Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = ferrochelatase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 369 KB  
Case Report
Heavy Increase in Erythrocyte Protoporphyrin IX During Treatment with Teriflunomide in a Patient with Erythropoietic Protoporphyria: A Case Report
by Hans Christian Wulf, Anne L. Christiansen and Ida M. Heerfordt
Int. J. Transl. Med. 2025, 5(3), 41; https://doi.org/10.3390/ijtm5030041 - 23 Aug 2025
Viewed by 543
Abstract
Background/Objectives: Patients with erythropoietic protoporphyria (EPP) have a decreased activity of the ferrochelatase enzyme which converts protoporphyrin IX (PpIX) into heme, causing PpIX to accumulate in erythrocytes. The ensuing release of PpIX to the skin when exposed to visible light causes a phototoxic [...] Read more.
Background/Objectives: Patients with erythropoietic protoporphyria (EPP) have a decreased activity of the ferrochelatase enzyme which converts protoporphyrin IX (PpIX) into heme, causing PpIX to accumulate in erythrocytes. The ensuing release of PpIX to the skin when exposed to visible light causes a phototoxic reaction with severe pain, erythema, and edema. Erythrocyte PpIX levels in adult EPP patients are rather stable and largely unaffected by pharmaceutical treatments. It is important to be aware of drugs causing an increase in PpIX as this may increase the risk of liver toxicity. Method: The patient had blood samples taken regularly for analyses of PpIX, znPpIX, ALT, ALP, iron, leucocytes, C-reactive protein, and hemoglobin before, during, and after treatment with teriflunomide. Additionally, we tested if teriflunomide increased PpIX in vitro. Results: A female EPP patient was treated for 7 years with teriflunomide for multiple sclerosis attacks. During treatment, her natural PpIX level increased from about 30 µmol/L to about 200 µmol/L, without significant simultaneous changes in hemoglobin, iron levels, alanine transaminase (ALT), or alkaline phosphatase (ALP). The patient experienced no increase in photosensitivity. In vitro addition of teriflunomide did not affect PpIX levels. Discussion: In patients with lead intoxication, the release of PpIX from erythrocytes is very slow. The increase in PpIX during treatment with teriflunomide compared to periods with no medication could be caused by a similar slow PpIX release from the erythrocytes. This theory is supported by the patient’s unchanged light sensitivity and stable levels of hemoglobin, iron, and liver enzymes. Full article
Show Figures

Figure 1

12 pages, 1777 KB  
Article
Comparison of Pyrazinamide with Isoniazid for Their Effects on the Heme Biosynthetic Pathway in Mouse Liver
by Fu-Ying Qin, Ruizhi Gu, Jiaojiao Zhang, Jaden Leigh Weiss, Jie Lu, Qing Ma and Xiaochao Ma
Metabolites 2025, 15(6), 355; https://doi.org/10.3390/metabo15060355 - 28 May 2025
Viewed by 658
Abstract
Background/Objectives: Isoniazid (INH) and pyrazinamide (PZA) are first-line drugs used to treat tuberculosis (TB), but their use is generally contraindicated in patients with porphyria, a group of metabolic disorders caused by defects in the heme biosynthetic pathway. To investigate the basis for these [...] Read more.
Background/Objectives: Isoniazid (INH) and pyrazinamide (PZA) are first-line drugs used to treat tuberculosis (TB), but their use is generally contraindicated in patients with porphyria, a group of metabolic disorders caused by defects in the heme biosynthetic pathway. To investigate the basis for these contraindications, we compared the effects of INH and PZA on the heme biosynthetic pathway in mouse liver. Method: We investigated the hepatic expression and activity of the key enzymes involved in the heme biosynthetic pathway, including aminolevulinic acid synthase 1 (Alas1) and ferrochelatase (Fech). Additionally, we employed a metabolomic approach to analyze liver and fecal samples from the mice treated with INH or PZA. Result: We found that INH, but not PZA, significantly upregulated the expression and activity of Alas1, the rate-limiting enzyme in heme biosynthesis, while concurrently downregulating Fech, which converts protoporphyrin IX (PPIX) to heme. These changes resulted in the accumulation of the toxic intermediate aminolevulinic acid (ALA) and PPIX in the liver of INH-treated mice. In contrast, PZA had no measurable effect on the expression or function of Alas1 or Fech. Conclusions: These findings provide mechanistic insight into INH-induced porphyria exacerbation and suggest that PZA may not carry the same risk, challenging its current contraindication. Full article
Show Figures

