Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = helix orientation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3009 KiB  
Article
Local Orientation Transitions to a Lying Helix State in Negative Dielectric Anisotropy Cholesteric Liquid Crystal
by Ivan V. Simdyankin, Artur R. Geivandov, Irina V. Kasyanova and Serguei P. Palto
Crystals 2024, 14(10), 891; https://doi.org/10.3390/cryst14100891 - 13 Oct 2024
Cited by 1 | Viewed by 1298
Abstract
Orientation transitions in a cholesteric liquid crystal (CLC) layer with negative dielectric anisotropy, under the influence of a non-uniform spatially periodic electric field created using a planar system of interdigitated electrodes, were studied experimentally and numerically. In the interelectrode space, transitions are observed [...] Read more.
Orientation transitions in a cholesteric liquid crystal (CLC) layer with negative dielectric anisotropy, under the influence of a non-uniform spatially periodic electric field created using a planar system of interdigitated electrodes, were studied experimentally and numerically. In the interelectrode space, transitions are observed from a planar Grandjean texture, with the helix axis perpendicular to the layer plane, to states with a lying helix, when the helix axis is parallel to the layer plane and perpendicular to the electrode stripes. It was found that the relaxation time of the induced state in the Grandjean zones, corresponding to two or more half-turns of the helix, significantly exceeded the relaxation time for the first Grandjean zone with one half-turn. An analysis of experimentally observed and numerically simulated textures shows that slow relaxation to the initial state in the second Grandjean zone, as well as in higher-order zones, is associated with the formation of local topologically equivalent states. In these states, the helix has a reduced integer number of helix half-turns throughout the layer thickness or unwound into the planar alignment state. Full article
(This article belongs to the Special Issue Liquid Crystal Research and Novel Applications in the 21st Century)
Show Figures

Figure 1

30 pages, 9347 KiB  
Article
Targeted FT-NIR and SERS Detection of Breast Cancer HER-II Biomarkers in Blood Serum Using PCB-Based Plasmonic Active Nanostructured Thin Film Label-Free Immunosensor Immobilized with Directional GNU-Conjugated Antibody
by Mohammad E. Khosroshahi, Yesha Patel and Vithurshan Umashanker
Sensors 2024, 24(16), 5378; https://doi.org/10.3390/s24165378 - 20 Aug 2024
Cited by 1 | Viewed by 1584
Abstract
This work describes our recent PCB-based plasmonic nanostructured platform patent (US 11,828,747B2) for the detection of biomarkers in breast cancer serum (BCS). A 50 nm thin gold film (TGF) was immersion-coated on PCB (i.e., PCB-TGF) and immobilized covalently with gold nanourchin (GNU) via [...] Read more.
This work describes our recent PCB-based plasmonic nanostructured platform patent (US 11,828,747B2) for the detection of biomarkers in breast cancer serum (BCS). A 50 nm thin gold film (TGF) was immersion-coated on PCB (i.e., PCB-TGF) and immobilized covalently with gold nanourchin (GNU) via a 1,6-Hexanedithiol (HDT) linkage to produce a plasmonic activated nanostructured thin film (PANTF) platform. A label-free SERS immunosensor was fabricated by conjugating the platform with monoclonal HER-II antibodies (mAb) in a directional orientation via adipic acid dihydrazide (ADH) to provide higher accessibility to overexpressed HER-II biomarkers (i.e., 2+ (early), 3+ (locally advanced), and positive (meta) in BCS. An enhancement factor (EF) of 0.3 × 105 was achieved for PANTF using Rhodamine (R6G), and the morphology was studied by scanning electron microscopy (SEM) and atomic force microscope (AFM). UV-vis spectroscopy showed the peaks at 222, 231, and 213 nm corresponding to ADH, mAb, and HER-II biomarkers, respectively. The functionalization and conjugation were investigated by Fourier Transform Near Infrared (FT-NIR) where the most dominant overlapped spectra of 2+, 3+, and Pos correspond to OH-combination of carbohydrate, RNH2 1st overtone, and aromatic CH 1st overtone of mAb, respectively. SERS data were filtered using the filtfilt filter from scipy.signals, baseline corrected using the Improved Asymmetric Least Squares (isals) function from the pybaselines.Whittaker library. The results showed the common peaks at 867, 1312, 2894, 3026, and 3258 cm−1 corresponding to glycine, alanine ν (C-N-C) assigned to the symmetric C-N-C stretch mode; tryptophan and α helix; C-H antisymmetric and symmetric stretching; NH3+ in amino acids; and N-H stretch primary amide, respectively, with the intensity of Pos > 3+ > 2+. This trend is justifiable considering the stage of each sample. Principal Component Analysis (PCA) and Linear Discrimination Analysis (LDA) were employed for the statistical analysis of data. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

