Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = harmful and potentially harmful constituents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 728 KB  
Review
Systematic Review of Prenatal Exposure to PM2.5 and Its Chemical Components and Their Effects on Neurodevelopmental Outcomes in Neonates
by Gabriele Donzelli, Isabel Peraita-Costa, Nunzia Linzalone and María Morales-Suárez-Varela
Atmosphere 2025, 16(9), 1034; https://doi.org/10.3390/atmos16091034 - 30 Aug 2025
Viewed by 1404
Abstract
Particulate matter with a diameter less than 2.5 µm (PM2.5) and its chemical constituents—including ammonium (NH4+), sulfate (SO42−), nitrate (NO3), organic carbon (OC), soil dust, and black carbon (BC)—have been increasingly recognized [...] Read more.
Particulate matter with a diameter less than 2.5 µm (PM2.5) and its chemical constituents—including ammonium (NH4+), sulfate (SO42−), nitrate (NO3), organic carbon (OC), soil dust, and black carbon (BC)—have been increasingly recognized for their potential impact on fetal neurodevelopment. This systematic review aimed to synthesize current evidence on the relationship between prenatal exposure to PM2.5 and its chemical components and neurodevelopmental outcomes in neonates, focusing on diagnoses such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Following PRISMA 2020 guidelines, a comprehensive literature search was conducted on PubMed and Embase databases from April to July 2025. Twenty-five studies meeting inclusion criteria were analyzed, of which sixteen addressed PM2.5 exposure generally, and nine assessed specific chemical constituents. The findings indicate that increased exposure to PM2.5, particularly during the third trimester, is associated with a higher risk of ASD. Additionally, prenatal exposure may adversely affect early neurodevelopmental domains including motor skills, problem-solving, and social interactions. Certain PM2.5 components, notably sulfate ions (SO42−), were identified as important contributors to neurological health outcomes. These results underscore the importance of reducing prenatal exposure to PM2.5 and its harmful constituents to protect neurodevelopment. Full article
(This article belongs to the Special Issue Air Pollution: Health Risks and Mitigation Strategies)
Show Figures

Figure 1

63 pages, 2516 KB  
Review
Advancing the Potential of Polyscias fruticosa as a Source of Bioactive Compounds: Biotechnological and Pharmacological Perspectives
by Anita A. Śliwińska and Karolina Tomiczak
Molecules 2025, 30(17), 3460; https://doi.org/10.3390/molecules30173460 - 22 Aug 2025
Cited by 1 | Viewed by 1932
Abstract
Polyscias fruticosa (L.) Harms, a Southeast Asian medicinal plant of the Araliaceae family, has gained increasing attention due to its rich phytochemical profile and potential pharmacological applications. This review provides an up-to-date synthesis of biotechnological strategies and chemical investigations related to this species. [...] Read more.
Polyscias fruticosa (L.) Harms, a Southeast Asian medicinal plant of the Araliaceae family, has gained increasing attention due to its rich phytochemical profile and potential pharmacological applications. This review provides an up-to-date synthesis of biotechnological strategies and chemical investigations related to this species. In vitro propagation methods, including somatic embryogenesis, adventitious root, and cell suspension cultures, are discussed with emphasis on elicitation and bioreactor systems to enhance the production of secondary metabolites. Phytochemical analyses using gas chromatography–mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR) have identified over 120 metabolites, including triterpenoid saponins, polyphenols, sterols, volatile terpenoids, polyacetylenes, and fatty acids. Several compounds, such as tocopherols, conjugated linoleic acids, and alismol, were identified for the first time in the genus. These constituents exhibit antioxidant, anti-inflammatory, antimicrobial, antidiabetic, anticancer, and neuroprotective activities, with selected saponins (e.g., chikusetsusaponin IVa, Polyscias fruticosa saponin [PFS], zingibroside R1) showing confirmed molecular mechanisms of action. The combination of biotechnological tools with phytochemical and pharmacological evaluation supports P. fruticosa as a promising candidate for further functional, therapeutic, and nutraceutical development. This review also identifies knowledge gaps related to compound characterization and mechanistic studies, suggesting future directions for interdisciplinary research. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Graphical abstract