Graphical abstract

18 pages, 826 KB  
Review
Current and Future Applications of 5-Aminolevulinic Acid in Neurosurgical Oncology
by Jia-Shu Chen, Jacob S. Young and Mitchel S. Berger
Cancers 2025, 17(8), 1332; https://doi.org/10.3390/cancers17081332 - 15 Apr 2025
Cited by 2 | Viewed by 2407
Abstract
Maximal safe surgical resection is the gold standard in brain tumor surgery. Fluorescence-guided surgery (FGS) is one of many intraoperative techniques that have been designed with the intention of accomplishing this goal. 5-aminolevulinic acid (5-ALA) is one of the main fluorophores that facilitates [...] Read more.
Maximal safe surgical resection is the gold standard in brain tumor surgery. Fluorescence-guided surgery (FGS) is one of many intraoperative techniques that have been designed with the intention of accomplishing this goal. 5-aminolevulinic acid (5-ALA) is one of the main fluorophores that facilitates FGS in neurosurgical oncology. Multiple different types of brain tumors can take in and metabolize 5-ALA into protoporphyrin IX (PpIX) through the mitochondria heme biosynthesis pathway. PpIX then selectively accumulates in brain tumor cells due to decreased ferrochelatase activity and emits red fluorescence (630–720 nm) when excited with blue light (375–440 nm). This mechanism allows neurosurgeons to better visualize tumor burden and increase extent of resection while preserving non-cancerous brain parenchyma and, specifically, eloquent white matter tracts, if combined with mapping techniques, thereby minimizing morbidity while improving survival. While 5-ALA use is well established in the treatment of high-grade gliomas, its applicability in recurrent high-grade and non-enhancing IDH-mutant low-grade gliomas, as well as non-glial tumors, is less established or limited by certain features of their cellular and molecular biology. This review aims to discuss the current landscape of 5-ALA utility across the diverse range of brain tumors, practical considerations that optimize its current use in neurosurgery, modern clinical limitations of 5-ALA, and how its application can be expanded by combining its use with other techniques that overcome current limitations. Full article
(This article belongs to the Special Issue Application of Fluorescence Imaging in Cancer)
Show Figures