33 pages, 1790 KiB  
Article
Enhancing Technology-Focused Entrepreneurship in Higher Education Institutions Ecosystem: Implementing Innovation Models in International Projects
by Maria Rosienkiewicz, Joanna Helman, Mariusz Cholewa, Mateusz Molasy, Anna Górecka, Dan Kohen-Vacs, Michael Winokur, Sofia Amador Nelke, Avraham Levi, José Francisco Gómez-González, Maxime Bourgain, Athith Sagar, Giovanni Berselli and Arriel Benis
Educ. Sci. 2024, 14(7), 797; https://doi.org/10.3390/educsci14070797 - 22 Jul 2024
Cited by 11 | Viewed by 4526
Abstract
Innovation models are key to fostering technology-focused entrepreneurship in higher education institutions (HEIs). These models create dynamic environments that encourage collaboration, creativity, and problem-solving skills among students and faculty. HEIs face several challenges in fostering entrepreneurship, including allocating sufficient financial and human resources, [...] Read more.
Innovation models are key to fostering technology-focused entrepreneurship in higher education institutions (HEIs). These models create dynamic environments that encourage collaboration, creativity, and problem-solving skills among students and faculty. HEIs face several challenges in fostering entrepreneurship, including allocating sufficient financial and human resources, integrating entrepreneurship education across disciplines, and managing intellectual property. Overcoming these challenges requires HEIs to cultivate an entrepreneurial culture and establish strong partnerships with industry stakeholders. To achieve these goals, HEIs must adopt successful innovation models proven to work. This article presents an international case study highlighting such models and the factors contributing to their success. This study explores the implementation and impact of innovation models, specifically IDEATION and DEETECHTIVE, within HEIs to foster technology-focused entrepreneurship. By implementing numerous actions focusing on online education integration and the Quintuple Helix Innovation Model, these models support shifting engineering students’ mindsets toward entrepreneurship. This research highlights the importance of academia–industry collaboration, international partnerships, and the integration of entrepreneurship education in technology-focused disciplines. This study presents two models. The first, IDEATION, focuses on open innovation and sharing economy aspects. This model underwent rigorous testing and refinement, evolving into the second model, DEETECHTIVE, which is more comprehensive and deep tech-focused. These models have been validated as effective frameworks for fostering entrepreneurship and innovation within HEIs. This study’s findings underscore the potential of these models to enhance innovation capacity, foster an entrepreneurial culture, and create ecosystems rich in creativity and advancement. Practical implications include the establishment of open innovation-oriented structures and mechanisms, the development of specialized curriculum components, and the creation of enhanced collaboration platforms. Full article
(This article belongs to the Special Issue Higher Education Research: Challenges and Practices)
Show Figures

