Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = differential spectrophotometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 11075 KiB  
Article
Electrochemical Sensors for the Detection of TiO2 Nanoparticles Genotoxicity at Different pH Values Simulating the Gastrointestinal Tract
by Jana Blaškovičová and Dominika Bartánusová
Chemosensors 2025, 13(6), 194; https://doi.org/10.3390/chemosensors13060194 - 22 May 2025
Viewed by 236
Abstract
Titanium dioxide (TiO2) is one of the most widely produced nanomaterials. Many products contain nanoparticles because they have various technological, medical, and economic benefits. However, the presence of nanoparticles in the environment has a negative impact on public health. Due to [...] Read more.
Titanium dioxide (TiO2) is one of the most widely produced nanomaterials. Many products contain nanoparticles because they have various technological, medical, and economic benefits. However, the presence of nanoparticles in the environment has a negative impact on public health. Due to the presence of TiO2 NPs in food, food packaging, and drinking water, they can easily enter the human gastrointestinal tract (GIT), which includes environments with different pH values. These pH changes can affect the stability, dispersion, and toxicity of nanomaterials. Our experiments aimed to monitor the effect of TiO2 NPs incubated at a pH similar to the GIT values on DNA structure. DNA damage was monitored using a DNA biosensor and a biosensing approach with electrochemical voltammetric detection. Cyclic voltammetry (CV) detected damage to DNA/GCE biosensors of up to 10%. The best way to monitor the genotoxicity of TiO2 NPs on DNA structure was the biosensing approach, which changes in the redox indicator current response detected by differential pulse voltammetry (DPV) up to 47.6%. The highest effect of TiO2 was observed for guanine residues at pH 8.0. The results were confirmed by UV–vis spectrophotometry and hyperchromic and bathochromic spectral shifts. Full article
Show Figures

Figure 1

17 pages, 11888 KiB  
Article
Innovative Amber-Based Composite—From Mechanochemical Synthesis and Physicochemical Characterization to Application in Cosmetics
by Małgorzata Wiśniewska, Victoria Paientko, Iwona Ostolska, Karina Tokarska, Natalia Kurinna, Vita Vedmedenko, Olha Konshyna, Volodymyr Gun’ko and Piotr Nowicki
Int. J. Mol. Sci. 2025, 26(9), 4238; https://doi.org/10.3390/ijms26094238 - 29 Apr 2025
Viewed by 268
Abstract
New ways of ensuring sustainable development in various areas of life are being intensively researched. One of the key priorities is to maximize the use of invaluable natural ingredients in cosmetic products while minimizing the negative impact on the environment. In this study, [...] Read more.
New ways of ensuring sustainable development in various areas of life are being intensively researched. One of the key priorities is to maximize the use of invaluable natural ingredients in cosmetic products while minimizing the negative impact on the environment. In this study, a three-component natural composite based on amber, diatomite, and PhytokeratinTM (hydrolyzed plant protein) was developed using mechanochemical synthesis. The goal was to maximize the release of biologically active substances, such as succinic acid and PhytokeratinTM, in aqueous solution. The physicochemical properties of the materials were characterized using Scanning Electron Microscopy (SEM), thermogravimetric (TG) and differential thermogravimetric (DTG) analysis, Fourier Transform Infrared (FTIR) spectroscopy, and Ultraviolet–Visible (UV-Vis) spectrophotometry. Additionally, Density Functional Theory (DFT) was used to perform quantum chemical calculations and characterize molecular interactions in the composite. The optimized composite demonstrated favorable release characteristics and structural properties, confirming its suitability for cosmetic applications. DFT calculations revealed the potential molecular-level interactions between the organic components, indicating the stability and functional integration of the composite. The resulting innovative composite was successfully incorporated into eco-friendly cosmetic formulations, including a solid shampoo bar and a nail conditioner. Full article
Show Figures