Figure 1

24 pages, 6117 KB  
Article
Functional Differentiation and Regulatory Mechanisms of Ferrochelatases HemH1 and HemH2 in Bacillus thuringiensis Under Iron and Oxidative Stress
by Jianghan Wang, Yi Luo, Tian Jiao, Shizhen Liu, Ting Liang, Huiting Mei, Shuang Cheng, Qian Yang, Jin He and Jianmei Su
Int. J. Mol. Sci. 2025, 26(7), 2911; https://doi.org/10.3390/ijms26072911 - 23 Mar 2025
Viewed by 757
Abstract
Ferrochelatase is the terminal enzyme in heme biosynthesis. Bacillus thuringiensis (Bt) 97-27 contains two ferrochelatases, HemH1 and HemH2, but their regulatory mechanisms and functional differences under virous environmental stimuli remain unclear. This study confirmed that the iron uptake regulator protein (Fur) bound to [...] Read more.
Ferrochelatase is the terminal enzyme in heme biosynthesis. Bacillus thuringiensis (Bt) 97-27 contains two ferrochelatases, HemH1 and HemH2, but their regulatory mechanisms and functional differences under virous environmental stimuli remain unclear. This study confirmed that the iron uptake regulator protein (Fur) bound to the promoters of hemH1 and hemH2, with Fe2+ or Fe3+ enhancing this binding. Heterologous expression of HemH1 and HemH2 in Escherichia coli showed that pEH2/BL grew better than pEH1/BL under different 2,2′-Bipyridyl, Fe2+, and Fe3+ concentrations. Under iron limitation, the heme precursor ALA production decreased significantly in both strains. The heme production of pEH2/BL decreased sharply under iron-limited conditions, while that of pEH1/BL decreased significantly under iron-rich conditions. The H2O2 sensitivity experiment revealed that E. coli pEH1/BL was more tolerant to H2O2 than pEH2/BL. In Bt, ΔhemH2 was most sensitive to H2O2 stress, but complementation of hemH1 or hemH2 partially restored H2O2 resistance, with the overexpressed strain pHH2/Bt being most tolerant. β-galactosidase assays indicated that Fur positively regulated hemH1 and negatively regulated hemH2 under normal conditions, but this regulation reversed with 2.5 mM Fe3+. qRT-PCR showed upregulation of genes related to heme synthesis, oxidative stress, and ferrous iron transport. This study reveals the functional differentiation of HemH1 and HemH2 under the joint regulation of Fur and environmental factors, highlighting their synergistic roles in heme synthesis, heavy metal detoxification, and oxidative stress resistance to maintain bacterial physiological homeostasis. Full article
(This article belongs to the Special Issue Molecular Research on Bacteria)
Show Figures

Figure 1

15 pages, 1885 KB  
Article
The Circadian Rhythm of Intracellular Protoporphyrin IX Accumulation Through Heme Synthesis Pathway in Bladder Urothelial Cancer Cells Exposed to 5-Aminolevulinic Acid
by Nobutaka Nishimura, Makito Miyake, Sayuri Onishi, Mitsuru Tomizawa, Takuto Shimizu, Kenta Onishi, Shunta Hori, Yosuke Morizawa, Daisuke Gotoh, Yasushi Nakai, Nobumichi Tanaka and Kiyohide Fujimoto
Cancers 2024, 16(23), 4112; https://doi.org/10.3390/cancers16234112 - 8 Dec 2024
Cited by 1 | Viewed by 1390
Abstract
Background/Objectives: The standard recommendation for patients with non-muscle invasive bladder cancer is 5-aminolevulinic acid-mediated photodynamic diagnosis. The intensity of the fluorescence caused by the intracellular accumulation of protoporphyrin IX (PPIX) varies among tumors and patients. This study investigated the circadian rhythm of [...] Read more.
Background/Objectives: The standard recommendation for patients with non-muscle invasive bladder cancer is 5-aminolevulinic acid-mediated photodynamic diagnosis. The intensity of the fluorescence caused by the intracellular accumulation of protoporphyrin IX (PPIX) varies among tumors and patients. This study investigated the circadian rhythm of intracellular PPIX accumulation in bladder urothelial cancer cells exposed to 5-aminolevulinic acid. Methods: The expression of two clock genes, PER2 and BMAL1, and their impact on intracellular PPIX accumulation were evaluated in two bladder cancer cell lines, UM-UC-3 and J82, and mouse xenograft models. We evaluated the enzymes involved in the heme synthesis pathway that potentially affect the circadian rhythm of intracellular PPIX accumulation. The red fluorescence intensity of the images captured during photodynamic diagnosis-assisted transurethral resection of bladder tumors was quantified and compared among the four groups according to surgery start time: 9 a.m.–11 a.m., 11 a.m.–1 p.m., 1–3 p.m., and 3–5 p.m. Results: We observed the circadian rhythm of intracellular PPIX accumulation, which was potentially regulated by the clock genes PER2 and BMAL1. Two enzymes involved in the heme synthesis pathway, coproporphyrinogen oxidase and ferrochelatase, exhibit a circadian rhythm. The fluorescence intensity started gradually increasing at 12 p.m., and the highest level was observed in patients who underwent surgery between 3 and 5 p.m. Conclusions: Our findings suggest that it may be possible to optimize the timing of the photodynamic diagnosis in photodynamic diagnosis-assisted transurethral resection of bladder cancer based on the circadian rhythm to improve tumor detection and treatment outcomes. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

