitating accurate and sensitive detection even in complex ion matrices. Mechanistic studies revealed that the quenching effect is driven by strong static quenching interactions, which inhibit non-radiative transitions. This work not only introduces a scalable method for producing high-performance GQDs but also highlights their potential as effective fluorescent probes for environmental monitoring and heavy metal ion detection. Full article
Show Figures

Figure 1

14 pages, 5871 KB  
Article
Additive Manufacturing for Automotive Radar Sensors Using Copper Inks and Pastes
by Nihesh Mohan, Fabian Steinberger, Sonja Wächter, Hüseyin Erdogan and Gordon Elger
Appl. Sci. 2025, 15(5), 2676; https://doi.org/10.3390/app15052676 - 2 Mar 2025
Cited by 1 | Viewed by 1720
Abstract
Radar sensors are critical for obstacle detection and navigation, especially for automated driving. Using the use-case “printing of heating coils on the inside of the front housing (primary radome)” needed for de-icing in winter, it is demonstrated that additive manufacturing (AM) can provide [...] Read more.
Radar sensors are critical for obstacle detection and navigation, especially for automated driving. Using the use-case “printing of heating coils on the inside of the front housing (primary radome)” needed for de-icing in winter, it is demonstrated that additive manufacturing (AM) can provide economic and functional benefits for manufacturing of the sensors. AM will allow significant cost reduction by eliminating parts and simplifying the manufacturing process. Different AM technologies for the coils were investigated, first, by applying the conductive traces by fused deposition modeling (FDM), and, second, by printing copper particle-free inks and pastes. The metal layers were electrically and mechanically characterized using a profilometer to measure the trace dimension and a four-point probe to measure the resistance. It was revealed that low-cost conductive filaments with low resistivity and current carrying capacity are commercially still not available. The best option sourced was a copper–polyester-based filament with 6000 µΩcm after printing. Therefore, low-cost particle-free copper inks and commercial copper flake paste were selected to print the heating coil. The Cu particle-free inks were amine-based Cu (II) formate complexes, where the Cu exists in an ionic form. Using contactless printing processes such as ink-jet printing or pneumatic dispensing, the traces could be deposited onto the low-melting temperature (225 °C) polymeric radome structure. After printing, the material needed to be sintered to form the conductive copper traces. To avoid damaging the polymer radome during sintering, two different processes were investigated: low-temperature (<150 °C) sintering in an oven for 30 min or fast laser sintering. The sintered Cu layers achieved the following specific electric resistivities when slowly sintered in the oven: paste 4 µΩcm and ink 8.8 µΩcm. Using laser sintering, the ink achieved 3.2 µΩcm because the locally high temperature provides better sintering. Also, the adhesion was significantly increased to (5 B). Therefore, laser sintering is the preferred technology. In addition, it allows fast processing directly after printing. Commercial equipment is available where printing and laser sintering is integrated. The potential of low-cost copper material and the integration in additive manufacturing of electronic systems using radar sensors as an example are demonstrated in this paper. Full article
(This article belongs to the Special Issue Material Evaluation Methods of Additive-Manufactured Components)
Show Figures

Figure 1

26 pages, 2696 KB  
Article
The Distribution of Dissolved Copper and Natural Organic Ligands in Tropical Coastal Waters Under Seasonal Variation
by Li Qing Ng, Khairul Nizam Mohamed, Abd Muhaimin Amiruddin, Ferdaus Mohamat Yusuff and Nur Ili Hamizah Mustaffa
J. Mar. Sci. Eng. 2025, 13(3), 446; https://doi.org/10.3390/jmse13030446 - 26 Feb 2025
Cited by 1 | Viewed by 735
Abstract
The bioavailability of dissolved copper (Cu) in seawater is influenced by the presence of natural organic matter. Changes in physicochemical conditions, such as pH, temperature, and salinity, can significantly affect the solubility and speciation of copper, thereby impacting the complexation of Cu(II)-binding organic [...] Read more.
The bioavailability of dissolved copper (Cu) in seawater is influenced by the presence of natural organic matter. Changes in physicochemical conditions, such as pH, temperature, and salinity, can significantly affect the solubility and speciation of copper, thereby impacting the complexation of Cu(II)-binding organic ligands. The concentration of dissolved Cu in the coastal water of Mersing, Malaysia, was detected by anodic stripping voltammetry (ASV). The natural organic copper(II)-binding ligands (CuL) and their conditional stability constants (log K′) were determined by using the competitive ligand exchange–adsorptive cathodic stripping voltammetry method (CLE–AdCSV) in our samples. The in situ parameters, such as pH, temperature, salinity, and dissolved oxygen (DO), were found to be significantly different between sampling periods and indicated the different physical chemical conditions between the sampling periods. However, we found a consistent concentration of dissolved Cu throughout the water column between sampling periods. This suggests that the presence of a strong class of natural organic ligands (L1) in Mersing’s coastal water maintains the dissolved Cu(II) ions in the water column and prevents the scavenging and precipitation processes under the seasonal variations. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

