Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1228 KiB  
Review
The cGAS/STING Pathway: Friend or Foe in Regulating Cardiomyopathy
by Weiyue Wang, Yuanxu Gao, Hyun Kyoung Lee, Albert Cheung-Hoi Yu, Markus Kipp, Hannes Kaddatz and Jiangshan Zhan
Cells 2025, 14(11), 778; https://doi.org/10.3390/cells14110778 - 25 May 2025
Viewed by 260
Abstract
Inflammation is a central hallmark of cardiomyopathy, where misdirected immune responses contribute to chronic myocardial dysfunction. Among the emerging molecular mechanisms implicated in this process, the cyclic GMP–AMP synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway has garnered increasing attention. Acting as a [...] Read more.
Inflammation is a central hallmark of cardiomyopathy, where misdirected immune responses contribute to chronic myocardial dysfunction. Among the emerging molecular mechanisms implicated in this process, the cyclic GMP–AMP synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway has garnered increasing attention. Acting as a key cytosolic DNA sensor, the cGAS/STING pathway orchestrates inflammatory responses triggered by microbial infections or endogenous cellular stressors such as autophagy and apoptosis. Despite its pivotal role, the precise molecular mechanisms regulating this pathway and its role in cardiomyopathy-associated inflammation remain poorly understood and subject to ongoing debate. To address this scientific gap, we first reviewed key findings on cGAS/STING signaling in various forms of cardiomyopathy, drawing from in vivo and in vitro studies, as well as clinical samples. In the next step, we explored how the cGAS/STING pathway could be modulated by specific agonists and antagonists in the context of cardiac disease. Finally, by integrating publicly available human single-cell RNA sequencing (scRNA-seq) data and a systematic literature review, we identified existing molecular interventions and highlighted promising therapeutic targets aimed at mitigating cGAS/STING-driven inflammation. This comprehensive approach emphasizes the therapeutic potential of targeting the cGAS/STING pathway and provides a foundation for developing novel interventions aimed at alleviating inflammatory cardiomyopathy and improving patient outcomes. Future studies will be essential to validate these findings and facilitate their translation into clinical practice. Full article
Show Figures

Figure 1

18 pages, 3224 KiB  
Article
Astilbin Alleviates IL-17-Induced Hyperproliferation and Inflammation in HaCaT Cells via Inhibiting Ferroptosis Through the cGAS-STING Pathway
by Xiaohan Xu, Huizhong Zhang, Aqian Chang, Hulinyue Peng, Shiman Li, Ke Zhang, Wenqi Wang, Xingbin Yin, Changhai Qu, Xiaoxv Dong and Jian Ni
Int. J. Mol. Sci. 2025, 26(11), 5075; https://doi.org/10.3390/ijms26115075 - 24 May 2025
Viewed by 375
Abstract
Psoriasis, a chronic inflammatory skin disorder, is driven by dysregulated immune responses and keratinocyte dysfunction. Here, we explore the therapeutic potential of Astilbin (AST), a flavonoid with potent anti-inflammatory properties, in modulating ferroptosis and the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) [...] Read more.
Psoriasis, a chronic inflammatory skin disorder, is driven by dysregulated immune responses and keratinocyte dysfunction. Here, we explore the therapeutic potential of Astilbin (AST), a flavonoid with potent anti-inflammatory properties, in modulating ferroptosis and the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in IL-17-stimulated HaCaT keratinocytes. Our psoriatic cell model recapitulated key pathological features, including hyperproliferation, membrane integrity loss, mitochondrial dysfunction, and heightened oxidative stress, alongside elevated proinflammatory cytokine levels. Ferroptosis-related biomarkers were significantly altered, with increased malondialdehyde (MDA) accumulation, reduced glutathione (GSH) levels, iron overload (Fe2+), and enhanced lipid peroxidation (detected via C11-BODIPY). Mechanistically, mitochondrial damage triggered cytoplasmic leakage of mitochondrial DNA (mtDNA), activating the cGAS-STING pathway, as evidenced by upregulated pathway-associated protein expression. AST intervention effectively mitigated these pathological changes by suppressing ferroptosis and modulating cGAS-STING signaling. These findings reveal a dual-pathway regulatory mechanism, positioning AST as a promising therapeutic candidate for psoriasis. By elucidating the interplay between ferroptosis and the cGAS-STING pathway, this study provides new insights into psoriatic inflammation and offers a rationale for targeting these pathways in therapeutic strategies. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