Figure 1

19 pages, 3311 KiB  
Article
The Influence of the Auxiliary Ligand in Monofunctional Pt(II) Anticancer Complexes on the DNA Backbone
by Evanthia-Vasiliki Tagari, Evangelia Sifnaiou, Theodoros Tsolis and Achilleas Garoufis
Int. J. Mol. Sci. 2024, 25(12), 6526; https://doi.org/10.3390/ijms25126526 - 13 Jun 2024
Viewed by 1392
Abstract
Monofunctional platinum complexes offer a promising alternative to cisplatin in cancer chemotherapy, showing a unique mechanism of action. Their ability to induce minor helix distortions effectively inhibits DNA transcription. In our study, we synthesized and characterized three monofunctional Pt(II) complexes with the general [...] Read more.
Monofunctional platinum complexes offer a promising alternative to cisplatin in cancer chemotherapy, showing a unique mechanism of action. Their ability to induce minor helix distortions effectively inhibits DNA transcription. In our study, we synthesized and characterized three monofunctional Pt(II) complexes with the general formula [Pt(en)(L)Cl]NO3, where en = ethylenediamine, and L = pyridine (py), 2-methylpyridine (2-mepy), and 2-phenylpyridine (2-phpy). The hydrolysis rates of [Pt(en)(py)Cl]NO3 (1) and [Pt(en)(2-mepy)Cl]NO3 (2) decrease with the bulkiness of the auxiliary ligand with k(1) = 2.28 ± 0.15 × 10−4 s−1 and k(2) = 8.69 ± 0.98 × 10−5 s−1 at 298 K. The complex [Pt(en)(2-phpy)Cl]Cl (3) demonstrated distinct behavior. Upon hydrolysis, an equilibrium (Keq = 0.385 mM) between the complexes [Pt(en)(2-phpy)Cl]+ and [Pt(en)(2-phpy-H+)]+ was observed with no evidence (NMR or HR-ESI-MS) for the presence of the aquated complex [Pt(en)(2-phpy)(H2O)]2+. Despite the kinetic similarities between phenanthriplatin and (2), complexes (1) and (2) exhibit minimal activity against A549 lung cancer cell line (IC50 > 100 μΜ), whereas complex (3) exhibits notable cytotoxicity (IC50 = 41.11 ± 2.1 μΜ). In examining the DNA binding of (1) and (2) to the DNA model guanosine (guo), we validated their binding through guoN7, which led to an increased population of the C3′-endo sugar conformation, as expected. However, we observed that the rapid transition 2E (C2′-endo) ↔ 3E (C3′-endo), in the case of [Pt(en)(py)(guo)](NO3)2 ([1-guo]), slows down in the case of [Pt(en)(2-mepy)(guo)](NO3)2 ([2-guo]), resulting in separate signals for the two conformers in the 1H NMR spectra. This phenomenon arises from the steric hindrance between the methyl group of pyridine and the sugar moiety of guanosine. Notably, this hindrance is absent in [2-(9-MeG)] (9-MeG = 9-methylguanine), probably due to the absence of a bulky sugar unit in 9-MeG. In the case of (3), where the bulkiness of the substitution on the pyridine is further increased by a phenyl group, we observed a notable proximity between 9-MeGH8 and the phenyl ring of 2-phpy. Considering that only (3) exhibited good cytotoxicity against the A549 cancer cell line, it is suggested that auxiliary ligands, L, with an extended aromatic system and proper orientation in complexes of the type cis-[Pt(en)(L)Cl]NO3, may enhance the cytotoxic activity of such complexes. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

27 pages, 9024 KiB  
Article
Experimental Analysis of Effect of Machined Material on Cutting Forces during Drilling
by Josef Sklenička, Jan Hnátík, Jaroslava Fulemová, Miroslav Gombár, Alena Vagaská and Aneta Jirásko
Materials 2024, 17(11), 2775; https://doi.org/10.3390/ma17112775 - 6 Jun 2024
Viewed by 1143
Abstract
Current research studies devoted to cutting forces in drilling are oriented toward predictive model development, however, in the case of mechanistic models, the material effect on the drilling process itself is mostly not considered. This research study aims to experimentally analyze how the [...] Read more.
Current research studies devoted to cutting forces in drilling are oriented toward predictive model development, however, in the case of mechanistic models, the material effect on the drilling process itself is mostly not considered. This research study aims to experimentally analyze how the machined material affects the feed force (Ff) during drilling, alongside developing predictive mathematical–statistical models to understand the main effects and interactions of the considered technological and tool factors on Ff. By conducting experiments involving six factors (feed, cutting speed, drill diameter, point angle, lip relief angle, and helix angle) at five levels, the drilling process of stainless steel AISI1045 and case-hardened steel 16MnCr5 is executed to validate the numerical accuracy of the established prediction models (AdjR = 99.600% for C45 and AdjR = 97.912% for 16MnCr5). The statistical evaluation (ANOVA, RSM, and Lack of Fit) of the data proves that the drilled material affects the Ff value at the level of 17.600% (p < 0.000). The effect of feed represents 44.867% in C45 and 34.087% in 16MnCr5; the cutting speed is significant when machining C45 steel only (9.109%). When machining 16MnCr5 compared to C45 steel, the influence of the point angle (lip relief angle) is lower by 49.198% (by 22.509%). The effect of the helix angle is 163.060% higher when machining 16MnCr5. Full article
Show Figures

