Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = floral symmetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3746 KB  
Article
Morphological Study on the Differentiation of Flower Buds and the Embryological Stages of Male and Female Floral Organs in Lespedeza davurica (Laxm.) Schindl. cv. JinNong (Fabaceae)
by Lirong Tong and Juan Wang
Plants 2024, 13(12), 1661; https://doi.org/10.3390/plants13121661 - 15 Jun 2024
Cited by 1 | Viewed by 1397
Abstract
Lespedeza davurica (Laxm.) is a leguminous plant with significant ecological benefits, but its embryonic development mechanism remains unclear. We investigated the flower bud differentiation, megaspore and microspore formation, gametophyte development, and embryo and endosperm development in L. davurica. Our aim was to [...] Read more.
Lespedeza davurica (Laxm.) is a leguminous plant with significant ecological benefits, but its embryonic development mechanism remains unclear. We investigated the flower bud differentiation, megaspore and microspore formation, gametophyte development, and embryo and endosperm development in L. davurica. Our aim was to elucidate the relationship between the external morphology and internal development processes of male and female floral organs during growth, as well as the reproductive factors influencing fruiting. The results indicated that although the pistil develops later than the stamen during flower bud differentiation, both organs mature synchronously before flowering. L. davurica pollen exhibits three germination grooves, a reticulate outer wall, and papillary structures on the anther surface. In vivo pollination experiments revealed abnormal spiral growth of L. davurica pollen tubes within the style and the occurrence of callus plugs, which may reduce the seed setting rate. The anther wall development follows the dicotyledonous type, with tetrads formed through microspore meiosis exhibiting both left–right symmetry and tetrahedral arrangements. L. davurica has a single ovule, and the embryo sac develops in the monosporic polygonum type. After dormancy, the zygote undergoes multiple divisions, progressing through spherical, heart-shaped, and torpedo-shaped embryo stages, culminating in a mature embryo. A mature seed comprises cotyledons, hypocotyl, embryo, radicle, and seed coat. Phylogenetic tree analysis reveals a close genetic relationship between L. davurica and other leguminous plants from the genera Lespedeza and Medicago. This study provides valuable insights into the regulation of flowering and hybrid breeding in leguminous plants and offers a new perspective on the development of floral organs and seed setting rates. Full article
(This article belongs to the Special Issue Plant Reproduction and Embryonic Development)
Show Figures

Figure 1

19 pages, 2535 KB  
Review
‘Organ’ising Floral Organ Development
by Kestrel A. Maio and Laila Moubayidin
Plants 2024, 13(12), 1595; https://doi.org/10.3390/plants13121595 - 8 Jun 2024
Cited by 3 | Viewed by 3214
Abstract
Flowers are plant structures characteristic of the phylum Angiosperms composed of organs thought to have emerged from homologous structures to leaves in order to specialize in a distinctive function: reproduction. Symmetric shapes, colours, and scents all play important functional roles in flower biology. [...] Read more.
Flowers are plant structures characteristic of the phylum Angiosperms composed of organs thought to have emerged from homologous structures to leaves in order to specialize in a distinctive function: reproduction. Symmetric shapes, colours, and scents all play important functional roles in flower biology. The evolution of flower symmetry and the morphology of individual flower parts (sepals, petals, stamens, and carpels) has significantly contributed to the diversity of reproductive strategies across flowering plant species. This diversity facilitates attractiveness for pollination, protection of gametes, efficient fertilization, and seed production. Symmetry, the establishment of body axes, and fate determination are tightly linked. The complex genetic networks underlying the establishment of organ, tissue, and cellular identity, as well as the growth regulators acting across the body axes, are steadily being elucidated in the field. In this review, we summarise the wealth of research already at our fingertips to begin weaving together how separate processes involved in specifying organ identity within the flower may interact, providing a functional perspective on how identity determination and axial regulation may be coordinated to inform symmetrical floral organ structures. Full article
(This article belongs to the Special Issue The Molecular Basis of Plant Developmental Diversity)
Show Figures