27 pages, 1682 KiB  
Review
Cell-Autonomous Immunity: From Cytosolic Sensing to Self-Defense
by Danlin Han, Bozheng Zhang, Zhe Wang and Yang Mi
Int. J. Mol. Sci. 2025, 26(9), 4025; https://doi.org/10.3390/ijms26094025 - 24 Apr 2025
Viewed by 598
Abstract
As an evolutionarily conserved and ubiquitous mechanism of host defense, non-immune cells in vertebrates possess the intrinsic ability to autonomously detect and combat intracellular pathogens. This process, termed cell-autonomous immunity, is distinct from classical innate immunity. In this review, we comprehensively examine the [...] Read more.
As an evolutionarily conserved and ubiquitous mechanism of host defense, non-immune cells in vertebrates possess the intrinsic ability to autonomously detect and combat intracellular pathogens. This process, termed cell-autonomous immunity, is distinct from classical innate immunity. In this review, we comprehensively examine the defense mechanisms employed by non-immune cells in response to intracellular pathogen invasion. We provide a detailed analysis of the cytosolic sensors that recognize aberrant nucleic acids, lipopolysaccharide (LPS), and other pathogen-associated molecular patterns (PAMPs). Specifically, we elucidate the molecular mechanisms underlying key signaling pathways, including the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mitochondrial antiviral signaling (MAVS) axis, and the guanylate-binding proteins (GBPs)-mediated pathway. Furthermore, we critically evaluate the involvement of these pathways in the pathogenesis of various diseases, including autoimmune disorders, inflammatory conditions, and malignancies, while highlighting their potential as therapeutic targets. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

23 pages, 2234 KiB  
Review
Recent Progress and Potential of G4 Ligands in Cancer Immunotherapy
by Jiahui Lin, Zhu Gong, Yingyue Lu, Jiongheng Cai, Junjie Zhang, Jiaheng Tan, Zhishu Huang and Shuobin Chen
Molecules 2025, 30(8), 1805; https://doi.org/10.3390/molecules30081805 - 17 Apr 2025
Viewed by 736
Abstract
G-quadruplex (G4) structures are non-canonical nucleic acid conformations that play crucial roles in gene regulation, DNA replication, and telomere maintenance. Recent studies have highlighted G4 ligands as promising anticancer agents due to their ability to modulate oncogene expression and induce DNA damage. By [...] Read more.
G-quadruplex (G4) structures are non-canonical nucleic acid conformations that play crucial roles in gene regulation, DNA replication, and telomere maintenance. Recent studies have highlighted G4 ligands as promising anticancer agents due to their ability to modulate oncogene expression and induce DNA damage. By stabilizing G4 structures, these ligands affect tumor progression. Additionally, they have been implicated in tumor immunity modulation, particularly through the activation and immunogenic cell death induction of the cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) signaling pathway. Moreover, their disruption of telomere maintenance and regulation of key oncogenes, such as c-MYC and KRAS, position them as candidates for immune-based therapeutic interventions. Despite their therapeutic potential, challenges remain in optimizing their clinical applications, particularly in patient stratification and elucidating their immunomodulatory effects. This review provides a comprehensive overview of the mechanisms through which G4 ligands influence tumor progression and immune regulation, highlighting their potential role in future cancer immunotherapy strategies. Full article
Show Figures