Figure 1

10 pages, 1137 KiB  
Article
Left Ventricular Twist and the “Rigid Body Rotation” Pattern in Patients Treated with Anthracyclines or Anti-HER2
by Federico Guerra, Giulia Stronati, Alice Frangione, Edlira Rrapaj, Marco Flori, Michele Alfieri, Samuele Principi, Alessandro Barbarossa, Giuseppe Ciliberti and Antonio Dello Russo
J. Clin. Med. 2024, 13(11), 3352; https://doi.org/10.3390/jcm13113352 - 6 Jun 2024
Viewed by 1440
Abstract
Background: During the physiological cardiac cycle, the helix orientation of the muscle fibres induces the rotation of the apex relative to the base of the left ventricular (LV). In heart failure, LV torsion is impaired, and rotation at basal and apical levels occurs [...] Read more.
Background: During the physiological cardiac cycle, the helix orientation of the muscle fibres induces the rotation of the apex relative to the base of the left ventricular (LV). In heart failure, LV torsion is impaired, and rotation at basal and apical levels occurs in the same direction, a phenomenon called rigid body rotation (RBR). We aimed to evaluate whether the RBR pattern and GLS together could improve the diagnosis of cardiotoxicity in patients treated with anthracyclines and/or anti-HER2. Methods: With an observational, retrospective study involving 175 patients (mean age 55 ± 12 years, 94% females), we evaluated the development of cancer therapeutic–related cardiac dysfunction (CTRCD) defined according to ESC guidelines. We characterised LV dysfunction by echocardiographic standard and speckle-tracking (GLS and RBR pattern) measurements. Patients with a previous diagnosis of structural heart disease or atrial fibrillation were excluded. Results: At the time of enrolment, the chemotherapy regimen included trastuzumab (96%), pertuzumab (21%), and anthracyclines (13%). Twenty-two patients (12.5%) developed cardiotoxicity, and thirteen patients developed an RBR within 6 months of follow-up. In all cases, the RBR pattern was associated with cardiotoxicity (p < 0.001), reporting an optimal specificity but poor sensitivity at three and six months. However, the addition of the RBR pattern to the global longitudinal strain (GLS) ≥ −16% increased the odds ratio (OR) from 25.6 to 32.6 at three months and from 32.5 to 49.6 at six months rather than GLS alone. Conclusions: The RBR pattern improves the diagnostic accuracy of GLS for the detection of cardiotoxicity secondary to anthracyclines and anti-HER2-based treatments. Full article
Show Figures

Graphical abstract

17 pages, 1796 KiB  
Review
Deciphering the Mechanism of Action of the Antimicrobial Peptide BP100
by Gerard Riesco-Llach, Sergi Llanet-Ferrer, Marta Planas and Lidia Feliu
Int. J. Mol. Sci. 2024, 25(6), 3456; https://doi.org/10.3390/ijms25063456 - 19 Mar 2024
Cited by 3 | Viewed by 1823
Abstract
The linear undecapeptide KKLFKKILKYL-NH2 (BP100) highlights for its antibacterial activity against Gram-negative bacteria and its low toxicity. These excellent biological properties prompted the investigation of its mechanism of action, which were undertaken using spectroscopic techniques, biophysical analysis, microscopy, and molecular dynamic simulations. [...] Read more.
The linear undecapeptide KKLFKKILKYL-NH2 (BP100) highlights for its antibacterial activity against Gram-negative bacteria and its low toxicity. These excellent biological properties prompted the investigation of its mechanism of action, which were undertaken using spectroscopic techniques, biophysical analysis, microscopy, and molecular dynamic simulations. Studies were conducted in different membrane environments, such as anionic, zwitterionic, and mixed membranes, as well as in vesicles (LUVs and GUVs) and bacteria. The findings suggest that BP100 exhibits a preference for anionic membranes, and its mechanism of action involves charge neutralization and membrane permeabilization. In these membranes, BP100 transitions from an unstructured state in water to an α-helix with the axis parallel to the surface. MD simulations suggest that after electrostatic interaction with the membrane, BP100 flips, facilitating the insertion of its hydrophobic face into the membrane bilayer. Thus, BP100 adopts an almost vertical transmembrane orientation with lysine side chains snorkelling on both sides of the membrane. As a result of the rotation, BP100 induces membrane thinning and slow lipid diffusion and promotes water penetration, particularly in anionic lipid membranes. These investigations pointed towards a carpet-like mechanism and are aligned with the biological activity profile described for BP100. This review covers all the studies carried out on the mechanism of action of BP100 published between 2009 and 2023. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