Graphical abstract

21 pages, 9318 KiB  
Article
RNA-Seq Insight into the Impact and Mechanisms of Methyl Donor and Glycine Betaine Osmoprotectant on Polyketide Secondary Metabolism in Monascus purpureus M1
by Zheng Liu, Haijing Zhang, Furong Xue, Lidan Niu, Chenchen Qi, Wei Chen, Jie Zheng and Chengtao Wang
J. Fungi 2025, 11(4), 273; https://doi.org/10.3390/jof11040273 - 1 Apr 2025
Viewed by 338
Abstract
Glycine betaine (GB) serves as both a methyl donor and osmoprotectant in microorganisms, facilitating growth and enhancing metabolic product yields. While the polyketide metabolites from Monascus purpureus, such as Monascus pigments (MPs) and monacolin K (MK), have been extensively studied, the effects [...] Read more.
Glycine betaine (GB) serves as both a methyl donor and osmoprotectant in microorganisms, facilitating growth and enhancing metabolic product yields. While the polyketide metabolites from Monascus purpureus, such as Monascus pigments (MPs) and monacolin K (MK), have been extensively studied, the effects of GB on their production and the underlying molecular mechanisms remain insufficiently explored. In this study, various concentrations of GB were added to Monascus purpureus M1 cultures, followed by RNA sequencing, RT-qPCR, differential gene expression analysis, and functional enrichment to investigate the regulatory impact of GB on polyketide metabolism. Protein–protein interaction network analysis identified key upregulated genes, including RPS15, RPS14, RPS5, NDK1, EGD2, and ATP9, particularly during the later growth phases. GB significantly upregulated genes involved in stress response, secondary metabolism, and polyketide biosynthesis. Scanning electron microscopy, HPLC, and UV-Vis spectrophotometry further confirmed that GB promoted both strain growth and polyketide production, with red pigment and MK production increasing by 120.08% and 93.4%, respectively. These results indicate that GB enhances growth and polyketide metabolism in Monascus purpureus by functioning as both a methyl donor and osmoprotectant, offering new insights into optimizing microbial polyketide production and revealing gene regulatory mechanisms by GB in Monascus purpureus. Full article
Show Figures

Figure 1

16 pages, 5944 KiB  
Article
Stem Coloration in Alfalfa: Anthocyanin Accumulation Patterns and Nutrient Profiles of Red- and Green-Stemmed Variants
by Zhengfeng Cao, Jiaqing Li, Chuanjie Wang, Xueyang Min and Zhenwu Wei
Agronomy 2025, 15(4), 862; https://doi.org/10.3390/agronomy15040862 - 29 Mar 2025
Viewed by 354
Abstract
Anthocyanins, crucial flavonoids in plants, enhance stress tolerance in alfalfa and are attracting attention due to their antioxidant properties. This study analyzed red- and green-stemmed alfalfa using spectrophotometry, frozen sections, and LC-MS/MS. Anthocyanins were concentrated in stem vascular cambium, with red stems peaking [...] Read more.
Anthocyanins, crucial flavonoids in plants, enhance stress tolerance in alfalfa and are attracting attention due to their antioxidant properties. This study analyzed red- and green-stemmed alfalfa using spectrophotometry, frozen sections, and LC-MS/MS. Anthocyanins were concentrated in stem vascular cambium, with red stems peaking at 61.08 mg g−1 DW during the bud stage. Seven anthocyanidins were identified, with their corresponding aglycones including cyanidin, peonidin, and malvidin. At early flowering, red-stemmed alfalfa contained 35 classes of anthocyanins compared to 17 in green-stemmed varieties, with cyanidin-3-O-glucoside levels significantly higher in red stems (4.423 μg g−1, p < 0.05). Red-stemmed alfalfa also showed higher contents of acid detergent fiber, crude fat, Cu, Fe, and Zn (p < 0.05), especially Zn (p < 0.01). Correlation analysis revealed a strong positive link between cyanidin and crude fat (Spearman’s ρ = 0.93, p < 0.01) and a significant negative correlation with neutral detergent fiber (ρ = −0.88, p < 0.05). Cyanidin and peonidin are associated with stem color differentiation, with cyanidin contributing predominantly to red pigmentation, whereas zinc and crude fat exhibit a synergistic correlation with anthocyanin accumulation. These findings may inform breeding strategies to develop anthocyanin-enriched alfalfa. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