13 pages, 1409 KB  
Article
Potential of Essential Oils and Major EO Constituents in the Chemical Control of Spodoptera frugiperda
by Virginia Lara Usseglio, Magalí Beato, José Sebastián Dambolena and María Paula Zunino
Plants 2025, 14(14), 2204; https://doi.org/10.3390/plants14142204 - 16 Jul 2025
Cited by 1 | Viewed by 654
Abstract
Spodoptera frugiperda is a major agricultural pest worldwide, causing significant economic loss to maize crops. Its control largely depends on synthetic pesticides, which contribute to resistance development, harm non-target organisms, and lead to environmental degradation. Essential oils and their main components offer a [...] Read more.
Spodoptera frugiperda is a major agricultural pest worldwide, causing significant economic loss to maize crops. Its control largely depends on synthetic pesticides, which contribute to resistance development, harm non-target organisms, and lead to environmental degradation. Essential oils and their main components offer a more sustainable and ecologically sound alternative for the management of S. frugiperda. This study evaluated the effects of selected essential oils and their bioactive compounds on the survival and behavior of S. frugiperda using toxicity and preference assays. Peppermint essential oil and its major constituent, pulegone, significantly reduced the survival of S. frugiperda, with effects similar to those caused by synthetic insecticides. Eucalyptus essential oil and its main compound, 1,8-cineole, also influenced the behavior of S. frugiperda, suggesting potential for use in repellents. These findings highlight the use of essential oils and their main constituents/active constituents as bioinsecticides and their integration into environmentally friendly pest management strategies. Full article
(This article belongs to the Special Issue Chemical Ecology of Plant and Insect Pests)
Show Figures

Figure 1

24 pages, 4420 KB  
Article
Herbal Extract-Induced DNA Damage, Apoptosis, and Antioxidant Effects of C. elegans: A Comparative Study of Mentha longifolia, Scrophularia orientalis, and Echium biebersteinii
by Anna Hu, Qinghao Meng, Robert P. Borris and Hyun-Min Kim
Pharmaceuticals 2025, 18(7), 1030; https://doi.org/10.3390/ph18071030 - 11 Jul 2025
Viewed by 992
Abstract
Background: Herbal medicine represents a rich yet complex source of bioactive compounds, offering both therapeutic potential and toxicological risks. Methods: In this study, we systematically evaluated the biological effects of three traditional herbal extracts—Mentha longifolia, Scrophularia orientalis, and Echium biebersteinii [...] Read more.
Background: Herbal medicine represents a rich yet complex source of bioactive compounds, offering both therapeutic potential and toxicological risks. Methods: In this study, we systematically evaluated the biological effects of three traditional herbal extracts—Mentha longifolia, Scrophularia orientalis, and Echium biebersteinii—using Caenorhabditis elegans as an in vivo model. Results: All three extracts significantly reduced worm survival, induced larval arrest, and triggered a high incidence of males (HIM) phenotypes, indicative of mitotic failure and meiotic chromosome missegregation. Detailed analysis of germline architecture revealed extract-specific abnormalities, including nuclear disorganization, ectopic crescent-shaped nuclei, altered meiotic progression, and reduced bivalent formation. These defects were accompanied by activation of the DNA damage response, as evidenced by upregulation of checkpoint genes (atm-1, atl-1), increased pCHK-1 foci, and elevated germline apoptosis. LC-MS profiling identified 21 major compounds across the extracts, with four compounds—thymol, carvyl acetate, luteolin-7-O-rutinoside, and menthyl acetate—shared by all three herbs. Among them, thymol and carvyl acetate significantly upregulated DNA damage checkpoint genes and promoted apoptosis, whereas thymol and luteolin-7-O-rutinoside contributed to antioxidant activity. Notably, S. orientalis and E. biebersteinii shared 11 of 14 major constituents (79%), correlating with their similar phenotypic outcomes, while M. longifolia exhibited a more distinct chemical profile, possessing seven unique compounds. Conclusions: These findings highlight the complex biological effects of traditional herbal extracts, demonstrating that both beneficial and harmful outcomes can arise from specific phytochemicals within a mixture. By deconstructing these extracts into their active components, such as thymol, carvyl acetate, and luteolin-7-O-rutinoside, we gain critical insight into the mechanisms driving reproductive toxicity and antioxidant activity. This approach underscores the importance of component-level analysis for accurately assessing the therapeutic value and safety profile of medicinal plants, particularly those used in foods and dietary supplements. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