Figure 1

15 pages, 942 KB  
Article
Phenotypic Selection on Flower Traits in Food-Deceptive Plant Iris pumila L.: The Role of Pollinators
by Sanja Budečević, Katarina Hočevar, Sanja Manitašević Jovanović and Ana Vuleta
Symmetry 2023, 15(6), 1149; https://doi.org/10.3390/sym15061149 - 25 May 2023
Cited by 4 | Viewed by 2055
Abstract
To gain insight into the evolution of flower traits in the generalized food-deceptive plant Iris pumila, we assessed the color, size, shape, and fluctuating asymmetry (FA) of three functionally distinct floral organs—outer perianths (‘falls’), inner perianths (‘standards’), and style branches—and estimated pollinator-mediated [...] Read more.
To gain insight into the evolution of flower traits in the generalized food-deceptive plant Iris pumila, we assessed the color, size, shape, and fluctuating asymmetry (FA) of three functionally distinct floral organs—outer perianths (‘falls’), inner perianths (‘standards’), and style branches—and estimated pollinator-mediated selection on these traits. We evaluated the perianth color as the achromatic brightness of the fall, measured the flower stem height, and analyzed the floral organ size, shape, and FA using geometric morphometrics. Pollinated flowers had significantly higher brightness, longer flower stems, and larger floral organs compared to non-pollinated flowers. The shape and FA of the floral organs did not differ, except for the fall FA, where higher values were found for falls of pollinated flowers. Pollinator-mediated selection was confirmed for flower stem height and for subtle changes in the shape of the fall and style branch—organs that form the pollination tunnel. This study provides evidence that, although all analyzed flower traits play significant roles in pollinator attraction, flower stem height and pollination tunnel shape evolved under the pollinator-mediated selection, whereas achromatic brightness, size, and symmetry of floral organs did not directly affect pollination success. Full article
(This article belongs to the Special Issue Fluctuating Asymmetry in Evolutionary Biology)
Show Figures

Figure 1

19 pages, 1762 KB  
Review
TCP Transcription Factors in Plant Reproductive Development: Juggling Multiple Roles
by Ivana L. Viola and Daniel H. Gonzalez
Biomolecules 2023, 13(5), 750; https://doi.org/10.3390/biom13050750 - 26 Apr 2023
Cited by 28 | Viewed by 4591
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors (TFs) are plant-specific transcriptional regulators exerting multiple functions in plant growth and development. Ever since one of the founding members of the family was described, encoded by the CYCLOIDEA (CYC) gene from Antirrhinum majus [...] Read more.
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors (TFs) are plant-specific transcriptional regulators exerting multiple functions in plant growth and development. Ever since one of the founding members of the family was described, encoded by the CYCLOIDEA (CYC) gene from Antirrhinum majus and involved in the regulation of floral symmetry, the role of these TFs in reproductive development was established. Subsequent studies indicated that members of the CYC clade of TCP TFs were important for the evolutionary diversification of flower form in a multitude of species. In addition, more detailed studies of the function of TCPs from other clades revealed roles in different processes related to plant reproductive development, such as the regulation of flowering time, the growth of the inflorescence stem, and the correct growth and development of flower organs. In this review, we summarize the different roles of members of the TCP family during plant reproductive development as well as the molecular networks involved in their action. Full article
(This article belongs to the Special Issue Molecular Plant Reproduction: From Cells to Nature)
Show Figures

Figure 1

25 pages, 2386 KB  
Review
Advances in Research on the Regulation of Floral Development by CYC-like Genes
by Yuhong Chai, Hua Liu, Wendan Chen, Chenghu Guo, Haixia Chen, Xi Cheng, Dongliang Chen, Chang Luo, Xiumei Zhou and Conglin Huang
Curr. Issues Mol. Biol. 2023, 45(3), 2035-2059; https://doi.org/10.3390/cimb45030131 - 2 Mar 2023
Cited by 10 | Viewed by 4236
Abstract
CYCLOIDEA (CYC)-like genes belong to the TCP transcription factor family and play important roles associated with flower development. The CYC-like genes in the CYC1, CYC2, and CYC3 clades resulted from gene duplication events. The CYC2 clade includes the largest number [...] Read more.
CYCLOIDEA (CYC)-like genes belong to the TCP transcription factor family and play important roles associated with flower development. The CYC-like genes in the CYC1, CYC2, and CYC3 clades resulted from gene duplication events. The CYC2 clade includes the largest number of members that are crucial regulators of floral symmetry. To date, studies on CYC-like genes have mainly focused on plants with actinomorphic and zygomorphic flowers, including Fabaceae, Asteraceae, Scrophulariaceae, and Gesneriaceae species and the effects of CYC-like gene duplication events and diverse spatiotemporal expression patterns on flower development. The CYC-like genes generally affect petal morphological characteristics and stamen development, as well as stem and leaf growth, flower differentiation and development, and branching in most angiosperms. As the relevant research scope has expanded, studies have increasingly focused on the molecular mechanisms regulating CYC-like genes with different functions related to flower development and the phylogenetic relationships among these genes. We summarize the status of research on the CYC-like genes in angiosperms, such as the limited research conducted on CYC1 and CYC3 clade members, the necessity to functionally characterize the CYC-like genes in more plant groups, the need for investigation of the regulatory elements upstream of CYC-like genes, and exploration of the phylogenetic relationships and expression of CYC-like genes with new techniques and methods. This review provides theoretical guidance and ideas for future research on CYC-like genes. Full article
(This article belongs to the Special Issue Genetic Sight: Plant Traits during Postharvest)
Show Figures