21 pages, 2503 KiB  
Article
Optimization of Nanoencapsulation of Codium tomentosum Extract and Its Potential Application in Yogurt Fortification
by Micaela Costa, Cristina Soares, Aurora Silva, Maria Fátima Barroso, Pedro Simões, Mariana Ferreira, Paula Gameiro, Clara Grosso and Cristina Delerue-Matos
Mar. Drugs 2025, 23(4), 147; https://doi.org/10.3390/md23040147 - 28 Mar 2025
Viewed by 501
Abstract
Marine macroalgae are excellent sources of bioactive compounds recognized by their pharmaceutical and biomedical potential. A subcritical water extraction (SWE) was applied to the macroalga Codium tomentosum, and the extract was used to prepare phytosomes. A Box–Behnken design was applied to optimize [...] Read more.
Marine macroalgae are excellent sources of bioactive compounds recognized by their pharmaceutical and biomedical potential. A subcritical water extraction (SWE) was applied to the macroalga Codium tomentosum, and the extract was used to prepare phytosomes. A Box–Behnken design was applied to optimize the entrapment efficiency. These phytosomes were further modified with DSPE-PEG (2000)-maleimide and apolipoprotein E and characterized by dynamic light scattering, UV spectrophotometry, octanol/water partition coefficient, differential scanning calorimetry, and Fourier transform infrared spectroscopy. As proof of concept, prototypes of functional food tailored to the elderly were produced. Yogurts were fortified with seaweed extract or phytosomes, and physicochemical properties and proximal composition (pH, acidity, syneresis, moisture, peroxides, proteins, total lipids, sugar content, ash, and mineral composition) were analyzed. The antioxidant and the inhibition capacity of two brain enzymes, cholinesterases (AChE and BuChE), involved in the pathogenesis of Alzheimer’s disease, were also evaluated in the final prototypes. Despite their unappealing sensory characteristics, the results are promising for integrating marine extracts with potential neuroprotective effects into functional foods. Full article
(This article belongs to the Special Issue The Extraction and Application of Functional Components in Algae)
Show Figures

Figure 1

29 pages, 16189 KiB  
Article
Comparative Study of Chaga (Inonotus obliquus) Dietary Supplements Using Complementary Analytical Techniques
by Coleton Windsor, Anna E. Kreynes, Jeff S. Chilton, William A. Chioffi, Arun Krishnamurthy and Melissa Ishii
Int. J. Mol. Sci. 2025, 26(7), 2970; https://doi.org/10.3390/ijms26072970 - 25 Mar 2025
Viewed by 2428
Abstract
Chaga (Inonotus obliquus) is an increasingly used natural product in botanical dietary supplements, valued for its bioactive compounds. However, inconsistent standardized analytical methods raise concerns over product authenticity, mislabeling, and quality control. This study employs a multi-analytical approach to differentiate wildcrafted [...] Read more.
Chaga (Inonotus obliquus) is an increasingly used natural product in botanical dietary supplements, valued for its bioactive compounds. However, inconsistent standardized analytical methods raise concerns over product authenticity, mislabeling, and quality control. This study employs a multi-analytical approach to differentiate wildcrafted chaga canker from North American chaga dietary supplements, particularly those containing mycelia fermented grain products. High-Performance Thin-Layer Chromatography (HPTLC), Liquid Chromatography with Evaporative Light Scattering Detection (LC-ELSD) or Photo/Diode Array Detection (LC-PDA/DAD), Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (LC-QToF-MS), Nuclear Magnetic Resonance (NMR) spectroscopy, UV-Vis spectrophotometry, and iodine-starch assays were used to evaluate key markers, including triterpenoids, polysaccharides, and melanin. Whole chaga canker contained triterpenoids (inotodiol, trametenolic acid) and phenolics, like osmundacetone, while melanin absorbance at 500 nm differentiated it from fermented grain products. β-Glucan quantification and iodine-starch assays confirmed starch-rich composition in fermented grains and its absence in authentic chaga canker. NMR fingerprinting and LC-QToF-MS metabolomics demonstrated stark compositional deviations between wildcrafted chaga canker, I. obliquus mycelium, and fermented grain products. By integrating complementary techniques, we establish a framework that can reliably distinguish genuine chaga canker from misrepresented products, ensuring consumer safety and fostering trust in the functional mushroom, canker, and mycelium markets. Full article
(This article belongs to the Special Issue Bioactive Compounds of Natural Origin)
Show Figures