12 pages, 584 KB  
Article
Exposure to Toxic Compounds Using Alternative Smoking Products: Analysis of Empirical Data
by Sandra Sakalauskaite, Linas Zdanavicius, Jekaterina Šteinmiller and Natalja Istomina
Int. J. Environ. Res. Public Health 2025, 22(7), 1010; https://doi.org/10.3390/ijerph22071010 - 26 Jun 2025
Viewed by 2558
Abstract
Tobacco control policies have aimed to reduce the global prevalence of smoking. Unfortunately, the recent survey data shows that about 24% of Europeans still smoke. Although combustible cigarettes remain the most used tobacco product, the tendency made evident in the prevalence of smoking-alternative [...] Read more.
Tobacco control policies have aimed to reduce the global prevalence of smoking. Unfortunately, the recent survey data shows that about 24% of Europeans still smoke. Although combustible cigarettes remain the most used tobacco product, the tendency made evident in the prevalence of smoking-alternative nicotine-containing products increases. Studies that can objectively assess the long-term health effects of the latter products are lacking, so assessing toxic substances associated with smoking-alternative products and comparing them to substances from combustible cigarettes could inform future public health efforts. The manufacturers of these alternative products claim that the use of alternatives to combustible cigarettes reduces exposure to toxic compounds, but the reality is unclear. This study compares the concentrations of toxic substances in generated aerosols and performs calculations based on mainstream cigarette smoke and aerosols from smoking-alternative products. It summarizes the amounts of harmful and potentially harmful constituents per single puff. Alternative smoking products are undoubtedly harmful to non-smokers. Still, based on the analysis of the latest independent studies’ empirical data, the concentrations of inhaled HPHCs using heated tobacco products or e-cigarettes are reduced up to 91–98%, respectively; therefore, for those who cannot quit, these could provide a less harmful alternative. However, more well-designed studies of alternative product emissions are needed, including an analysis of the compounds that are not present in conventional tobacco products (e.g., thermal degradation products of propylene glycol, glycerol, or flavorings) to evaluate possible future health effects objectively. Full article
(This article belongs to the Special Issue Human Exposure to Genotoxic Environmental Contaminants)
Show Figures

Figure 1

30 pages, 2369 KB  
Review
Phenotyping the Chemical Communications of the Intestinal Microbiota and the Host: Secondary Bile Acids as Postbiotics
by Ginevra Urbani, Elena Rondini, Eleonora Distrutti, Silvia Marchianò, Michele Biagioli and Stefano Fiorucci
Cells 2025, 14(8), 595; https://doi.org/10.3390/cells14080595 - 15 Apr 2025
Cited by 3 | Viewed by 3454
Abstract
The current definition of a postbiotic is a “preparation of inanimate microorganisms and/or their components that confers a health benefit on the host”. Postbiotics can be mainly classified as metabolites, derived from intestinal bacterial fermentation, or structural components, as intrinsic constituents of the [...] Read more.
The current definition of a postbiotic is a “preparation of inanimate microorganisms and/or their components that confers a health benefit on the host”. Postbiotics can be mainly classified as metabolites, derived from intestinal bacterial fermentation, or structural components, as intrinsic constituents of the microbial cell. Secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) are bacterial metabolites generated by the enzymatic modifications of primary bile acids by microbial enzymes. Secondary bile acids function as receptor ligands modulating the activity of a family of bile-acid-regulated receptors (BARRs), including GPBAR1, Vitamin D (VDR) receptor and RORγT expressed by various cell types within the entire human body. Secondary bile acids integrate the definition of postbiotics, exerting potential beneficial effects on human health given their ability to regulate multiple biological processes such as glucose metabolism, energy expenditure and inflammation/immunity. Although there is evidence that bile acids might be harmful to the intestine, most of this evidence does not account for intestinal dysbiosis. This review examines this novel conceptual framework of secondary bile acids as postbiotics and how these mediators participate in maintaining host health. Full article
Show Figures