15 pages, 2867 KB  
Article
Screening Zinc Protoporphyrin-Forming Lactic Acid Bacteria to Replace Nitrite in Meat Products
by Qianhui Yang, Zhiqiang Feng, Qian Chen, Haotian Liu, Qian Liu, Fangda Sun and Baohua Kong
Foods 2024, 13(23), 3808; https://doi.org/10.3390/foods13233808 - 26 Nov 2024
Viewed by 1117
Abstract
Seventeen strains of LAB (lactic acid bacteria) were screened for their ability to form ZnPP (zinc protoporphyrin) by measuring fluorescence intensity. Three strains (Weissella viridescens JX11, Weissella viridescens MDJ8, and Lactobacillus pentosus Q) exhibited notable ZnPP-forming ability. The ferrochelatase enzyme activity of [...] Read more.
Seventeen strains of LAB (lactic acid bacteria) were screened for their ability to form ZnPP (zinc protoporphyrin) by measuring fluorescence intensity. Three strains (Weissella viridescens JX11, Weissella viridescens MDJ8, and Lactobacillus pentosus Q) exhibited notable ZnPP-forming ability. The ferrochelatase enzyme activity of W. viridescens JX11 was significantly higher than that of the other two strains (p < 0.05). The three selected strains were then inoculated into minced meat to observe their effect on color development and quality properties. The a*-values of the bacteria-inoculated groups were significantly higher than those of the control group and lower than those of the nitrite group (p < 0.05). The visible bright red color of the inoculated groups was stronger than that of the control and inferior to the nitrite group, especially in cooked minced meat. The fluorescence intensities in inoculated groups were significantly higher than those of the control and nitrite groups (p < 0.05). The UV–Vis absorbance data at 417 nm indicated that inoculated groups exhibited higher absorbance compared to the control group (p < 0.05). These results indicate that high ZnPP-forming bacteria can enhance the color of meat products and these have certain potential to replace nitrite in meat products. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