Figure 1

20 pages, 6017 KiB  
Article
Comparison of Two Synthesis Methods for 3D PLA-Ibuprofen Nanofibrillar Scaffolds
by Esteban Mena-Porras, Annaby Contreras-Aleman, María Francinie Guevara-Hidalgo, Esteban Avendaño Soto, Diego Batista Menezes, Marco Antonio Alvarez-Perez and Daniel Chavarría-Bolaños
Pharmaceutics 2025, 17(1), 106; https://doi.org/10.3390/pharmaceutics17010106 - 14 Jan 2025
Viewed by 1237
Abstract
Objectives: This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications. [...] Read more.
Objectives: This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications. Methods: Solutions of 10% (w/v) PLA combined with IBU at concentrations of 10%, 20%, and 30% were processed into nanofibrillar membranes using ES and AJS. The scaffolds were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier-transformed infrared (FT-IR) spectroscopy. The drug release profile was assessed by ultraviolet-visible spectrophotometry (UV-Vis), and cell adhesion and viability were evaluated using fibroblast culture assays. Statistical analyses included qualitative analyses, t-tests, and Likelihood ratio tests. Results: SEM revealed randomly arranged nanofibers forming reticulated meshes, with more uniform dimensions observed in the AJS group. TGA and DSC analyses confirmed the thermodynamic stability of the scaffolds and enthalpy changes consistent with IBU incorporation, which FT-IR and UV-Vis validated. Drug release was sustained over 384 h, showing no significant differences between ES and AJS scaffolds (p > 0.05). Cytotoxicity and cell viability assays confirmed scaffold biocompatibility, with cellular responses proportional to drug concentration but within safe limits. Conclusions: PLA-IBU nanofibrillar scaffolds were successfully synthesized using ES and AJS. Both methods yielded biocompatible systems with stable properties and controlled drug release. Further, in vivo studies are necessary to confirm their clinical potential. Full article
(This article belongs to the Special Issue Recent Advancements in the 3D Printing of Pharmaceutics)
Show Figures

Figure 1

22 pages, 4991 KiB  
Article
Sustainable and Eco-Friendly Single- and Multilayer Polyester Foils (Laminates) from Polylactide and Poly(Ethylene 2,5-Furandicarboxylate)
by Sandra Paszkiewicz, Izabela Irska, Konrad Walkowiak, Filip Włodarczyk, Magdalena Zdanowicz, Elżbieta Piesowicz and Mateusz Barczewski
Molecules 2025, 30(1), 178; https://doi.org/10.3390/molecules30010178 - 4 Jan 2025
Viewed by 1804
Abstract
Packaging materials mainly serve the function of protecting products. The most common representative of this group is poly(ethylene terephthalate) (PET), which is not biodegradable and therefore, its waste might be burdensome to the environment. Thus, this work aims to develop outlines for obtaining [...] Read more.
Packaging materials mainly serve the function of protecting products. The most common representative of this group is poly(ethylene terephthalate) (PET), which is not biodegradable and therefore, its waste might be burdensome to the environment. Thus, this work aims to develop outlines for obtaining polyester-based systems, preferably biobased ones, intended for the packaging industry and their detailed characterization. The obtained multilayer systems based on two biobased thermoplastic polyesters, i.e., poly(ethylene 2,5-furandicarboxylate) (PEF) and the “double green” polylactide (PLA), were subjected to various analyses, i.e., UV-Vis spectrophotometry, microscopic evaluation, tensile tests, differential scanning calorimetry (DSC), oxygen transmission rate (OTR), water absorption tests, surface analyses, and biofilm formation. The best possible arrangement was selected in terms of the packaging industry. It was proven that the elastic modulus was significantly higher for multilayer systems, whilst higher-strength parameters were observed for PLA single foils. Regardless of thickness, PLA and PEF foils exhibit similar absorption values in cold water. Moreover, PEF foils demonstrated significantly better barrier properties towards oxygen gas compared to PLA foils of the same thickness. However, a multilayer system composed of two PLA foils with a single inner PEF foil had an OTR value only slightly higher than that of the PEF foil alone. PEF was also found to be a material that exhibited a limited formation of bacterial biofilm, particularly strains of S. aureus and E. coli. All of the above findings clearly confirm the sensibility of the research topic undertaken in this work on the application of biobased thermoplastic polyesters in the packaging industry. Full article
Show Figures