Figure 1

18 pages, 9884 KB  
Article
Correlation between Inflorescence Architecture and Floral Asymmetry—Evidence from Aberrant Flowers in Canna L. (Cannaceae)
by Qianxia Yu, Tong Zhao, Haichan Zhao, Chelsea D. Specht, Xueyi Tian and Jingping Liao
Plants 2022, 11(19), 2512; https://doi.org/10.3390/plants11192512 - 26 Sep 2022
Viewed by 4282
Abstract
Floral symmetry studies often focus on the development of monosymmetric and polysymmetric flowers, whereas asymmetric flowers and their position and function within the inflorescence structure are largely neglected. Cannaceae is one of the few families that possesses truly asymmetric flowers, serving as a [...] Read more.
Floral symmetry studies often focus on the development of monosymmetric and polysymmetric flowers, whereas asymmetric flowers and their position and function within the inflorescence structure are largely neglected. Cannaceae is one of the few families that possesses truly asymmetric flowers, serving as a model to study the characters and mechanisms involved in the development of floral asymmetry and its context within the developing and mature inflorescence. In this study, inflorescence structure and floral morphology of normal asymmetric flowers and 16 aberrant flower collections from Canna indica L. and C. glauca L. were photographed, analyzed, and compared with attention to stamen petaloidy, floral symmetry, and inflorescence branching patterns anterior and posterior to the aberrant flower. In comparison with normal flowers, the aberrant flowers are arranged into abnormal partial florescences, and vary in floral symmetry, orientation, and degree of androecial petaloidy. The appendage of the fertile stamen is universally located distal from the higher order bract, indicating an underlying influence of inflorescence architecture. A synthetic model is proposed to explain the relationship between floral symmetry and inflorescence structure. Data from the observation of aberrant phenotypes strongly support the hypothesis that irregular petaloidy of the stamens is correlated with an asymmetric morphogenetic field within the inflorescence that contributes to the overall floral asymmetry in Canna flowers. Full article
(This article belongs to the Special Issue Plant Morphology and Phylogenetic Evolution)
Show Figures

Figure 1

20 pages, 2926 KB  
Article
Transcriptomic Analysis Suggests Auxin Regulation in Dorsal-Ventral Petal Asymmetry of Wild Progenitor Sinningia speciosa
by Zhao-Jun Pan, Ya-Chi Nien, Yu-An Shih, Tsun-Ying Chen, Wen-Dar Lin, Wen-Hsi Kuo, Hao-Chun Hsu, Shih-Long Tu, Jen-Chih Chen and Chun-Neng Wang
Int. J. Mol. Sci. 2022, 23(4), 2073; https://doi.org/10.3390/ijms23042073 - 13 Feb 2022
Cited by 4 | Viewed by 3516
Abstract
The establishment of dorsal–ventral (DV) petal asymmetry is accompanied by differential growth of DV petal size, shape, and color differences, which enhance ornamental values. Genes involved in flower symmetry in Sinningia speciosa have been identified as CYCLOIDEA (SsCYC), but which gene [...] Read more.
The establishment of dorsal–ventral (DV) petal asymmetry is accompanied by differential growth of DV petal size, shape, and color differences, which enhance ornamental values. Genes involved in flower symmetry in Sinningia speciosa have been identified as CYCLOIDEA (SsCYC), but which gene regulatory network (GRN) is associated with SsCYC to establish DV petal asymmetry is still unknown. To uncover the GRN of DV petal asymmetry, we identified 630 DV differentially expressed genes (DV-DEGs) from the RNA-Seq of dorsal and ventral petals in the wild progenitor, S. speciosa ‘ES’. Validated by qRT-PCR, genes in the auxin signaling transduction pathway, SsCYC, and a major regulator of anthocyanin biosynthesis were upregulated in dorsal petals. These genes correlated with a higher endogenous auxin level in dorsal petals, with longer tube length growth through cell expansion and a purple dorsal color. Over-expression of SsCYC in Nicotiana reduced petal size by regulating cell growth, suggesting that SsCYC also controls cell expansion. This suggests that auxin and SsCYC both regulate DV petal asymmetry. Transiently over-expressed SsCYC, however, could not activate most major auxin signaling genes, suggesting that SsCYC may not trigger auxin regulation. Whether auxin can activate SsCYC or whether they act independently to regulate DV petal asymmetry remains to be explored in the future. Full article
(This article belongs to the Special Issue From Functional Genomics to Biotechnology in Ornamental Plant)
Show Figures