28 pages, 3662 KB  
Article
CRISPR/Cas9-Mediated fech Knockout Zebrafish: Unraveling the Pathogenesis of Erythropoietic Protoporphyria and Facilitating Drug Screening
by Hitihami M. S. M. Wijerathna, Kateepe A. S. N. Shanaka, Sarithaa S. Raguvaran, Bulumulle P. M. V. Jayamali, Seok-Hyung Kim, Myoung-Jin Kim, Sumi Jung and Jehee Lee
Int. J. Mol. Sci. 2024, 25(19), 10819; https://doi.org/10.3390/ijms251910819 - 8 Oct 2024
Cited by 1 | Viewed by 2264
Abstract
Erythropoietic protoporphyria (EPP1) results in painful photosensitivity and severe liver damage in humans due to the accumulation of fluorescent protoporphyrin IX (PPIX). While zebrafish (Danio rerio) models for porphyria exist, the utility of ferrochelatase (fech) knockout zebrafish, which exhibit [...] Read more.
Erythropoietic protoporphyria (EPP1) results in painful photosensitivity and severe liver damage in humans due to the accumulation of fluorescent protoporphyrin IX (PPIX). While zebrafish (Danio rerio) models for porphyria exist, the utility of ferrochelatase (fech) knockout zebrafish, which exhibit EPP, for therapeutic screening and biological studies remains unexplored. This study investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated fech-knockout zebrafish larvae as a model of EPP1 for drug screening. CRISPR/Cas9 was employed to generate fech-knockout zebrafish larvae exhibiting morphological defects without lethality prior to 9 days post-fertilization (dpf). To assess the suitability of this model for drug screening, ursodeoxycholic acid (UDCA), a common treatment for cholestatic liver disease, was employed. This treatment significantly reduced PPIX fluorescence and enhanced bile-secretion-related gene expression (abcb11a and abcc2), indicating the release of PPIX. Acridine orange staining and quantitative reverse transcription polymerase chain reaction analysis of the bax/bcl2 ratio revealed apoptosis in fech−/− larvae, and this was reduced by UDCA treatment, indicating suppression of the intrinsic apoptosis pathway. Neutral red and Sudan black staining revealed increased macrophage and neutrophil production, potentially in response to PPIX-induced cell damage. UDCA treatment effectively reduced macrophage and neutrophil production, suggesting its potential to alleviate cell damage and liver injury in EPP1. In conclusion, CRISPR/Cas9-mediated fech−/− zebrafish larvae represent a promising model for screening drugs against EPP1. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 2345 KB  
Article
Metabolic Engineering of Escherichia coli for Production of a Bioactive Metabolite of Bilirubin
by Huaxin Chen, Peng Xiong, Ning Guo and Zhe Liu
Int. J. Mol. Sci. 2024, 25(17), 9741; https://doi.org/10.3390/ijms25179741 - 9 Sep 2024
Cited by 3 | Viewed by 3060
Abstract
Bilirubin (BR) is an important ingredient of a valuable Chinese medicine, Calculus bovis. Over recent decades, increasing evidence has confirmed that BR offers health benefits in cardiovascular health, stroke, diabetes, and metabolic syndrome. However, BR is mainly produced by extraction from pig bile. [...] Read more.
Bilirubin (BR) is an important ingredient of a valuable Chinese medicine, Calculus bovis. Over recent decades, increasing evidence has confirmed that BR offers health benefits in cardiovascular health, stroke, diabetes, and metabolic syndrome. However, BR is mainly produced by extraction from pig bile. In this study, we assembled an efficient pathway for BR production by metabolic engineering of Escherichia coli. First, heme oxygenase (HO1) and biliverdin reductase were co-expressed in E. coli. HPLC and LC–MS confirmed the accumulation of BR in the recombinant E. coli cells. To improve BR production, the catalytic abilities of HO1 from different species were investigated. In addition, the outermembrane-bound heme receptor (ChuA) and the enzymes involved in heme biosynthesis were overexpressed among which ChuA, 5-aminolevulinic acid dehydratase (HemB), protoporphyrin oxidase (HemG), and ferrochelatase (HemH) were found to enhance BR accumulation in E. coli. In addition, expression of ferredoxin (Fd) was shown to contribute to efficient conversion of heme to BR in E. coli. To increase supply of NADPH, isocitrate dehydrogenase (IDH), NAD kinase (nadK), NADP-specific glutamate dehydrogenase (gdhA), and glucose-6-phosphate 1-dehydrogenase (ZWF) were overexpressed and were found to enhance BR accumulation when these proteins were expressed with a low-copy plasmid pACYCduet-1. Modular optimization of the committed genes led to a titer of 17.2 mg/L in strain M1BHG. Finally, fed-batch fermentation was performed for the strains M1BHG and M1, resulting in accumulation of 75.5 mg/L and 25.8 mg/L of BR, respectively. This is the first report on biosynthesis of BR through metabolic engineering in a heterologous host. Full article
Show Figures