Figure 1

16 pages, 2729 KiB  
Article
Polyelectrolyte-Surfactant Mixture Effects on Bulk Properties and Antibacterial, Cytotoxic Activity of Fine Sulfur Particles
by Seitzhan Turganbay, Saule Aidarova, Assem Issayeva, Zhanar Iskakbayeva, Aitugan Sabitov, Gulsinay Turganbay and Alpamys A. Babayev
Colloids Interfaces 2024, 8(6), 65; https://doi.org/10.3390/colloids8060065 - 28 Nov 2024
Cited by 1 | Viewed by 1210
Abstract
Elemental sulfur, commonly known for its wide range of biological activities, has a long history of use in protecting all garden and vegetable crops from a range of pests and diseases, including powdery mildew, ascochyta blight, clubroot, plant mites, oidium, anthracnose, and scab. [...] Read more.
Elemental sulfur, commonly known for its wide range of biological activities, has a long history of use in protecting all garden and vegetable crops from a range of pests and diseases, including powdery mildew, ascochyta blight, clubroot, plant mites, oidium, anthracnose, and scab. In the present study, a quick and environmentally friendly approach has been developed for the synthesis of sulfur nanoparticles with antibacterial activity. Fine sulfur particles (FSPs) were prepared by modifying the surface of elemental sulfur using various polyelectrolyte–surfactant mixtures (PSMs) including sodium carboxymethyl cellulose–sodium dodecylbenzene sulfonate (NaCMC-SDBS) and polyhexamethylene guanidine hydrochloride–cetyltrimethylammonium bromide (PHMG-CTAB). The FSPs were characterized by UV–visible spectrophotometry, X-ray diffraction (XRD), thermogravimetric/differential scanning calorimetry analysis (TG/DSC), and scanning electron microscopy (SEM), with the FSPs showing an almost spherical shape with an average size in the range of 150–200 nm. The antibacterial activity of the FSPs was tested against Gram-positive Staphylococcus aureus and Enterococcus faecium and Gram-negative Escherichia coli and Pseudomonas aeruginosa bacteria and one fungus (Aspergillus brasiliensis ATCC 95 16404). Based on this, it could be seen that FSPs exhibited significant antimicrobial activity against Gram-positive bacteria, i.e., S. aureus and E. faecium. The in vitro cytotoxicity of the FSPs-1 and FSPs-2 studied in normal (MeT-5A) and tumorous (MCF-7) human cell lines was assessed in the concentration range from 500 μg/mL to 0.12 mg/mL, from which it was determined as being non-cytotoxic. The received products can be considered for potential application in agriculture and medicine. Full article
Show Figures

Graphical abstract

24 pages, 7530 KiB  
Article
Immobilization of Silver Nanoparticles with Defensive Gum of Moringa oleifera for Antibacterial Efficacy Against Resistant Bacterial Species from Human Infections
by Liaqat Ali, Nisar Ahmad, Muhammad Nazir Uddin, Mostafa A. Abdel-Maksoud, Hina Fazal, Sabiha Fatima, Mohamed A. El-Tayeb, Bushra Hafeez Kiani, Wajid Khan, Murad Ali Rahat, Mohammad Ali, Yaqub Khan, Kamran Rauf, Salman Khan, Sami Ullah, Tanveer Ahmad, Afshan Salam and Sajjad Ahmad
Pharmaceuticals 2024, 17(11), 1546; https://doi.org/10.3390/ph17111546 - 18 Nov 2024
Viewed by 1612
Abstract
Background: The worldwide misuse of antibiotics is one of the main factors in microbial resistance that is a serious threat worldwide. Alternative strategies are needed to overcome this issue. Objectives: In this study, a novel strategy was adopted to suppress the [...] Read more.
Background: The worldwide misuse of antibiotics is one of the main factors in microbial resistance that is a serious threat worldwide. Alternative strategies are needed to overcome this issue. Objectives: In this study, a novel strategy was adopted to suppress the growth of resistant pathogens through immobilization of silver nanoparticles (AgNPs) in gum of Moringa oleifera. Methods: The AgNPs were prepared from the leaves of Moringa oleifera and subsequently characterized through UV-spectrophotometry, FTIR, SEM, and XRD. The differential ratios of characterized AgNPs were immobilized with gum of M. oleifera and investigated for antimicrobial potential against highly resistant pathogens. Results: The immobilized AgNPs displayed promising activities against highly resistant B. subtilis (23.6 mm; 50 µL:200 µL), E. coli (19.3 mm; 75 µL:200 µL), K. pneumoniae (22 mm; 200 µL:200 µL), P. mirabilis (16.3 mm; 100 µL:200 µL), P. aeruginosa (22 mm; 175 µL:200 µL), and S. typhi (19.3; 25 µL:200 µL) than either AgNPs alone or gum. The immobilized AgNPs released positive sliver ions that easily attached to negatively charged bacterial cells. After attachment and permeation to bacterial cells, the immobilized NPs alter the cell membrane permeability, protein/enzymes denaturation, oxidative stress (ROS), damage DNA, and change the gene expression level. It has been mechanistically considered that the immobilized AgNPs can kill bacteria by damaging their cell membranes, dephosphorylating tyrosine residues during their signal transduction pathways, inducing cell apoptosis, rupturing organelles, and inhibiting cell division, which finally leads to cell death. Conclusions: This study proposes a potential alternative drug for curing various infections. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs))
Show Figures