18 pages, 14631 KiB  
Article
The 75–99 C-Terminal Peptide of URG7 Protein Promotes α-Synuclein Disaggregation
by Jany Dandurand, Magnus Monné, Valérie Samouillan, Martina Rosa, Alessandro Laurita, Alessandro Pistone, Donatella Bisaccia, Ilenia Matera, Faustino Bisaccia and Angela Ostuni
Int. J. Mol. Sci. 2024, 25(2), 1135; https://doi.org/10.3390/ijms25021135 - 17 Jan 2024
Cited by 3 | Viewed by 1647
Abstract
Up Regulation Gene seven (URG7) is the pseudogene 2 of the transporter ABCC6. The translated URG7 protein is localized with its single transmembrane α-helix in the endoplasmic reticulum (ER) membrane, orienting the N- and C-terminal regions in the lumen and cytoplasm, respectively, and [...] Read more.
Up Regulation Gene seven (URG7) is the pseudogene 2 of the transporter ABCC6. The translated URG7 protein is localized with its single transmembrane α-helix in the endoplasmic reticulum (ER) membrane, orienting the N- and C-terminal regions in the lumen and cytoplasm, respectively, and it plays a crucial role in the folding of ER proteins. Previously, the C-terminal region of URG7 (PU, residues 75–99) has been shown to modify the aggregation state of α-synuclein in the lysate of HepG2 cells. PU analogs were synthesized, and their anti-aggregation potential was tested in vitro on α-synuclein obtained using recombinant DNA technology. Circular dichroism (CD), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and microscopic techniques were used to assess the sample’s behavior. The results show that the peptides studied by themselves are prone to clathrate-like structure formation of variable stability. Aggregation of α-synuclein is accompanied by desolvation of its peptide chain and an increase in intermolecular β-sheets. The PU analogs all interact with α-synuclein aggregates and those possessing the most stable clathrate-like structures have the highest disaggregating effect. These findings suggest that the C-terminal region of URG7 may have a role in interacting and modulating α-synuclein structures and could be used to generate interesting therapeutic candidates as disaggregators of α-synuclein. Full article
(This article belongs to the Special Issue The Structure and Function of Synuclein)
Show Figures

Figure 1

13 pages, 7155 KiB  
Article
Magnetic Anisotropy of FeNi Multilayer Films with Different Orientations of the Magnetic Anisotropy Axes in Adjacent Layers
by Andrey V. Svalov, Vladimir N. Lepalovskij, Anastasia S. Rusalina, Egor V. Kudyukov, Anastasia A. Feshchenko, Anna A. Pasynkova, Anton A. Yushkov and Galina V. Kurlyandskaya
Processes 2024, 12(1), 81; https://doi.org/10.3390/pr12010081 - 28 Dec 2023
Cited by 1 | Viewed by 1984
Abstract
FeNi films were prepared using the DC magnetron sputtering technique with an oblique deposition arrangement. Multilayers with different orientations of the magnetic anisotropy axes were obtained thanks to a rotary sample holder inside the vacuum chamber. Magnetic properties were studied using magneto–optical Kerr [...] Read more.
FeNi films were prepared using the DC magnetron sputtering technique with an oblique deposition arrangement. Multilayers with different orientations of the magnetic anisotropy axes were obtained thanks to a rotary sample holder inside the vacuum chamber. Magnetic properties were studied using magneto–optical Kerr microscopy and a vibrating sample magnetometer. Single-layered FeNi films having thicknesses as high as 10 nm and 40 nm show in-plane uniaxial easy magnetization axes produced by the oblique incidence of incoming components of the beams. Magnetic anisotropy field for four-layered samples with orthogonal uniaxial magnetic anisotropy axes in the adjacent layers and the thickness of individual layers of 10 nm and 40 nm turned out to be less than in single-layered films. The magnetic properties peculiarities of the eight-layered sample FeNi (10 nm) × 8 obtained by rotation of the sample holder by 45° before deposition of each subsequent layer suggest the formation of a helix-like magnetic structure through the thickness of the multilayered sample similar to the magnetization arrangement in the Bloch-type magnetic domain wall. Full article
(This article belongs to the Special Issue Surface Deposition and Nano-Film Fabrication Process)
Show Figures