Figure 1

11 pages, 2749 KiB  
Article
Hovenia dulcis Thunb. Honey Exerts Antiviral Effect Against Influenza A Virus Infection Through Mitochondrial Stress-Mediated Enhancement of Innate Immunity
by Eun-Bin Kwon, Buyun Kim, Young-Eun Kim, Sung-Joon Na, Sang Mi Han, Soon Ok Woo, Hong Min Choi, Siwon Moon, Young Soo Kim and Jang-Gi Choi
Antioxidants 2025, 14(1), 71; https://doi.org/10.3390/antiox14010071 - 9 Jan 2025
Viewed by 1247
Abstract
To combat influenza A virus (IAV) infection, it is vital to develop effective therapeutic strategies, including immunomodulators. In this study, we examined the antiviral effects of Hovenia dulcis Thunb. honey (HDH) against IAV using RAW 264.7 cells. HDH treatment significantly reduced IAV infection [...] Read more.
To combat influenza A virus (IAV) infection, it is vital to develop effective therapeutic strategies, including immunomodulators. In this study, we examined the antiviral effects of Hovenia dulcis Thunb. honey (HDH) against IAV using RAW 264.7 cells. HDH treatment significantly reduced IAV infection and viral protein expression. Moreover, it enhanced the production of interferon (IFN)-β, activated the innate immune response through the cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) pathway, and upregulated IFN signaling through signal transducer and activator of transcription (STAT)1/2 phosphorylation and interferon-stimulated gene (ISG) expression. In addition, HDH decreased IAV-induced intracellular and mitochondrial reactive oxygen species (ROS) production by upregulating the expression of antioxidant proteins, such as Sirt3 and SOD2. The results suggest that HDH is a potential therapeutic agent inhibiting viral replication and boosting host antiviral immunity. Full article
Show Figures

Figure 1

15 pages, 3357 KiB  
Review
How Does African Swine Fever Virus Evade the cGAS-STING Pathway?
by Can Lin, Chenyang Zhang, Nanhua Chen, François Meurens, Jianzhong Zhu and Wanglong Zheng
Pathogens 2024, 13(11), 957; https://doi.org/10.3390/pathogens13110957 - 2 Nov 2024
Cited by 1 | Viewed by 2481
Abstract
African swine fever (ASF), a highly infectious and devastating disease affecting both domestic pigs and wild boars, is caused by the African swine fever virus (ASFV). ASF has resulted in rapid global spread of the disease, leading to significant economic losses within the [...] Read more.
African swine fever (ASF), a highly infectious and devastating disease affecting both domestic pigs and wild boars, is caused by the African swine fever virus (ASFV). ASF has resulted in rapid global spread of the disease, leading to significant economic losses within the swine industry. A significant obstacle to the creation of safe and effective ASF vaccines is the existing knowledge gap regarding the pathogenesis of ASFV and its mechanisms of immune evasion. The cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) pathway is a major pathway mediating type I interferon (IFN) antiviral immune response against infections by diverse classes of pathogens that contain DNA or generate DNA in their life cycles. To evade the host’s innate immune response, ASFV encodes many proteins that inhibit the production of type I IFN by antagonizing the cGAS-STING signaling pathway. Multiple proteins of ASFV are involved in promoting viral replication by protein–protein interaction during ASFV infection. The protein QP383R could impair the function of cGAS. The proteins EP364R, C129R and B175L could disturb the function of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). The proteins E248R, L83L, MGF505-11L, MGF505-7R, H240R, CD2v, E184L, B175L and p17 could interfere with the function of STING. The proteins MGF360-11L, MGF505-7R, I215L, DP96R, A151R and S273R could affect the function of TANK Binding Kinase 1 (TBK1) and IκB kinase ε (IKKε). The proteins MGF360-14L, M1249L, E120R, S273R, D129L, E301R, DP96R, MGF505-7R and I226R could inhibit the function of Interferon Regulatory Factor 3 (IRF3). The proteins MGF360-12L, MGF505-7R/A528R, UBCv1 and A238L could inhibit the function of nuclear factor kappa B (NF-Κb). Full article
(This article belongs to the Special Issue Infection and Immunity in Animals)
Show Figures