Figure 1

22 pages, 1873 KiB  
Article
Diffusion Correction in Fricke Hydrogel Dosimeters: A Deep Learning Approach with 2D and 3D Physics-Informed Neural Network Models
by Mattia Romeo, Grazia Cottone, Maria Cristina D’Oca, Antonio Bartolotta, Salvatore Gallo, Roberto Miraglia, Roberta Gerasia, Giuliana Milluzzo, Francesco Romano, Cesare Gagliardo, Fabio Di Martino, Francesco d’Errico and Maurizio Marrale
Gels 2024, 10(9), 565; https://doi.org/10.3390/gels10090565 - 30 Aug 2024
Cited by 1 | Viewed by 1478
Abstract
In this work an innovative approach was developed to address a significant challenge in the field of radiation dosimetry: the accurate measurement of spatial dose distributions using Fricke gel dosimeters. Hydrogels are widely used in radiation dosimetry due to their ability to simulate [...] Read more.
In this work an innovative approach was developed to address a significant challenge in the field of radiation dosimetry: the accurate measurement of spatial dose distributions using Fricke gel dosimeters. Hydrogels are widely used in radiation dosimetry due to their ability to simulate the tissue-equivalent properties of human tissue, making them ideal for measuring and mapping radiation dose distributions. Among the various gel dosimeters, Fricke gels exploit the radiation-induced oxidation of ferrous ions to ferric ions and are particularly notable due to their sensitivity. The concentration of ferric ions can be measured using various techniques, including magnetic resonance imaging (MRI) or spectrophotometry. While Fricke gels offer several advantages, a significant hurdle to their widespread application is the diffusion of ferric ions within the gel matrix. This phenomenon leads to a blurring of the dose distribution over time, compromising the accuracy of dose measurements. To mitigate the issue of ferric ion diffusion, researchers have explored various strategies such as the incorporation of additives or modification of the gel composition to either reduce the mobility of ferric ions or stabilize the gel matrix. The computational method proposed leverages the power of artificial intelligence, particularly deep learning, to mitigate the effects of ferric ion diffusion that can compromise measurement precision. By employing Physics Informed Neural Networks (PINNs), the method introduces a novel way to apply physical laws directly within the learning process, optimizing the network to adhere to the principles governing ion diffusion. This is particularly advantageous for solving the partial differential equations that describe the diffusion process in 2D and 3D. By inputting the spatial distribution of ferric ions at a given time, along with boundary conditions and the diffusion coefficient, the model can backtrack to accurately reconstruct the original ion distribution. This capability is crucial for enhancing the fidelity of 3D spatial dose measurements, ensuring that the data reflect the true dose distribution without the artifacts introduced by ion migration. Here, multidimensional models able to handle 2D and 3D data were developed and tested against dose distributions numerically evolved in time from 20 to 100 h. The results in terms of various metrics show a significant agreement in both 2D and 3D dose distributions. In particular, the mean square error of the prediction spans the range 1×1061×104, while the gamma analysis results in a 90–100% passing rate with 3%/2 mm, depending on the elapsed time, the type of distribution modeled and the dimensionality. This method could expand the applicability of Fricke gel dosimeters to a wider range of measurement tasks, from simple planar dose assessments to intricate volumetric analyses. The proposed technique holds great promise for overcoming the limitations imposed by ion diffusion in Fricke gel dosimeters. Full article
(This article belongs to the Special Issue Mathematical Modeling in Gel Design and Applications)
Show Figures