13 pages, 3324 KB  
Article
Comparative Study of Potassium Ion-Selective Electrodes with Solid Contact: Impact of Intermediate Layer Material on Temperature Resistance
by Klaudia Morawska, Szymon Malinowski, Magdalena Wardak and Cecylia Wardak
Molecules 2024, 29(23), 5803; https://doi.org/10.3390/molecules29235803 - 9 Dec 2024
Cited by 1 | Viewed by 2158
Abstract
This paper presents a comparative study on the temperature resistance of solid-contact ion-selective electrodes, depending on the type of solid-contact material. Five types of potassium electrodes, with a valinomycin-based model membrane, were developed using different types of mediation layers, namely a conductive polymer [...] Read more.
This paper presents a comparative study on the temperature resistance of solid-contact ion-selective electrodes, depending on the type of solid-contact material. Five types of potassium electrodes, with a valinomycin-based model membrane, were developed using different types of mediation layers, namely a conductive polymer (poly(3-octylthiophene-2,5-diyl) and a perinone polymer), multi-walled carbon nanotubes, copper(II) oxide nanoparticles, and a nanocomposite consisting of multi-walled carbon nanotubes and copper(II) oxide. We examined how the measurement temperature (10 °C, 23 °C, and 36 °C) affects the sensitivity, measurement range, detection limit, selectivity, as well as the stability and reversibility of the electrode potential. Electrodes modified with a nanocomposite (GCE/NC/ISM) and a perinone polymer (GCE/PPer/ISM) showed the best resistance to temperature changes. An almost Nernst response and a stable measurement range and the lowest detection limit values for each temperature were obtained for them. The introduction of mediation layers significantly improved the stability and potential reversibility of all the modified electrodes relative to the unmodified electrode (GCE/ISM). Still, it was the GCE/PPer/ISM and GCE/NC/ISM that stood out from the others, with stability of 0.11 and 0.12 µV/s for 10 °C, 0.05 and 0.08 µV/s for 23 °C, and 0.06 and 0.09 µV/s for 36 °C, respectively. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Electrochemistry)
Show Figures