Figure 1

25 pages, 7322 KB  
Article
Gene Duplication and Differential Expression of Flower Symmetry Genes in Rhododendron (Ericaceae)
by Elizabeth Ramage, Valerie L. Soza, Jing Yi, Haley Deal, Vaidehi Chudgar, Benjamin D. Hall and Verónica S. Di Stilio
Plants 2021, 10(10), 1994; https://doi.org/10.3390/plants10101994 - 23 Sep 2021
Cited by 5 | Viewed by 3892
Abstract
Bilaterally symmetric flowers have evolved over a hundred times in angiosperms, yet orthologs of the transcription factors CYCLOIDEA (CYC), RADIALIS (RAD), and DIVARICATA (DIV) are repeatedly implicated in floral symmetry changes. We examined these candidate genes to [...] Read more.
Bilaterally symmetric flowers have evolved over a hundred times in angiosperms, yet orthologs of the transcription factors CYCLOIDEA (CYC), RADIALIS (RAD), and DIVARICATA (DIV) are repeatedly implicated in floral symmetry changes. We examined these candidate genes to elucidate the genetic underpinnings of floral symmetry changes in florally diverse Rhododendron, reconstructing gene trees and comparing gene expression across floral organs in representative species with radial and bilateral flower symmetries. Radially symmetric R. taxifolium Merr. and bilaterally symmetric R. beyerinckianum Koord. had four and five CYC orthologs, respectively, from shared tandem duplications. CYC orthologs were expressed in the longer dorsal petals and stamens and highly expressed in R. beyerinckianum pistils, whereas they were either ubiquitously expressed, lost from the genome, or weakly expressed in R. taxifolium. Both species had two RAD and DIV orthologs uniformly expressed across all floral organs. Differences in gene structure and expression of Rhododendron RAD compared to other asterids suggest that these genes may not be regulated by CYC orthologs. Our evidence supports CYC orthologs as the primary regulators of differential organ growth in Rhododendron flowers, while also suggesting certain deviations from the typical asterid gene regulatory network for flower symmetry. Full article
(This article belongs to the Special Issue Developmental and Genetic Mechanisms of Floral Structure)
Show Figures

Graphical abstract

25 pages, 5760 KB  
Article
An Optimized Transformation System and Functional Test of CYC-Like TCP Gene CpCYC in Chirita pumila (Gesneriaceae)
by Jing Liu, Juan-Juan Wang, Jie Wu, Yang Wang, Qi Liu, Fang-Pu Liu, Xia Yang and Yin-Zheng Wang
Int. J. Mol. Sci. 2021, 22(9), 4544; https://doi.org/10.3390/ijms22094544 - 27 Apr 2021
Cited by 11 | Viewed by 3263
Abstract
The development of an ideal model plant located at a key phylogenetic node is critically important to advance functional and regulatory studies of key regulatory genes in the evolutionary developmental (evo-devo) biology field. In this study, we selected Chirita pumila in the family [...] Read more.
The development of an ideal model plant located at a key phylogenetic node is critically important to advance functional and regulatory studies of key regulatory genes in the evolutionary developmental (evo-devo) biology field. In this study, we selected Chirita pumila in the family Gesneriaceae, a basal group in Lamiales, as a model plant to optimize its genetic transformation system established previously by us through investigating a series of factors and further conduct functional test of the CYC-like floral symmetry gene CpCYC. By transforming a RNAi:CpCYC vector, we successfully achieved the desired phenotypes of upright actinomorphic flowers, which suggest that CpCYC actually determines the establishment of floral zygomorphy and the horizontal orientation of flowers in C. pumila. We also confirmed the activities of CpCYC promoter in dorsal petals, dorsal/lateral staminodes, as well as the pedicel by transferring a CpCYC promoter:GUS vector into C. pumila. Furthermore, we testified the availability of a transient gene expression system using C. pumila mesophyll protoplasts. The improved transformation system together with the inherent biological features would make C. pumila an attractive new model in functional and regulatory studies for a broad range of evo-devo issues. Full article
(This article belongs to the Special Issue New Plant Models)
Show Figures