Graphical abstract

17 pages, 4652 KiB  
Article
Optimizing Production, Characterization, and In Vitro Behavior of Silymarin–Eudragit Electrosprayed Fiber for Anti-Inflammatory Effects: A Chemical Study
by Foram Madiyar, Liam Suskavcevic, Kaitlyn Daugherty, Alexis Weldon, Sahil Ghate, Takara O’Brien, Isabel Melendez, Karl Morgan, Sandra Boetcher and Lasya Namilae
Bioengineering 2024, 11(9), 864; https://doi.org/10.3390/bioengineering11090864 - 25 Aug 2024
Viewed by 1900
Abstract
Inflammatory Bowel Disease (IBD) is a chronic condition that affects approximately 1.6 million Americans. While current polyphenols for treating IBD can be expensive and cause unwanted side effects, there is an opportunity regarding a new drug/polymer formulation using silymarin and an electrospray procedure. [...] Read more.
Inflammatory Bowel Disease (IBD) is a chronic condition that affects approximately 1.6 million Americans. While current polyphenols for treating IBD can be expensive and cause unwanted side effects, there is an opportunity regarding a new drug/polymer formulation using silymarin and an electrospray procedure. Silymarin is a naturally occurring polyphenolic flavonoid antioxidant that has shown promising results as a pharmacological agent due to its antioxidant and hepatoprotective characteristics. This study aims to produce a drug–polymer complex named the SILS100-Electrofiber complex, using an electrospray system. The vertical set-up of the electrospray system was optimized at a 1:10 of silymarin and Eudragit® S100 polymer to enhance surface area and microfiber encapsulation. The SILS100-Electrofiber complex was evaluated using drug release kinetics via UV Spectrophotometry, Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Differential Scanning Calorimetry (DSC). Drug loading, apparent solubility, and antioxidant activity were also evaluated. The study was successful in creating fiber-like encapsulation of the silymarin drug with strand diameters ranging from 5–7 μm, with results showing greater silymarin release in Simulated Intestinal Fluid (SIF) compared to Simulated Gastric Fluid (SGF). Moving forward, this study aims to provide future insight into the formulation of drug–polymer complexes for IBD treatment and targeted drug release using electrospray and microencapsulation. Full article
(This article belongs to the Special Issue Medical Devices and Implants, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 2425 KiB  
Article
Isothiocyanate-Based Microemulsions Loaded into Biocompatible Hydrogels as Innovative Biofumigants for Agricultural Soils
by Michele Baglioni, Ilaria Clemente, Gabriella Tamasi, Flavia Bisozzi, Sara Costantini, Giacomo Fattori, Mariangela Gentile and Claudio Rossi
Molecules 2024, 29(16), 3935; https://doi.org/10.3390/molecules29163935 - 21 Aug 2024
Viewed by 1337
Abstract
Biofumigation was proposed as an alternative to synthetic pesticides for the disinfection of agricultural soils, in view of the biocidal effect of isothiocyanates (ITCs) released by some vegetal species, like Brassicaceae. However, biofumigation also presents limitations; thus, a novel and viable alternative [...] Read more.
Biofumigation was proposed as an alternative to synthetic pesticides for the disinfection of agricultural soils, in view of the biocidal effect of isothiocyanates (ITCs) released by some vegetal species, like Brassicaceae. However, biofumigation also presents limitations; thus, a novel and viable alternative could be the direct introduction of ITCs into agricultural soils as components loaded into biodegradable hydrogels. Thus, in this work, ITCs-based microemulsions were developed, which can be loaded into porous polymer-based hydrogel beads based on sodium alginate (ALG) or sodium carboxymethyl cellulose (CMC). Three ITCs (ethyl, phenyl, and allyl isothiocyanate) and three different surfactants (sodium dodecylsulfate, Brij 35, and Tween 80) were considered. The optimal system was characterized with attenuated ATR-FTIR spectroscopy and differential scanning calorimetry to study how the microemulsion/gels interaction affects the gel properties, such as the equilibrium water content or free water index. Finally, loading and release profiles were studied by means of UV–Vis spectrophotometry. It was found that CMC hydrogel beads showed a slightly more efficient profile of micelles’ release in water with respect to ALG beads. For this reason, and due to the enhanced contribution of Fe(III) to their biocidal properties, CMC-based hydrogels are the most promising in view of the application on real agricultural soils. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry: 3rd Edition)
Show Figures