Graphical abstract

17 pages, 4015 KB  
Article
Evaluation of Performance and Longevity of Ti-Cu Dry Electrodes: Degradation Analysis Using Anodic Stripping Voltammetry
by Daniel Carvalho, Ana Margarida Rodrigues, João Santos, Dulce Geraldo, Armando Ferreira, Marcio Assolin Correa, Eduardo Alves, Nuno Pessoa Barradas, Claudia Lopes and Filipe Vaz
Sensors 2024, 24(23), 7477; https://doi.org/10.3390/s24237477 - 23 Nov 2024
Cited by 2 | Viewed by 1174
Abstract
This study aimed to investigate the degradation of dry biopotential electrodes using the anodic stripping voltammetry (ASV) technique. The electrodes were based on Ti-Cu thin films deposited on different polymeric substrates (polyurethane, polylactic acid, and cellulose) by Direct Current (DC) magnetron sputtering. TiCu [...] Read more.
This study aimed to investigate the degradation of dry biopotential electrodes using the anodic stripping voltammetry (ASV) technique. The electrodes were based on Ti-Cu thin films deposited on different polymeric substrates (polyurethane, polylactic acid, and cellulose) by Direct Current (DC) magnetron sputtering. TiCu0.34 thin films (chemical composition of 25.4 at.% Cu and 74.6 at.% Ti) were prepared by sputtering a composite Ti target. For comparison purposes, a Cu-pure thin film was prepared under the same conditions and used as a reference. Both films exhibited dense microstructures with differences in surface topography and crystalline structure. The degradation process involved immersing TiCu0.34 and Cu-pure thin films in artificial sweat (prepared following the ISO standard 3160-2) for different durations (1 h, 4 h, 24 h, 168 h, and 240 h). ASV was the technique selected to quantify the amount of Cu(II) released by the electrodes immersed in the sweat solution. The optimal analysis conditions were set for 120 s and −1.0 V for time deposition and potential deposition, respectively, with a quantification limit of 0.050 ppm and a detection limit of 0.016 ppm. The results showed that TiCu0.34 electrodes on polyurethane substrates were significantly more reliable over time compared to Cu-pure electrodes. After 240 h of immersion, the TiCu0.34 electrodes released a maximum of 0.06 ppm Cu, while Cu-pure electrodes released 16 ppm. The results showed the significant impact of the substrate on the electrode’s longevity, with cellulose bases performing poorly. TiCu0.34 thin films on cellulose released 1.15 µg/cm2 of copper after 240 h, compared to 1.12 mg/cm2 from Cu-pure films deposited on the same substrate. Optical microscopy revealed that electrodes based on polylactic acid substrates were more prone to corrosion over time, whereas TiCu thin-film metallic glass-like structures on PU substrates showed extended lifespan. This study underscored the importance of assessing the degradation of dry biopotential electrodes for e-health applications, contributing to developing more durable and reliable sensing devices. While the study simulated real-world conditions using artificial sweat, it did not involve in vivo measurements. Full article
(This article belongs to the Special Issue Biomedical Electronics and Wearable Systems)
Show Figures

Figure 1

21 pages, 4174 KB  
Article
Mandarin Peels-Derived Carbon Dots: A Multifaceted Fluorescent Probe for Cu(II) Detection in Tap and Drinking Water Samples
by Marwa El-Azazy, Alaa AlReyashi, Khalid Al-Saad, Nessreen Al-Hashimi, Mohammad A. Al-Ghouti, Mohamed F. Shibl, Abdulrahman Alahzm and Ahmed S. El-Shafie
Nanomaterials 2024, 14(20), 1666; https://doi.org/10.3390/nano14201666 - 17 Oct 2024
Cited by 8 | Viewed by 1973
Abstract
Carbon dots (CDs) derived from mandarin peel biochar (MBC) at different pyrolysis temperatures (200, 400, 600, and 800 °C) have been synthesized and characterized. This high-value transformation of waste materials into fluorescent nanoprobes for environmental monitoring represents a step forward towards a circular [...] Read more.
Carbon dots (CDs) derived from mandarin peel biochar (MBC) at different pyrolysis temperatures (200, 400, 600, and 800 °C) have been synthesized and characterized. This high-value transformation of waste materials into fluorescent nanoprobes for environmental monitoring represents a step forward towards a circular economy. In this itinerary, CDs produced via one-pot hydrothermal synthesis were utilized for the detection of copper (II) ions. The study looked at the spectroscopic features of biochar-derived CDs. The selectivity of CDs obtained from biochar following carbonization at 400 °C (MBC400-CDs towards various heavy metal ions resulted in considerable fluorescence quenching with copper (II) ions, showcasing their potential as selective detectors. Transmission electron microscopic (TEM) analysis validated the MBC-CDs’ consistent spherical shape, with a particle size of <3 nm. The Plackett–Burman Design (PBD) was used to study three elements that influence the F0/F ratio, with the best ratio obtained with a pH of 10, for 10 min, and an aqueous reaction medium. Cu (II) was detected over a dynamic range of 4.9–197.5 μM and limit of detection (LOD) of 0.01 μM. Validation testing proved the accuracy and precision for evaluating tap and mountain waters with great selectivity and no interference from coexisting metal ions. Full article
(This article belongs to the Special Issue Carbon Nanostructures as Promising Future Materials: 2nd Edition)
Show Figures