Figure 1

21 pages, 3843 KB  
Article
Chemical Composition and Larvicidal Activity Against Aedes aegypti of the Leaf Essential Oils from Croton blanchetianus
by Pedro Henrique Ribeiro Lopes, Nicaely Maria de Oliveira Pereira, Matheus Nunes da Rocha, Marcia Machado Marinho, Jesyka Macêdo Guedes, Tigressa Helena Soares Rodrigues, Jean Parcelli Costa Do Vale, Emmanuel Silva Marinho, Gilvandete Maria Pinheiro Santiago and Hélcio Silva dos Santos
Molecules 2025, 30(5), 1034; https://doi.org/10.3390/molecules30051034 - 24 Feb 2025
Viewed by 1119
Abstract
The Aedes aegypti mosquito is the primary vector of dengue, a neglected disease and a serious public health problem in tropical countries. The control of this vector has been carried out using chemical insecticides, which impact human health. Thus, it is essential to [...] Read more.
The Aedes aegypti mosquito is the primary vector of dengue, a neglected disease and a serious public health problem in tropical countries. The control of this vector has been carried out using chemical insecticides, which impact human health. Thus, it is essential to develop natural larvicides that are less harmful to the environment. This study investigates the circadian cycle and larvicidal activity of essential oils from Croton blanchetianus against Aedes aegypti. The leaf oils were extracted by hydrodistillation and analyzed by GC–MS and GC–FID. The circadian study revealed variations in the chemical composition of oils extracted at different times of the day. The main constituents were α-pinene, β-phellandrene, eucalyptol, β-caryophyllene, bicyclogermacrene, and spathulenol. The larvicidal activity showed LC50 values at the following different collection times: 55.294 ± 3.209 μg/mL at 08:00 h; 95.485 ± 2.684 μg/mL at 12:00 h; and 64.883 ± 1.780 μg/mL at 17:00 h. Molecular docking simulations indicated that α-pinene, β-phellandrene, eucalyptol, and β-caryophyllene strongly interact with the active site of the sterol carrier protein, suggesting their role in larvicidal activity. These findings reinforce the potential of C. blanchetianus essential oils as an alternative for Aedes aegypti control. The predictive pharmacokinetic tests showed a PAMPA profile associated with high effective cellular permeability and microsomal stability, resulting from the metabolic stability of the derivatives (3) eucalyptol and (6) spathulenol, indicating that these compounds have the highest pharmacokinetic viability and low reactivity with respect to organ toxicity. Full article
(This article belongs to the Special Issue Natural Products as Insecticidal Agents)
Show Figures

Figure 1

19 pages, 3014 KB  
Article
Impact of Enzymatic Degradation Treatment on Physicochemical Properties, Antioxidant Capacity, and Prebiotic Activity of Lilium Polysaccharides
by Kaitao Peng, Yujie Zhang, Qi Zhang, Yunpu Wang, Yuhuan Liu and Xian Cui
Foods 2025, 14(2), 246; https://doi.org/10.3390/foods14020246 - 14 Jan 2025
Cited by 5 | Viewed by 1527
Abstract
In order to overcome the bioavailability limitation of Lilium polysaccharide (LPS) caused by its high molecular weight and complex structure, two low-molecular-weight degraded polysaccharides, namely G-LPS(8) and G-LPS(16), were prepared through enzymatic degradation. The molecular weight of LPS was significantly reduced by enzymolysis, [...] Read more.
In order to overcome the bioavailability limitation of Lilium polysaccharide (LPS) caused by its high molecular weight and complex structure, two low-molecular-weight degraded polysaccharides, namely G-LPS(8) and G-LPS(16), were prepared through enzymatic degradation. The molecular weight of LPS was significantly reduced by enzymolysis, leading to increased exposure of internal functional groups and altering the molar ratio of its constituent monosaccharides. The results of antioxidant experiments showed that enzymatic hydrolysis had the potential to enhance the antioxidant performance of LPS. In vitro fermentation experiments revealed that LPS and its derivatives exerted different prebiotic effects on intestinal microbial communities. Specifically, LPS mainly inhibited the growth of harmful bacteria such as Fusobacterium, while G-LPS(8) and G-LPS(16) tended to promote the growth of beneficial bacteria like Megamonas, Bacteroides, and Parabacteroides. Metabolomic analysis revealed that LPSs with varying molecular weights exerted comparable promoting effects on multiple amino acid and carbohydrate metabolic pathways. Importantly, with the reduction in molecular weight, G-LPS(16) also particularly stimulated sphingolipid metabolism, nucleotide metabolism, as well as ascorbic acid and uronic acid metabolism, leading to the significant increase in specific metabolites such as sphingosine. Therefore, this study suggests that properly degraded LPS components have greater potential as a prebiotic for improving gut health. Full article
Show Figures