Figure 1

32 pages, 1482 KB  
Review
Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma
by David Aebisher, Paweł Woźnicki, Magdalena Czarnecka-Czapczyńska, Klaudia Dynarowicz, Ewelina Szliszka, Aleksandra Kawczyk-Krupka and Dorota Bartusik-Aebisher
Int. J. Mol. Sci. 2024, 25(16), 8708; https://doi.org/10.3390/ijms25168708 - 9 Aug 2024
Viewed by 2990
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to [...] Read more.
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound—a photosensitizer (PS)—which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 3316 KB  
Article
In Vitro Effect of Epigallocatechin Gallate on Heme Synthesis Pathway and Protoporphyrin IX Production
by Daniela León, María Elena Reyes, Helga Weber, Álvaro Gutiérrez, Claudio Tapia, Ramón Silva, Tamara Viscarra, Kurt Buchegger, Carmen Ili and Priscilla Brebi
Int. J. Mol. Sci. 2024, 25(16), 8683; https://doi.org/10.3390/ijms25168683 - 9 Aug 2024
Cited by 1 | Viewed by 1968
Abstract
Photodynamic therapy (PDT) treats nonmelanoma skin cancer. PDT kills cells through reactive oxygen species (ROS), generated by interaction among cellular O2, photosensitizer and specific light. Protoporphyrin IX (PpIX) is a photosensitizer produced from methyl aminolevulinate (MAL) by heme group synthesis (HGS) pathway. [...] Read more.
Photodynamic therapy (PDT) treats nonmelanoma skin cancer. PDT kills cells through reactive oxygen species (ROS), generated by interaction among cellular O2, photosensitizer and specific light. Protoporphyrin IX (PpIX) is a photosensitizer produced from methyl aminolevulinate (MAL) by heme group synthesis (HGS) pathway. In PDT-resistant cells, PDT efficacy has been improved by addition of epigallocatechin gallate (EGCG). Therefore, the aim of this work is to evaluate the effect of EGCG properties over MAL-TFD and PpIX production on A-431 cell line. EGCG’s role over cell proliferation (flow cytometry and wound healing assay) and clonogenic capability (clonogenic assay) was evaluated in A-431 cell line, while the effect of EGCG over MAL-PDT was determined by cell viability assay (MTT), PpIX and ROS detection (flow cytometry), intracellular iron quantification and gene expression of HGS enzymes (RT-qPCR). Low concentrations of EGCG (<50 µM) did not have an antiproliferative effect over A-431 cells; however, EGCG inhibited clonogenic cell capability. Furthermore, EGCG (<50 µM) improved MAL-PDT cytotoxicity, increasing PpIX and ROS levels, exerting a positive influence on PpIX synthesis, decreasing intracellular iron concentration and modifying HGS enzyme gene expression such as PGB (upregulated) and FECH (downregulated). EGCG inhibits clonogenic capability and modulates PpIX synthesis, enhancing PDT efficacy in resistant cells. Full article
(This article belongs to the Special Issue Molecular Aspects of Photodynamic Therapy)
Show Figures

Figure 1

15 pages, 5854 KB  
Review
Exploring the Antiangiogenic and Anti-Inflammatory Potential of Homoisoflavonoids: Target Identification Using Biotin Probes
by Xiang Fei, Sangil Kwon, Jinyoung Jang, Minyoung Seo, Seongwon Yu, Timothy W. Corson and Seung-Yong Seo
Biomolecules 2024, 14(7), 785; https://doi.org/10.3390/biom14070785 - 30 Jun 2024
Cited by 3 | Viewed by 2478
Abstract
Chemical proteomics using biotin probes of natural products have significantly advanced our understanding of molecular targets and therapeutic potential. This review highlights recent progress in the application of biotin probes of homoisoflavonoids for identifying binding proteins and elucidating mechanisms of action. Notably, homoisoflavonoids [...] Read more.
Chemical proteomics using biotin probes of natural products have significantly advanced our understanding of molecular targets and therapeutic potential. This review highlights recent progress in the application of biotin probes of homoisoflavonoids for identifying binding proteins and elucidating mechanisms of action. Notably, homoisoflavonoids exhibit antiangiogenic, anti-inflammatory, and antidiabetic effects. A combination of biotin probes, pull-down assays, mass spectrometry, and molecular modeling has revealed how natural products and their derivatives interact with several proteins such as ferrochelatase (FECH), soluble epoxide hydrolase (sEH), inosine monophosphate dehydrogenase 2 (IMPDH2), phosphodiesterase 4 (PDE4), and deoxyhypusine hydroxylase (DOHH). These target identification approaches pave the way for new therapeutic avenues, especially in the fields of oncology and ophthalmology. Future research aimed at expanding the repertoire of target identification using biotin probes of homoisoflavonoids promises to further elucidate the complex mechanisms and develop new drug candidates. Full article
Show Figures