Figure 1

20 pages, 5211 KB  
Article
Perspectives of Hydrogen Generation in Cavitation–Jet Hydrodynamic Reactor
by G. K. Mamytbekov, I. V. Danko, Zh. I. Beksultanov, Y. R. Nurtazin and A. Rakhimbayev
Appl. Sci. 2024, 14(20), 9415; https://doi.org/10.3390/app14209415 - 15 Oct 2024
Viewed by 2243
Abstract
The article investigates the potential for producing hydrogen by combining the methods of water splitting under cavitation and the chemical activation of aluminum in a high-speed cavitation–jet flow generated by a specialized hydrodynamic reactor. The process of cavitation and water spraying causes the [...] Read more.
The article investigates the potential for producing hydrogen by combining the methods of water splitting under cavitation and the chemical activation of aluminum in a high-speed cavitation–jet flow generated by a specialized hydrodynamic reactor. The process of cavitation and water spraying causes the liquid heating itself until it reaches saturated vapor pressure, resulting in the creation of vapor–gaseous products from the splitting of water molecules. The producing of vapor–gaseous products can be explained through the theory of non-equilibrium low-temperature plasma formation within a high-speed cavitation–jet flow of fluid. Special focus is also given to the interactions occurring at the interface boundary phase of aluminum and liquid under cavitation condition. The primary solid products formed on aluminum surfaces are bayerite, copper oxides (I and II), iron carbide, and a compound of magnesium oxides and aluminum hydroxide. A high hydrogen yield of 60% was achieved when using a 0.1% sodium hydroxide solution as a working liquid compared to demineralized water. Moreover, hydrogen methane was also detected in the volume of the vapor–gas mixture, which could be utilized to address the challenges of decarbonization and the recycling of aluminum-containing solid industrial and domestic waste. This work provides a contribution to the study of the mechanism of hydrogen generation by cavitation–jet processing of water and aqueous alkali solutions, in which conditions are created for double cavitation in the cavitation–jet chamber of the hydrodynamic reactor. Full article
Show Figures

Figure 1

18 pages, 7445 KB  
Article
Unveiling the Potential of CuO and Cu2O Nanoparticles against Novel Copper-Resistant Pseudomonas Strains: An In-Depth Comparison
by Olesia Havryliuk, Garima Rathee, Jeniffer Blair, Vira Hovorukha, Oleksandr Tashyrev, Jordi Morató, Leonardo M. Pérez and Tzanko Tzanov
Nanomaterials 2024, 14(20), 1644; https://doi.org/10.3390/nano14201644 - 13 Oct 2024
Cited by 3 | Viewed by 3929
Abstract
Four novel Pseudomonas strains with record resistance to copper (Cu2+) previously isolated from ecologically diverse samples (P. lactis UKR1, P. panacis UKR2, P. veronii UKR3, and P. veronii UKR4) were tested against sonochemically synthesised copper-oxide (I) (Cu2O) and [...] Read more.
Four novel Pseudomonas strains with record resistance to copper (Cu2+) previously isolated from ecologically diverse samples (P. lactis UKR1, P. panacis UKR2, P. veronii UKR3, and P. veronii UKR4) were tested against sonochemically synthesised copper-oxide (I) (Cu2O) and copper-oxide (II) (CuO) nanoparticles (NPs). Nanomaterials characterisation by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and High-Resolution Transmission Electron Microscopy (HRTEM) confirmed the synthesis of CuO and Cu2O NPs. CuO NPs exhibited better performance in inhibiting bacterial growth due to their heightened capacity to induce oxidative stress. The greater stability and geometrical shape of CuO NPs were disclosed as important features associated with bacterial cell toxicity. SEM and TEM images confirmed that both NPs caused membrane disruption, altered cell morphology, and pronounced membrane vesiculation, a distinctive feature of bacteria dealing with stressor factors. Finally, Cu2O and CuO NPs effectively decreased the biofilm-forming ability of the Cu2+-resistant UKR strains as well as degraded pre-established biofilm, matching NPs’ antimicrobial performance. Despite the similarities in the mechanisms of action revealed by both NPs, distinctive behaviours were also detected for the different species of wild-type Pseudomonas analysed. In summary, these findings underscore the efficacy of nanotechnology-driven strategies for combating metal tolerance in bacteria. Full article
(This article belongs to the Special Issue Antimicrobial and Antioxidant Activity of Nanoparticles)
Show Figures

Figure 1

Back to TopTop