Figure 1

21 pages, 7763 KB  
Article
The Antioxidant and Anti-Inflammatory Activities of the Methanolic Extract, Fractions, and Isolated Compounds from Eriosema montanum Baker f. (Fabaceae)
by Gaétan Tchangou Tabakam, Emmanuel Mfotie Njoya, Chika Ifeanyi Chukwuma, Samson Sitheni Mashele, Yves Martial Mba Nguekeu, Mathieu Tene, Maurice Ducret Awouafack and Tshepiso Jan Makhafola
Molecules 2024, 29(24), 5885; https://doi.org/10.3390/molecules29245885 - 13 Dec 2024
Viewed by 4767
Abstract
Background: Inflammation is a natural body’s defense mechanism against harmful stimuli such as pathogens, chemicals, or irradiation. But when the inflammatory response becomes permanent, it can lead to serious health problems. In the present study, the antioxidant and anti-inflammatory potentials of the Eriosema [...] Read more.
Background: Inflammation is a natural body’s defense mechanism against harmful stimuli such as pathogens, chemicals, or irradiation. But when the inflammatory response becomes permanent, it can lead to serious health problems. In the present study, the antioxidant and anti-inflammatory potentials of the Eriosema montanum methanolic extract (EMME), as well as its isolated fractions (FA-FJ) and compounds (17), were evaluated by using in vitro and cellular models. Methods: The total phenolic and flavonoid contents were determined using, respectively, Folin–Ciocalteu and aluminum chloride colorimetric methods, while 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2′-diphenyl-1-picrylhy-drazyl (DPPH), and ferric ion reducing antioxidant power (FRAP) were used to determine the antioxidant activity. Thin Layer Chromatography (TLC) and column chromatography (CC) were used to isolate and purify the compounds and their elucidation using their NMR spectroscopic data. Results: EMME had moderate antioxidant and anti-inflammatory activities, while fraction FF showed much higher efficacy with IC50 values of 34.64, 30.60, 16.43, and 77.29 μg/mL against DPPH, ABTS, NO, and 15-LOX inhibitory activities, respectively. The EMME fraction was found to be very rich in flavonoids and phenolic compounds, with 82.11 mgQE/g and 86.77 mgGAE/g of dry extract, respectively. Its LC-MS profiling allowed us to identify genistin (5) as the most concentrated constituent in this plant species, which was further isolated together with six other known compounds, namely, n-hexadecane (1), heptacosanoic acid (2), tricosan-1-ol (3), lupinalbin A (4), d-pinitol (6), and stigmasterol glucoside (7). Given these compounds, genistin (5) showed moderate activity against reactive oxygen species (ROS) and NO production in LPS-stimulated RAW264.7 cells compared to EMME, which suggested a synergy of (5) with other compounds. To the best of our knowledge, compounds (1), (2), and (3) were isolated for the first time from this plant species. Full article
Show Figures