Figure 1

18 pages, 6684 KB  
Article
Impact of Phosphorylation at Various Sites on the Active Pocket of Human Ferrochelatase: Insights from Molecular Dynamics Simulations
by Mingshan Guo, Yuhong Lin, Chibuike David Obi, Peng Zhao, Harry A. Dailey, Amy E. Medlock and Yong Shen
Int. J. Mol. Sci. 2024, 25(12), 6360; https://doi.org/10.3390/ijms25126360 - 8 Jun 2024
Cited by 1 | Viewed by 1847
Abstract
Ferrochelatase (FECH) is the terminal enzyme in human heme biosynthesis, catalyzing the insertion of ferrous iron into protoporphyrin IX (PPIX) to form protoheme IX (Heme). Phosphorylation increases the activity of FECH, and it has been confirmed that the activity of FECH phosphorylated at [...] Read more.
Ferrochelatase (FECH) is the terminal enzyme in human heme biosynthesis, catalyzing the insertion of ferrous iron into protoporphyrin IX (PPIX) to form protoheme IX (Heme). Phosphorylation increases the activity of FECH, and it has been confirmed that the activity of FECH phosphorylated at T116 increases. However, it remains unclear whether the T116 site and other potential phosphorylation modification sites collaboratively regulate the activity of FECH. In this study, we identified a new phosphorylation site, T218, and explored the allosteric effects of unphosphorylated (UP), PT116, PT218, and PT116 + PT218 states on FECH in the presence and absence of substrates (PPIX and Heme) using molecular dynamics (MD) simulations. Binding free energies were evaluated with the MM/PBSA method. Our findings indicate that the PT116 + PT218 state exhibits the lowest binding free energy with PPIX, suggesting the strongest binding affinity. Additionally, this state showed a higher binding free energy with Heme compared to UP, which facilitates Heme release. Moreover, employing multiple analysis methods, including free energy landscape (FEL), principal component analysis (PCA), dynamic cross-correlation matrix (DCCM), and hydrogen bond interaction analysis, we demonstrated that phosphorylation significantly affects the dynamic behavior and binding patterns of substrates to FECH. Insights from this study provide valuable theoretical guidance for treating conditions related to disrupted heme metabolism, such as various porphyrias and iron-related disorders. Full article
Show Figures