Figure 1

13 pages, 588 KB  
Article
Floral Complexity Traits as Predictors of Plant-Bee Interactions in a Mediterranean Pollination Web
by Alon Ornai and Tamar Keasar
Plants 2020, 9(11), 1432; https://doi.org/10.3390/plants9111432 - 24 Oct 2020
Cited by 6 | Viewed by 3241
Abstract
Despite intensive research, predicting pairwise species associations in pollination networks remains a challenge. The morphological fit between flowers and pollinators acts as a filter that allows only some species within the network to interact. Previous studies emphasized the depth of floral tubes as [...] Read more.
Despite intensive research, predicting pairwise species associations in pollination networks remains a challenge. The morphological fit between flowers and pollinators acts as a filter that allows only some species within the network to interact. Previous studies emphasized the depth of floral tubes as a key shape trait that explains the composition of their animal visitors. Yet, additional shape-related parameters, related to the handling difficulty of flowers, may be important as well. We analyzed a dataset of 2288 visits by six bee genera to 53 flowering species in a Mediterranean plant community. We characterized the plant species by five discrete shape parameters, which potentially affect their accessibility to insects: floral shape class, tube depth, symmetry, corolla segmentation and type of reproductive unit. We then trained a random forest machine-learning model to predict visitor identities, based on the shape traits. The model’s predictor variables also included the Julian date on which each bee visit was observed and the year of observation, as proxies for within- and between-season variation in flower and bee abundance. The model attained a classification accuracy of 0.86 (AUC = 0.96). Using only shape parameters as predictors reduced its classification accuracy to 0.76 (AUC = 0.86), while using only the date and year variables resulted in a prediction accuracy of 0.69 (AUC = 0.80). Among the shape-related variables considered, flower shape class was the most important predictor of visitor identity in a logistic regression model. Our study demonstrates the power of machine-learning algorithms for understanding pollination interactions in a species-rich plant community, based on multiple features of flower morphology. Full article
(This article belongs to the Special Issue Plant-Pollinator Interactions in Mediterranean-Type Ecosystems)
Show Figures