Figure 1

26 pages, 4599 KB  
Article
Enhancing Antimicrobial Efficacy of Sandalwood Essential Oil Against Salmonella enterica for Food Preservation
by Andrea Verešová, Margarita Terentjeva, Zhaojun Ban, Li Li, Milena Vukic, Nenad Vukovic, Maciej Ireneusz Kluz, Rania Ben Sad, Anis Ben Hsouna, Alessandro Bianchi, Ján Kollár, Joel Horacio Elizondo-Luévano, Natália Čmiková, Stefania Garzoli and Miroslava Kačániová
Foods 2024, 13(23), 3919; https://doi.org/10.3390/foods13233919 - 4 Dec 2024
Cited by 2 | Viewed by 3235
Abstract
The growing emphasis on food safety and healthier lifestyles, driven by industrial expansion and scientific priorities, has highlighted the necessity of managing harmful microorganisms to guarantee food quality. A significant challenge in this domain is the control of pathogens that are capable of [...] Read more.
The growing emphasis on food safety and healthier lifestyles, driven by industrial expansion and scientific priorities, has highlighted the necessity of managing harmful microorganisms to guarantee food quality. A significant challenge in this domain is the control of pathogens that are capable of forming biofilms, entering a sessile state that enhances their resistance to broad-spectrum antibiotics. Essential oils, renowned for their antibacterial properties, present a promising natural alternative for food preservation. In this study, we analyzed the chemical composition of Santalum album essential oil (SAEO) using GC-MS, identifying (Z)-α-santalol (57.1%) as the primary constituent. Antimicrobial activity was confirmed through disc diffusion and minimum inhibitory concentration (MIC) assays against Gram-positive and Gram-negative bacteria and yeast from the genus Candida. Additionally, in situ experiments demonstrated that vapor-phase SAEO effectively inhibited Serratia marcescens on the food model, supporting its potential as a natural preservative. MBIC assays, crystal violet staining, and MALDI-TOF MS analysis on S. enterica biofilms were used to further evaluate the antibiofilm effects of SAEO. The crystal violet assay revealed a strong antibiofilm effect, while the MALDI-TOF MS analysis showed changes in the bacterial protein profiles on both glass and plastic surfaces. SAEO also showed significant anti-Salmonella activity on vacuum-packed carrot slices. SAEO outperformed the control samples. The insecticidal activity against Megabruchidius dorsalis was also studied in this work, and the best insecticidal activity was found at the highest concentrations. These findings indicate that SAEO could serve as a valuable component in food preservation, with notable antibacterial and antibiofilm benefits. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 323 KB  
Review
Essential Oils as Potential Natural Antioxidants, Antimicrobial, and Antifungal Agents in Active Food Packaging
by Aleksandra Bibow and Wiesław Oleszek
Antibiotics 2024, 13(12), 1168; https://doi.org/10.3390/antibiotics13121168 - 3 Dec 2024
Cited by 20 | Viewed by 5375
Abstract
In the last few years, there has been growing interest in the harmful impact of synthetic additives, the increased consumer focus on nutrition, and their unwillingness to use antibiotics and preservatives. The food industry has been driven to seek natural alternatives to synthetic [...] Read more.
In the last few years, there has been growing interest in the harmful impact of synthetic additives, the increased consumer focus on nutrition, and their unwillingness to use antibiotics and preservatives. The food industry has been driven to seek natural alternatives to synthetic antioxidants and integrate them into the production processes. Moreover, the most significant risk factor for foodborne illness is the consumption of raw or undercooked meats and milk, which may be contaminated with Listeria spp., Campylobacter spp., or Salmonella spp. This article presents a review of techniques for the functional properties of biopolymer particles loaded with essential oils that form a stable network to control their release, making them ideal for improving food packaging and processing. Such substances are employed in the manufacture of packaging materials and coated films and as emulsions, nanoemulsions, and coatings directly incorporated into the food matrix. It is of paramount importance to gain an understanding of the migration mechanism and potential interactions between packaging materials and foodstuffs. A more profound comprehension of the chemical constitution and biological characteristics of these extracts and their constituents would be advantageous for the identification of prospective applications in active food packaging. The findings of our study suggest the existence of certain constraints and deficiencies in the investigation of essential oils and their efficacy in food packaging. Consequently, further comprehensive research in this domain is imperative. Full article
16 pages, 18333 KB  
Article
Characterization of Physical and Chemical Properties of Multi-Source Metallurgical Dust and Analysis of Resource Utilization Pathways
by Jiansong Zhang, Yuzhu Zhang, Yue Long, Chen Tian, Peipei Du and Qianqian Ren
Metals 2024, 14(12), 1378; https://doi.org/10.3390/met14121378 - 2 Dec 2024
Cited by 2 | Viewed by 1445
Abstract
Steel metallurgical dust, characterized by a substantial output, minute particle size, and intricate composition, poses a considerable risk of environmental contamination while simultaneously embodying an exceptionally high potential for recycling. To achieve its resource utilization, chemical analysis, particle size analysis, X-ray diffraction (XRD), [...] Read more.
Steel metallurgical dust, characterized by a substantial output, minute particle size, and intricate composition, poses a considerable risk of environmental contamination while simultaneously embodying an exceptionally high potential for recycling. To achieve its resource utilization, chemical analysis, particle size analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, and water leaching methods were employed to investigate the chemical compositions, particle size distributions, phase compositions, and microscopic morphologies of blast furnace bag dust, sintering dust, converter fine dust, and electric arc furnace dust from steel plants. The results indicate that the four types of dust have extremely fine particle sizes, with the main distribution range of particle size being less than 100 μm. The main constituent element is Fe (19–56%), and it also contains Zn (1.4–33.5%), Pb, K, C, and other valuable elements. Alkali metals in blast furnace bag dust and sintering machine head dust existed mainly in the form of chloride. The zinc phases in sintering machine head dust and converter fine dust were ZnFe2O4, and the zinc phases in blast furnace bag dust were ZnCl2 and ZnFe2O4. Zinc in electric furnace dust was composed of ZnO and ZnFe2O4, accounting for 70.31% and 23.12%, respectively. There are significant differences in the types and contents of valuable elements among various dusts, making it difficult to achieve full-scale recovery through a single process. In view of this, a process of “in-plant recycling of harmless dusts—collaborative treatment of harmful dusts” has been proposed. Based on the characteristics of metallurgical dusts, multiple processes are used for collaborative treatment (using hydrometallurgical and pyrometallurgical methods), which can not only directly recover iron resources from dusts within the plant, but also avoid the waste of valuable elements such as Zn, Pb, K, Na, etc. It is hoped that the above work can provide a reference for steel enterprises to achieve full-scale and high value-added treatment of metallurgical dusts. Full article
Show Figures