Figure 1

11 pages, 1040 KiB  
Review
The cGAS-STING Pathway: A New Therapeutic Target for Ischemia–Reperfusion Injury in Acute Myocardial Infarction?
by Mengxiang Tian, Fengyuan Li and Haiping Pei
Biomedicines 2024, 12(8), 1728; https://doi.org/10.3390/biomedicines12081728 - 2 Aug 2024
Cited by 2 | Viewed by 7575
Abstract
The innate immune system is the body’s natural defense system, which recognizes a wide range of microbial molecules (such as bacterial DNA and RNA) and abnormal molecules within cells (such as misplaced DNA, self-antigens) to play its role. DNA released into the cytoplasm [...] Read more.
The innate immune system is the body’s natural defense system, which recognizes a wide range of microbial molecules (such as bacterial DNA and RNA) and abnormal molecules within cells (such as misplaced DNA, self-antigens) to play its role. DNA released into the cytoplasm activates the cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) signaling pathway to initiate an immune response. Ischemia–reperfusion injury (IRI) after acute myocardial infarction refers to the phenomenon where myocardial tissue suffers further damage upon the restoration of blood flow. This issue is a significant clinical problem in the treatment of myocardial infarction, as it can diminish the effectiveness of reperfusion therapy and lead to further deterioration of cardiac function. Studies have found that the cGAS-STING signaling pathway is closely related to this phenomenon. Therefore, this review aims to describe the role of the cGAS-STING signaling pathway in ischemia–reperfusion injury after myocardial infarction and summarize the current development status of cGAS-STING pathway inhibitors and the application of nanomaterials to further elucidate the potential of this pathway as a therapeutic target. Full article
(This article belongs to the Special Issue Molecular Mechanism of Ischemia and Reperfusion Injury)
Show Figures

Figure 1

25 pages, 6698 KiB  
Review
Agonists and Inhibitors of the cGAS-STING Pathway
by Xiaoxuan Yu, Linxiang Cai, Jingyue Yao, Cenming Li and Xiaoyong Wang
Molecules 2024, 29(13), 3121; https://doi.org/10.3390/molecules29133121 - 30 Jun 2024
Cited by 13 | Viewed by 8787
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is pivotal in immunotherapy. Several agonists and inhibitors of the cGAS-STING pathway have been developed and evaluated for the treatment of various diseases. The agonists aim to activate STING, with cyclic dinucleotides (CDNs) [...] Read more.
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is pivotal in immunotherapy. Several agonists and inhibitors of the cGAS-STING pathway have been developed and evaluated for the treatment of various diseases. The agonists aim to activate STING, with cyclic dinucleotides (CDNs) being the most common, while the inhibitors aim to block the enzymatic activity or DNA binding ability of cGAS. Meanwhile, non-CDN compounds and cGAS agonists are also gaining attention. The omnipresence of the cGAS-STING pathway in vivo indicates that its overactivation could lead to undesired inflammatory responses and autoimmune diseases, which underscores the necessity of developing both agonists and inhibitors of the cGAS-STING pathway. This review describes the molecular traits and roles of the cGAS-STING pathway and summarizes the development of cGAS-STING agonists and inhibitors. The information is supposed to be conducive to the design of novel drugs for targeting the cGAS-STING pathway. Full article
(This article belongs to the Special Issue Chemical Biology in Asia)
Show Figures

Figure 1

13 pages, 2355 KiB  
Review
Suppressing Anaphase-Promoting Complex/Cyclosome–Cell Division Cycle 20 Activity to Enhance the Effectiveness of Anti-Cancer Drugs That Induce Multipolar Mitotic Spindles
by Scott C. Schuyler, Hsin-Yu Chen and Kai-Ping Chang
Int. J. Mol. Sci. 2024, 25(12), 6329; https://doi.org/10.3390/ijms25126329 - 7 Jun 2024
Cited by 3 | Viewed by 2191
Abstract
Paclitaxel induces multipolar spindles at clinically relevant doses but does not substantially increase mitotic indices. Paclitaxel’s anti-cancer effects are hypothesized to occur by promoting chromosome mis-segregation on multipolar spindles leading to apoptosis, necrosis and cyclic-GMP-AMP Synthase–Stimulator of Interferon Genes (cGAS-STING) pathway activation in [...] Read more.
Paclitaxel induces multipolar spindles at clinically relevant doses but does not substantially increase mitotic indices. Paclitaxel’s anti-cancer effects are hypothesized to occur by promoting chromosome mis-segregation on multipolar spindles leading to apoptosis, necrosis and cyclic-GMP-AMP Synthase–Stimulator of Interferon Genes (cGAS-STING) pathway activation in daughter cells, leading to secretion of type I interferon (IFN) and immunogenic cell death. Eribulin and vinorelbine have also been reported to cause increases in multipolar spindles in cancer cells. Recently, suppression of Anaphase-Promoting Complex/Cyclosome–Cell Division Cycle 20 (APC/C-CDC20) activity using CRISPR/Cas9 mutagenesis has been reported to increase sensitivity to Kinesin Family 18a (KIF18a) inhibition, which functions to suppress multipolar mitotic spindles in cancer cells. We propose that a way to enhance the effectiveness of anti-cancer agents that increase multipolar spindles is by suppressing the APC/C-CDC20 to delay, but not block, anaphase entry. Delaying anaphase entry in genomically unstable cells may enhance multipolar spindle-induced cell death. In genomically stable healthy human cells, delayed anaphase entry may suppress the level of multipolar spindles induced by anti-cancer drugs and lower mitotic cytotoxicity. We outline specific combinations of molecules to investigate that may achieve the goal of enhancing the effectiveness of anti-cancer agents. Full article
(This article belongs to the Special Issue Current Research on Cancer Biology and Therapeutics: 2nd Edition)
Show Figures