Figure 1

15 pages, 2514 KB  
Article
SYMMETRIC PETALS 1 Encodes an ALOG Domain Protein that Controls Floral Organ Internal Asymmetry in Pea (Pisum sativum L.)
by Liang He, Yawen Lei, Xin Li, Qincheng Peng, Wei Liu, Keyuan Jiao, Shihao Su, Zhubing Hu, Zhenguo Shen and Da Luo
Int. J. Mol. Sci. 2020, 21(11), 4060; https://doi.org/10.3390/ijms21114060 - 5 Jun 2020
Cited by 11 | Viewed by 4418
Abstract
In contrast to typical radially symmetrical flowers, zygomorphic flowers, such as those produced by pea (Pisum sativum L.), have bilateral symmetry, manifesting dorsoventral (DV) and organ internal (IN) asymmetry. However, the molecular mechanism controlling IN asymmetry remains largely unclear. Here, we used [...] Read more.
In contrast to typical radially symmetrical flowers, zygomorphic flowers, such as those produced by pea (Pisum sativum L.), have bilateral symmetry, manifesting dorsoventral (DV) and organ internal (IN) asymmetry. However, the molecular mechanism controlling IN asymmetry remains largely unclear. Here, we used a comparative mapping approach to clone SYMMETRIC PETALS 1 (SYP1), which encodes a key regulator of floral organ internal asymmetry. Phylogenetic analysis showed that SYP1 is an ortholog of Arabidopsis thaliana LIGHT-DEPENDENT SHORT HYPOCOTYL 3 (LSH3), an ALOG (Arabidopsis LSH1 and Oryza G1) family transcription factor. Genetic analysis and physical interaction assays showed that COCHLEATA (COCH, Arabidopsis BLADE-ON-PETIOLE ortholog), a known regulator of compound leaf and nodule identity in pea, is involved in organ internal asymmetry and interacts with SYP1. COCH and SYP1 had similar expression patterns and COCH and SYP1 target to the nucleus. Furthermore, our results suggested that COCH represses the 26S proteasome-mediated degradation of SYP1 and regulates its abundance. Our study suggested that the COCH-SYP1 module plays a pivotal role in floral organ internal asymmetry development in legumes. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 2209 KB  
Review
Radial or Bilateral? The Molecular Basis of Floral Symmetry
by Francesca Lucibelli, Maria Carmen Valoroso and Serena Aceto
Genes 2020, 11(4), 395; https://doi.org/10.3390/genes11040395 - 6 Apr 2020
Cited by 15 | Viewed by 10913
Abstract
In the plant kingdom, the flower is one of the most relevant evolutionary novelties. Floral symmetry has evolved multiple times from the ancestral condition of radial to bilateral symmetry. During evolution, several transcription factors have been recruited by the different developmental pathways in [...] Read more.
In the plant kingdom, the flower is one of the most relevant evolutionary novelties. Floral symmetry has evolved multiple times from the ancestral condition of radial to bilateral symmetry. During evolution, several transcription factors have been recruited by the different developmental pathways in relation to the increase of plant complexity. The MYB proteins are among the most ancient plant transcription factor families and are implicated in different metabolic and developmental processes. In the model plant Antirrhinum majus, three MYB transcription factors (DIVARICATA, DRIF, and RADIALIS) have a pivotal function in the establishment of floral dorsoventral asymmetry. Here, we present an updated report of the role of the DIV, DRIF, and RAD transcription factors in both eudicots and monocots, pointing out their functional changes during plant evolution. In addition, we discuss the molecular models of the establishment of flower symmetry in different flowering plants. Full article
(This article belongs to the Special Issue Genetic Mechanisms Underpinning Floral Architecture)
Show Figures

Figure 1

15 pages, 2853 KB  
Review
Phyllotaxis Turns Over a New Leaf—A New Hypothesis
by Derek T. A. Lamport, Li Tan, Michael Held and Marcia J. Kieliszewski
Int. J. Mol. Sci. 2020, 21(3), 1145; https://doi.org/10.3390/ijms21031145 - 9 Feb 2020
Cited by 10 | Viewed by 4540
Abstract
Phyllotaxis describes the periodic arrangement of plant organs most conspicuously floral. Oscillators generally underlie periodic phenomena. A hypothetical algorithm generates phyllotaxis regulated by the Hechtian growth oscillator of the stem apical meristem (SAM) protoderm. The oscillator integrates biochemical and mechanical force that regulate [...] Read more.
Phyllotaxis describes the periodic arrangement of plant organs most conspicuously floral. Oscillators generally underlie periodic phenomena. A hypothetical algorithm generates phyllotaxis regulated by the Hechtian growth oscillator of the stem apical meristem (SAM) protoderm. The oscillator integrates biochemical and mechanical force that regulate morphogenetic gradients of three ionic species, auxin, protons and Ca2+. Hechtian adhesion between cell wall and plasma membrane transduces wall stress that opens Ca2+ channels and reorients auxin efflux “PIN” proteins; they control the auxin-activated proton pump that dissociates Ca2+ bound by periplasmic arabinogalactan proteins (AGP-Ca2+) hence the source of cytosolic Ca2+ waves that activate exocytosis of wall precursors, AGPs and PIN proteins essential for morphogenesis. This novel approach identifies the critical determinants of an algorithm that generates phyllotaxis spiral and Fibonaccian symmetry: these determinants in order of their relative contribution are: (1) size of the apical meristem and the AGP-Ca2+ capacitor; (2) proton pump activity; (3) auxin efflux proteins; (4) Ca2+ channel activity; (5) Hechtian adhesion that mediates the cell wall stress vector. Arguably, AGPs and the AGP-Ca2+ capacitor plays a decisive role in phyllotaxis periodicity and its evolutionary origins. Full article
(This article belongs to the Special Issue Plant Cell Wall Proteins and Development)
Show Figures