Figure 1

18 pages, 72850 KB  
Article
Crucial Involvement of Heme Biosynthesis in Vegetative Growth, Development, Stress Response, and Fungicide Sensitivity of Fusarium graminearum
by Jin Wang, Yingying Cao, Dongya Shi, Zhihui Zhang, Xin Li and Changjun Chen
Int. J. Mol. Sci. 2024, 25(10), 5268; https://doi.org/10.3390/ijms25105268 - 12 May 2024
Viewed by 1745
Abstract
Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the [...] Read more.
Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the biological functions of heme in filamentous fungi are scarce. In this study, we investigated the role of heme in Fusarium graminearum. A mutant lacking the rate-limiting enzymes in heme synthesis, coproporphyrinogen III oxidase (Cpo) or ferrochelatase (Fc), was constructed using a homologous recombination strategy. The results showed that the absence of these enzymes was lethal to F. graminearum, but the growth defect could be rescued by the addition of hemin, so we carried out further studies with the help of hemin. The results demonstrated that heme was required for the activity of FgCyp51, and its absence increased the sensitivity to tebuconazole and led to the upregulation of FgCYP51 in F. graminearum. Additionally, heme plays an indispensable role in the life cycle of F. graminearum, which is essential for vegetative growth, conidiation, external stress response (especially oxidative stress), lipid accumulation, fatty acid β-oxidation, autophagy, and virulence. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 3674 KB  
Article
Involvement of Ferroptosis Induction and Oxidative Phosphorylation Inhibition in the Anticancer-Drug-Induced Myocardial Injury: Ameliorative Role of Pterostilbene
by Kiyomu Fujii, Rina Fujiwara-Tani, Shota Nukaga, Hitoshi Ohmori, Yi Luo, Ryoichi Nishida, Takamitsu Sasaki, Yoshihiro Miyagawa, Chie Nakashima, Isao Kawahara, Ruiko Ogata, Ayaka Ikemoto, Rika Sasaki and Hiroki Kuniyasu
Int. J. Mol. Sci. 2024, 25(5), 3015; https://doi.org/10.3390/ijms25053015 - 5 Mar 2024
Cited by 4 | Viewed by 2497
Abstract
Patients with cancer die from cardiac dysfunction second only to the disease itself. Cardiotoxicity caused by anticancer drugs has been emphasized as a possible cause; however, the details remain unclear. To investigate this mechanism, we treated rat cardiomyoblast H9c2 cells with sunitinib, lapatinib, [...] Read more.
Patients with cancer die from cardiac dysfunction second only to the disease itself. Cardiotoxicity caused by anticancer drugs has been emphasized as a possible cause; however, the details remain unclear. To investigate this mechanism, we treated rat cardiomyoblast H9c2 cells with sunitinib, lapatinib, 5-fluorouracil, and cisplatin to examine their effects. All anticancer drugs increased ROS, lipid peroxide, and iron (II) levels in the mitochondria and decreased glutathione peroxidase-4 levels and the GSH/GSSG ratio. Against this background, mitochondrial iron (II) accumulates through the unregulated expression of haem oxygenase-1 and ferrochelatase. Anticancer-drug-induced cell death was suppressed by N-acetylcysteine, deferoxamine, and ferrostatin, indicating ferroptosis. Anticancer drug treatment impairs mitochondrial DNA and inhibits oxidative phosphorylation in H9c2 cells. Similar results were observed in the hearts of cancer-free rats treated with anticancer drugs in vitro. In contrast, treatment with pterostilbene inhibited the induction of ferroptosis and rescued the energy restriction induced by anticancer drugs both in vitro and in vivo. These findings suggest that induction of ferroptosis and inhibition of oxidative phosphorylation are mechanisms by which anticancer drugs cause myocardial damage. As pterostilbene ameliorates these mechanisms, it is expected to have significant clinical applications. Full article
(This article belongs to the Special Issue Programmed Cell Death and Oxidative Stress 2.0)
Show Figures

Figure 1

15 pages, 7125 KB  
Review
Illuminating Dersimelagon: A Novel Agent in the Treatment of Erythropoietic Protoporphyria and X-Linked Protoporphyria
by Katelyn E. Madigan, Sean R. Rudnick, Matthew A. Agnew, Numra Urooj and Herbert L. Bonkovsky
Pharmaceuticals 2024, 17(1), 31; https://doi.org/10.3390/ph17010031 - 25 Dec 2023
Cited by 4 | Viewed by 2396
Abstract
Erythropoietic protoporphyria (EPP) is a genetic disorder stemming from reduced ferrochelatase expression, the final enzyme in the pathway of heme biosynthesis. A closely related condition, X-linked protoporphyria (XLP), bears similar clinical features although it arises from the heightened activity of δ-aminolevulinic acid synthase [...] Read more.
Erythropoietic protoporphyria (EPP) is a genetic disorder stemming from reduced ferrochelatase expression, the final enzyme in the pathway of heme biosynthesis. A closely related condition, X-linked protoporphyria (XLP), bears similar clinical features although it arises from the heightened activity of δ-aminolevulinic acid synthase 2 (ALAS2), the first and normally rate-controlling enzyme in heme biosynthesis in developing red blood cells. Both of these abnormalities result in the buildup of protoporphyrin IX, leading to excruciating light sensitivity and, in a minority of cases, potentially fatal liver complications. Traditionally, managing EPP and XLP involved sun avoidance. However, the emergence of innovative therapies, such as dersimelagon, is reshaping the therapeutic landscape for these conditions. In this review, we summarize salient features of the properties of dersimelagon, shedding light on its potential role in advancing our understanding of treatment options for EPP and XLP. Full article
Show Figures

Figure 1

Back to TopTop