Figure 1

24 pages, 8313 KiB  
Article
Lovastatin-Induced Mitochondrial Oxidative Stress Leads to the Release of mtDNA to Promote Apoptosis by Activating cGAS-STING Pathway in Human Colorectal Cancer Cells
by Xiaoming Huang, Ning Liang, Fuming Zhang, Wanjun Lin and Wenzhe Ma
Antioxidants 2024, 13(6), 679; https://doi.org/10.3390/antiox13060679 - 31 May 2024
Cited by 5 | Viewed by 2704
Abstract
Statins are 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors widely used in the treatment of hyperlipidemia. The inhibition of HMG-CoA reductase in the mevalonate pathway leads to the suppression of cell proliferation and induction of apoptosis. The cyclic GMP-AMP synthase (cGAS) stimulator of the interferon [...] Read more.
Statins are 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors widely used in the treatment of hyperlipidemia. The inhibition of HMG-CoA reductase in the mevalonate pathway leads to the suppression of cell proliferation and induction of apoptosis. The cyclic GMP-AMP synthase (cGAS) stimulator of the interferon genes (STING) signaling pathway has been suggested to not only facilitate inflammatory responses and the production of type I interferons (IFN), but also activate other cellular processes, such as apoptosis. It has not been studied, however, whether cGAS-STING activation is involved in the apoptosis induced by statin treatment in human colorectal cancer cells. In this study, we reported that lovastatin impaired mitochondrial function, including the depolarization of mitochondrial membrane potential, reduction of oxygen consumption, mitochondrial DNA (mtDNA) integrity, and mtDNA abundance in human colorectal cancer HCT116 cells. The mitochondrial dysfunction markedly induced ROS production in mitochondria, whereas the defect in mitochondria respiration or depletion of mitochondria eliminated reactive oxygen species (ROS) production. The ROS-induced oxidative DNA damage by lovastatin treatment was attenuated by mitochondrial-targeted antioxidant mitoquinone (mitoQ). Upon DNA damage, mtDNA was released into the cytosol and bound to DNA sensor cGAS, thus activating the cGAS-STING signaling pathway to trigger a type I interferon response. This effect was not activated by nuclear DNA (nuDNA) or mitochondrial RNA, as the depletion of mitochondria compromised this effect, but not the knockdown of retinoic acid-inducible gene-1/melanoma differentiation-associated protein 5 (RIG-I/MDA5) adaptor or mitochondrial antiviral signaling protein (MAVS). Moreover, lovastatin-induced apoptosis was partly dependent on the cGAS-STING signaling pathway in HCT116 cells as the knockdown of cGAS or STING expression rescued cell viability and mitigated apoptosis. Similarly, the knockdown of cGAS or STING also attenuated the antitumor effect of lovastatin in the HCT116 xenograft model in vivo. Our findings suggest that lovastatin-induced apoptosis is at least partly mediated through the cGAS-STING signaling pathway by triggering mtDNA accumulation in the cytosol in human colorectal cancer HCT116 cells. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