Figure 1

23 pages, 839 KB  
Review
Micro(nano)plastic and Related Chemicals: Emerging Contaminants in Environment, Food and Health Impacts
by Juliana G. R. de Carvalho, Helga Coelho Augusto, Ricardo Ferraz, Cristina Delerue-Matos and Virgínia Cruz Fernandes
Toxics 2024, 12(10), 762; https://doi.org/10.3390/toxics12100762 - 20 Oct 2024
Cited by 4 | Viewed by 4781
Abstract
Microplastic pollution is a problem of increasing concern in food, and while food safety issues around the world are serious, an increasing number of food safety issues related to microplastics have become the focus of people’s attention. The presence of microplastics in food [...] Read more.
Microplastic pollution is a problem of increasing concern in food, and while food safety issues around the world are serious, an increasing number of food safety issues related to microplastics have become the focus of people’s attention. The presence of microplastics in food is a worldwide problem, and they are present in all kinds of foods, foods of both animal and plant origin, food additives, drinks, plastic food packaging, and agricultural practices. This can cause problems for both humans and the environment. Microplastics have already been detected in human blood, heart, placenta, and breastmilk, but their effects in humans are not well understood. Studies with mammals and human cells or organoids have given perspective about the potential impact of micro(nano)plastics on human health, which affect the lungs, kidneys, heart, neurological system, and DNA. Additionally, as plastics often contain additives or other substances, the potentially harmful effects of exposure to these substances must also be carefully studied before any conclusions can be drawn. The study of microplastics is very complex as there are many factors to account for, such as differences in particle sizes, constituents, shapes, additives, contaminants, concentrations, etc. This review summarizes the more recent research on the presence of microplastic and other plastic-related chemical pollutants in food and their potential impacts on human health. Full article
(This article belongs to the Special Issue Environmental Exposure to Toxic Chemicals and Human Health II)
Show Figures