Graphical abstract

14 pages, 4064 KiB  
Article
Encapsulation of Pink Pepper Essential Oil (Schinus terebinthifolius Raddi) in Albumin and Low-Methoxyl Amidated Pectin Cryogels
by Ana María Chaux-Gutiérrez, Ezequiel José Pérez-Monterroza, Marília Gonçalves Cattelan, Vânia Regina Nicoletti and Márcia Regina de Moura
Processes 2024, 12(8), 1681; https://doi.org/10.3390/pr12081681 - 12 Aug 2024
Cited by 3 | Viewed by 1805
Abstract
This study evaluated cryogels from albumin (ALB) and albumin–pectin (ALB:PEC) as carriers for pink pepper (Schinus terebinthifolius Raddi) essential oil. Cryogels were evaluated through infrared spectrophotometry, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. The bioactivity of the cryogels [...] Read more.
This study evaluated cryogels from albumin (ALB) and albumin–pectin (ALB:PEC) as carriers for pink pepper (Schinus terebinthifolius Raddi) essential oil. Cryogels were evaluated through infrared spectrophotometry, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. The bioactivity of the cryogels was analyzed by measuring their encapsulation efficiency (EE%), the antimicrobial activity of the encapsulated oil against S. aureus, E. coli, and B. cereus using the agar diffusion method; total phenolic content and antioxidant activity were analyzed by UV-vis spectrophotometry. The EE% varied between 59.61% and 77.41%. The cryogel with only ALB had the highest total phenolic content with 2.802 mg GAE/g, while the cryogel with the 30:70 ratio (ALB:PEC) presented a value of 0.822 mg GAE/g. A higher proportion of PEC resulted in a more significant inhibitory activity against S. aureus, reaching an inhibition zone of 18.67 mm. The cryogels with ALB and 70:30 ratio (ALB:PEC) presented fusion endotherms at 137.16 °C and 134.15 °C, respectively, and semicrystalline structures. The interaction between ALB and PEC increased with their concentration, as evidenced by the decreased intensity of the O-H stretching peak, leading to lower encapsulation efficiency. The cryogels obtained can be considered a suitable matrix for encapsulating pink pepper oil. Full article
Show Figures

Figure 1

23 pages, 5407 KiB  
Article
Development of Chitosan Polysaccharide-Based Magnetic Gel for Direct Red 83:1 Removal from Water
by Ainoa Murcia-Salvador, María Isabel Rodríguez-López, José Antonio Pellicer, Teresa Gómez-Morte, David Auñón-Calles, María Josefa Yáñez-Gascón, José Pedro Cerón-Carrasco, Ángel Gil-Izquierdo, Estrella Núñez-Delicado and José Antonio Gabaldón
Gels 2024, 10(8), 496; https://doi.org/10.3390/gels10080496 - 26 Jul 2024
Cited by 2 | Viewed by 1256
Abstract
Water pollution caused by dyes is a significant environmental issue, necessitating the development of effective, cost-efficient decolorization methods suitable for industrial use. In this study, a Chitosan-Fe polymeric gel was synthesized, characterized, and tested for removing the azo dye Direct Red 83:1 from [...] Read more.
Water pollution caused by dyes is a significant environmental issue, necessitating the development of effective, cost-efficient decolorization methods suitable for industrial use. In this study, a Chitosan-Fe polymeric gel was synthesized, characterized, and tested for removing the azo dye Direct Red 83:1 from water. The polymeric magnetic chitosan was analyzed using various techniques: Field Emission Scanning Electron Microscopy (FE-SEM) revealed a porous structure, Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA) demonstrated the thermal stability, Infrared Spectrophotometry (IR) indicated the successful coordination of iron at the C3 position, and X-ray Powder Diffraction (XRD) confirmed the crystalline nature of the polymeric structure. Optimal conditions for kinetic and isotherm models were found at 1 g and pH 7.0. Adsorption behavior of Direct Red 83:1 onto magnetic chitosan gel beads was studied through kinetic tests and isotherm curves. The maximum adsorption capacity was 17.46 mg/g (qmax). The adsorption process followed pseudo-second-order kinetics (R2 = 0.999) and fit the Temkin isotherm (R2 = 0.946), suggesting heterogeneous surface adsorption. The newly synthesized Chitosan-Fe polymeric gel demonstrated good adsorption properties and facilitated easy separation of purified water. Full article
(This article belongs to the Special Issue Gels for Water Treatment)
Show Figures

Graphical abstract

Back to TopTop