15 pages, 3104 KiB  
Article
Pulsed Electric Fields Induce STING Palmitoylation and Polymerization Independently of Plasmid DNA Electrotransfer
by Amanda Sales Conniff, Julie Singh, Richard Heller and Loree C. Heller
Pharmaceutics 2024, 16(3), 363; https://doi.org/10.3390/pharmaceutics16030363 - 5 Mar 2024
Cited by 1 | Viewed by 2142
Abstract
Gene therapy approaches may target skeletal muscle due to its high protein-expressing nature and vascularization. Intramuscular plasmid DNA (pDNA) delivery via pulsed electric fields (PEFs) can be termed electroporation or electrotransfer. Nonviral delivery of plasmids to cells and tissues activates DNA-sensing pathways. The [...] Read more.
Gene therapy approaches may target skeletal muscle due to its high protein-expressing nature and vascularization. Intramuscular plasmid DNA (pDNA) delivery via pulsed electric fields (PEFs) can be termed electroporation or electrotransfer. Nonviral delivery of plasmids to cells and tissues activates DNA-sensing pathways. The central signaling complex in cytosolic DNA sensing is the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING). The effects of pDNA electrotransfer on the signaling of STING, a key adapter protein, remain incompletely characterized. STING undergoes several post-translational modifications which modulate its function, including palmitoylation. This study demonstrated that in mouse skeletal muscle, STING was constitutively palmitoylated at two sites, while an additional site was modified following electroporation independent of the presence of pDNA. This third palmitoylation site correlated with STING polymerization but not with STING activation. Expression of several palmitoyl acyltransferases, including zinc finger and DHHC motif containing 1 (zDHHC1), coincided with STING activation. Expression of several depalmitoylases, including palmitoyl protein thioesterase 2 (PPT2), was diminished in all PEF application groups. Therefore, STING may not be regulated by active modification by palmitate after electroporation but inversely by the downregulation of palmitate removal. These findings unveil intricate molecular changes induced by PEF application. Full article
Show Figures

Figure 1

18 pages, 1178 KiB  
Review
Type I IFN in Glomerular Disease: Scarring beyond the STING
by Alexis Paulina Jimenez-Uribe, Steve Mangos and Eunsil Hahm
Int. J. Mol. Sci. 2024, 25(5), 2497; https://doi.org/10.3390/ijms25052497 - 21 Feb 2024
Viewed by 2554
Abstract
The field of nephrology has recently directed a considerable amount of attention towards the stimulator of interferon genes (STING) molecule since it appears to be a potent driver of chronic kidney disease (CKD). STING and its activator, the cyclic GMP-AMP synthase (cGAS), along [...] Read more.
The field of nephrology has recently directed a considerable amount of attention towards the stimulator of interferon genes (STING) molecule since it appears to be a potent driver of chronic kidney disease (CKD). STING and its activator, the cyclic GMP-AMP synthase (cGAS), along with intracellular RIG-like receptors (RLRs) and toll-like receptors (TLRs), are potent inducers of type I interferon (IFN-I) expression. These cytokines have been long recognized as part of the mechanism used by the innate immune system to battle viral infections; however, their involvement in sterile inflammation remains unclear. Mounting evidence pointing to the involvement of the IFN-I pathway in sterile kidney inflammation provides potential insights into the complex interplay between the innate immune system and damage to the most sensitive segment of the nephron, the glomerulus. The STING pathway is often cited as one cause of renal disease not attributed to viral infections. Instead, this pathway can recognize and signal in response to host-derived nucleic acids, which are also recognized by RLRs and TLRs. It is still unclear, however, whether the development of renal diseases depends on subsequent IFN-I induction or other processes involved. This review aims to explore the main endogenous inducers of IFN-I in glomerular cells, to discuss what effects autocrine and paracrine signaling have on IFN-I induction, and to identify the pathways that are implicated in the development of glomerular damage. Full article
(This article belongs to the Special Issue Molecular Pathology, Diagnostics and Therapeutics of Nephropathy 3.0)
Show Figures