Graphical abstract

12 pages, 739 KB  
Article
An Internationally Derived Process of Healthcare Professionals’ Proactive Deprescribing Steps and Constituent Activities
by Sion Scott, Natalie Buac and Debi Bhattacharya
Pharmacy 2024, 12(5), 138; https://doi.org/10.3390/pharmacy12050138 - 9 Sep 2024
Viewed by 1817
Abstract
Proactive deprescribing is the process of tapering or stopping a medicine before harm occurs. This study aimed to specify and validate, with an international sample of healthcare professionals, a proactive deprescribing process of steps and constituent activities. We developed a proactive deprescribing process [...] Read more.
Proactive deprescribing is the process of tapering or stopping a medicine before harm occurs. This study aimed to specify and validate, with an international sample of healthcare professionals, a proactive deprescribing process of steps and constituent activities. We developed a proactive deprescribing process framework of steps which we populated with literature-derived activities required to be undertaken by healthcare professionals. We distributed a survey to healthcare professionals internationally, requesting for each activity the frequency of its occurrence in practice and whether it was important. Extended response questions investigated barriers and enablers to deprescribing. The 263 survey respondents were from 25 countries. A proactive deprescribing process was developed comprising four steps: (1) identify a patient for potential stop of a medicine, (2) evaluate a patient for potential stop of a medicine, (3) stop a medicine(s), and (4) monitor after a medicine has been stopped, and 17 activities. All activities were considered important by ≥70% of respondents. Nine activities required healthcare professionals to undertake in direct partnership with the patient and/or caregiver, of which seven were only sometimes undertaken. Deprescribing interventions should include a focus on addressing the barriers and enablers of healthcare professionals undertaking the activities that require direct partnership with the patient and/or caregiver. Full article
Show Figures

Figure 1

20 pages, 4887 KB  
Review
The Untapped Biomarker Potential of MicroRNAs for Health Risk–Benefit Analysis of Vaping vs. Smoking
by Ahmad Besaratinia and Stella Tommasi
Cells 2024, 13(16), 1330; https://doi.org/10.3390/cells13161330 - 10 Aug 2024
Cited by 1 | Viewed by 3141
Abstract
Despite the popularity of electronic cigarettes (e-cigs) among adolescent never-smokers and adult smokers seeking a less pernicious substitute for tobacco cigarettes, the long-term health impact of vaping is largely unknown. Like cigarette smoke, e-cig vapor contains harmful and potentially harmful compounds, although in [...] Read more.
Despite the popularity of electronic cigarettes (e-cigs) among adolescent never-smokers and adult smokers seeking a less pernicious substitute for tobacco cigarettes, the long-term health impact of vaping is largely unknown. Like cigarette smoke, e-cig vapor contains harmful and potentially harmful compounds, although in fewer numbers and at substantially lower concentrations. Many of the same constituents of e-cig vapor and cigarette smoke induce epigenetic changes that can lead to the dysregulation of disease-related genes. MicroRNAs (MiRNAs) are key regulators of gene expression in health and disease states. Extensive research has shown that miRNAs play a prominent role in the regulation of genes involved in the pathogenesis of smoking-related diseases. However, the use of miRNAs for investigating the disease-causing potential of vaping has not been fully explored. This review article provides an overview of e-cigs as a highly consequential electronic nicotine delivery system, describes trends in e-cig use among adolescents and adults, and discusses the ongoing debate on the public health impact of vaping. Highlighting the significance of miRNAs in cell biology and disease, it summarizes the published and ongoing research on miRNAs in relation to gene regulation and disease pathogenesis in e-cig users and in vitro experimental settings. It identifies gaps in knowledge and priorities for future research while underscoring the need for empirical evidence that can inform the regulation of tobacco products to protect youth and promote public health. Full article
Show Figures

Graphical abstract

Back to TopTop