Figure 1

26 pages, 5883 KB  
Article
Patterns of Diversity of Floral Symmetry in Angiosperms: A Case Study of the Order Apiales
by Maxim S. Nuraliev, Dmitry D. Sokoloff, Polina V. Karpunina and Alexei A. Oskolski
Symmetry 2019, 11(4), 473; https://doi.org/10.3390/sym11040473 - 3 Apr 2019
Cited by 10 | Viewed by 8134
Abstract
Floral symmetry is widely known as one of the most important structural traits of reproductive organs in angiosperms. It is tightly related to the shape and arrangement of floral parts, and at the same time, it plays a key role in general appearance [...] Read more.
Floral symmetry is widely known as one of the most important structural traits of reproductive organs in angiosperms. It is tightly related to the shape and arrangement of floral parts, and at the same time, it plays a key role in general appearance (visual gestalt) of a flower, which is especially important for the interactions of zoophilous flowers with their pollinators. The traditional classification of floral symmetry divides nearly all the diversity of angiosperm flowers into actinomorphic and zygomorphic ones. Within this system, which is useful for ecological studies, many variations of symmetry appear to be disregarded. At the same time, the diversity of floral symmetry is underpinned not only by ecological factors, but also by morphogenetic mechanisms and constraints. Sometimes it is not an easy task to uncover the adaptive or developmental significance of a change of the floral symmetry in a particular lineage. Using the asterid order Apiales as a model group, we demonstrate that such changes can correlate with the merism of the entire flower or of its particular whorl, with the relative orientation of gynoecium to the rest of the flower, with the presence of sterile floral elements and other morphological characters. Besides, in some taxa, the shape and symmetry of the flower change in the course of its development, which should be taken in consideration in morphological comparisons and evaluations of synapomorphies in a particular clade. Finally, we show that different results can be obtained due to employment of different approaches: for instance, many flowers that are traditionally described as actinomorphic turn out to be disymmetric, monosymmetric, or asymmetric from a more detailed look. The traditional method of division into actinomorphy and zygomorphy deals with the general appearance of a flower, and mainly considers the shape of the corolla, while the geometrical approach handles the entire three-dimensional structure of the flower, and provides an exact number of its symmetry planes. Full article
(This article belongs to the Special Issue Floral Symmetry)
Show Figures

Figure 1

16 pages, 9777 KB  
Article
Interactions between WUSCHEL- and CYC2-like Transcription Factors in Regulating the Development of Reproductive Organs in Chrysanthemum morifolium
by Yi Yang, Ming Sun, Cunquan Yuan, Yu Han, Tangchun Zheng, Tangren Cheng, Jia Wang and Qixiang Zhang
Int. J. Mol. Sci. 2019, 20(6), 1276; https://doi.org/10.3390/ijms20061276 - 14 Mar 2019
Cited by 20 | Viewed by 5003
Abstract
Chrysanthemum morifolium is a gynomonoecious plant that bears both female zygomorphic ray florets and bisexual actinomorphic disc florets in the inflorescence. This sexual system is quite prevalent in Asteraceae, but poorly understood. CYCLOIDEA (CYC) 2 subclade transcription factors, key regulators of flower symmetry [...] Read more.
Chrysanthemum morifolium is a gynomonoecious plant that bears both female zygomorphic ray florets and bisexual actinomorphic disc florets in the inflorescence. This sexual system is quite prevalent in Asteraceae, but poorly understood. CYCLOIDEA (CYC) 2 subclade transcription factors, key regulators of flower symmetry and floret identity in Asteraceae, have also been speculated to function in reproductive organs and could be an entry point for studying gynomonoecy. However, the molecular mechanism is still unclear. On the other hand, the Arabidopsis WUSCHEL (WUS) transcription factor has been proven to play a vital role in the development of reproductive organs. Here, a WUS homologue (CmWUS) in C. morifolium was isolated and characterized. Overexpression of CmWUS in A. thaliana led to shorter siliques and fewer stamens, which was similar to CYC2-like genes reported before. In addition, both CmWUS and CmCYC2 were highly expressed in flower buds during floral organ differentiation and in the reproductive organs at later development stages, indicating their involvement in the development of reproductive organs. Moreover, CmWUS could directly interact with CmCYC2d. Thus, our data suggest a collaboration between CmWUS and CmCYC2 in the regulation of reproductive organ development in chrysanthemum and will contribute to a further understanding of the gynomonoecious sexual system in Asteraceae. Full article
(This article belongs to the Special Issue Plant Genetics and Molecular Breeding)
Show Figures

Figure 1

Back to TopTop