Figure 1

17 pages, 1633 KiB  
Review
The Role of the Toll-like Receptor 2 and the cGAS-STING Pathways in Breast Cancer: Friends or Foes?
by Chiara Cossu, Antonino Di Lorenzo, Irene Fiorilla, Alberto Maria Todesco, Valentina Audrito and Laura Conti
Int. J. Mol. Sci. 2024, 25(1), 456; https://doi.org/10.3390/ijms25010456 - 29 Dec 2023
Cited by 3 | Viewed by 3131
Abstract
Breast cancer stands as a primary malignancy among women, ranking second in global cancer-related deaths. Despite treatment advancements, many patients progress to metastatic stages, posing a significant therapeutic challenge. Current therapies primarily target cancer cells, overlooking their intricate interactions with the tumor microenvironment [...] Read more.
Breast cancer stands as a primary malignancy among women, ranking second in global cancer-related deaths. Despite treatment advancements, many patients progress to metastatic stages, posing a significant therapeutic challenge. Current therapies primarily target cancer cells, overlooking their intricate interactions with the tumor microenvironment (TME) that fuel progression and treatment resistance. Dysregulated innate immunity in breast cancer triggers chronic inflammation, fostering cancer development and therapy resistance. Innate immune pattern recognition receptors (PRRs) have emerged as crucial regulators of the immune response as well as of several immune-mediated or cancer cell-intrinsic mechanisms that either inhibit or promote tumor progression. In particular, several studies showed that the Toll-like receptor 2 (TLR2) and the cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) pathways play a central role in breast cancer progression. In this review, we present a comprehensive overview of the role of TLR2 and STING in breast cancer, and we explore the potential to target these PRRs for drug development. This information will significantly impact the scientific discussion on the use of PRR agonists or inhibitors in cancer therapy, opening up new and promising avenues for breast cancer treatment. Full article
Show Figures

Figure 1

35 pages, 4782 KiB  
Review
Mitochondrial Impairment: A Link for Inflammatory Responses Activation in the Cardiorenal Syndrome Type 4
by Isabel Amador-Martínez, Omar Emiliano Aparicio-Trejo, Bismarck Bernabe-Yepes, Ana Karina Aranda-Rivera, Alfredo Cruz-Gregorio, Laura Gabriela Sánchez-Lozada, José Pedraza-Chaverri and Edilia Tapia
Int. J. Mol. Sci. 2023, 24(21), 15875; https://doi.org/10.3390/ijms242115875 - 1 Nov 2023
Cited by 7 | Viewed by 3858
Abstract
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses [...] Read more.
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)–adenosine monophosphate (AMP) synthase (cGAS)–stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential strategies for preventing CRS type 4. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 3579 KiB  
Article
Remodeling of Tumor Microenvironment by Nanozyme Combined cGAS–STING Signaling Pathway Agonist for Enhancing Cancer Immunotherapy
by Wenpei Dong, Mengting Chen, Chun Chang, Tao Jiang, Li Su, Changpo Chen and Guisheng Zhang
Int. J. Mol. Sci. 2023, 24(18), 13935; https://doi.org/10.3390/ijms241813935 - 11 Sep 2023
Cited by 9 | Viewed by 1946
Abstract
Nanozymes and cyclic GMP-AMP synthase (cGAS) the stimulator of interferon genes (STING) signaling pathway, as powerful organons, can remodel the tumor microenvironment (TME) to increase efficacy and overcome drug resistance in cancer immunotherapy. Nanozymes have the potential to manipulate the TME by producing [...] Read more.
Nanozymes and cyclic GMP-AMP synthase (cGAS) the stimulator of interferon genes (STING) signaling pathway, as powerful organons, can remodel the tumor microenvironment (TME) to increase efficacy and overcome drug resistance in cancer immunotherapy. Nanozymes have the potential to manipulate the TME by producing reactive oxygen species (ROS), which lead to positive oxidative stress in tumor cells. Cyclic dinucleotide (2′,3′-cGAMP), as a second messenger, exists in the TME and can regulate it to achieve antitumor activity. In this work, Co,N-doped carbon dots (CoNCDs) were used as a model nanozyme to evaluate the properties of the anti-tumor mechanism, and effective inhibition of S180 tumor was achieved. Based on CoNCDs’ good biocompatibility and therapeutic effect on the tumor, we then introduced the cGAS–STING agonist, and the combination of the CoNCDs and STING agonist significantly inhibited tumor growth, and no significant systemic toxicity was observed. The combined system achieved the enhanced tumor synergistic immunotherapy through TME reprogramming via the peroxidase-like activity of the CoNCDs and cGAS–STING signaling pathway agonist synergistically. Our work provides not only a new effective way to reprogram TME in vivo, but also a promising synergic antitumor therapy strategy. Full article
(This article belongs to the Special Issue Research Progress of Bioimaging Materials)
Show Figures

Figure 1

Back to TopTop