Figure 1

23 pages, 9650 KiB  
Article
Molecular Mechanisms of Protein–Lipid Interactions and Protein Folding of Heterogeneous Amylin and Tau Oligomers on Lipid Nanodomains That Link to Alzheimer’s
by Natalia Santos, Luthary Segura, Amber Lewis, Thuong Pham and Kwan H. Cheng
Macromol 2023, 3(4), 805-827; https://doi.org/10.3390/macromol3040046 - 15 Dec 2023
Cited by 1 | Viewed by 1537
Abstract
The disruption of cell membranes by tau and amylin oligomers is linked to amyloid diseases such as Alzheimer’s and diabetes, respectively. The recent studies suggest that misfolded tau and amylin can form neurotoxic hetero-oligomers that are structurally different from homo-oligomers. However, the molecular [...] Read more.
The disruption of cell membranes by tau and amylin oligomers is linked to amyloid diseases such as Alzheimer’s and diabetes, respectively. The recent studies suggest that misfolded tau and amylin can form neurotoxic hetero-oligomers that are structurally different from homo-oligomers. However, the molecular interactions of these hetero-oligomers with the neuronal membranes remain unclear. Using MD simulations, we have investigated the binding behaviors, membrane disruption, and protein folding of hetero-oligomers on a raft membrane containing phase-separated lipid nanodomains like those found in neurons. We discovered that the hetero-oligomers bind to the liquid-order and liquid-disorder phase boundaries of the raft membrane. The major lipid-binding sites of these interactions include the L16 and I26 residues of amylin and the N-terminal of tau. Strong disruptions of the raft domain size by the hetero-tetramer were detected. Furthermore, the hetero-dimer disrupted the saturated phospholipid orientational order to a greater extent than the individual tau or amylin monomer. In addition, the constituent tau more strongly promoted the alpha-helix to the beta-sheet transition of the constituent amylin within the hetero-dimer when compared with the amylin monomer alone. Our results provide new molecular insights into understanding the neurotoxicity of the hetero-oligomers associated with the cross-talk between amyloid diseases. Full article
Show Figures

Graphical abstract

15 pages, 3730 KiB  
Article
Designing Mobility Policies for Vulnerable Users Employing the Living Lab Approach: Cases of a Demand-Responsive Transit Service in Ljubljana and Maribor
by Pietro Mariano, Marco Trolese, David Kastelec, Mateja Bitenc and Deja Jurgec
Sustainability 2023, 15(20), 14698; https://doi.org/10.3390/su152014698 - 10 Oct 2023
Viewed by 1628
Abstract
In recent years, transport policy has strongly been oriented to develop more inclusive cities and to design mobility services aligned to specific users’ needs. In an attempt to guarantee an adequate level of accessibility, especially to vulnerable users, approaches based on the dialogue [...] Read more.
In recent years, transport policy has strongly been oriented to develop more inclusive cities and to design mobility services aligned to specific users’ needs. In an attempt to guarantee an adequate level of accessibility, especially to vulnerable users, approaches based on the dialogue between public administration, operators, citizens and researchers (so-called “quadruple helix”) have been proposed. The two case studies presented in this article refer to the development of a minibus demand-responsive transport system, devoted mainly to people with reduced mobility, in the cities of Ljubljana and Maribor (Slovenia) designed using a Living Lab participative approach. In fact, urban mobility stakeholders were engaged in this process during the design and monitoring phases of the pilot projects. Their involvement resulted in producing positive outcomes: citizens actively participated in the projects, and the designed service was perceived to be useful and effective. Both projects were successful, as statistics demonstrate, and are expected to be confirmed and strengthened over the next few years. Full article
Show Figures

Figure 1

51 pages, 2705 KiB  
Article
Entropy of Charge Inversion in DNA including One-Loop Fluctuations
by Matthew D. Sievert, Marilyn F. Bishop and Tom McMullen
Entropy 2023, 25(10), 1373; https://doi.org/10.3390/e25101373 - 24 Sep 2023
Cited by 1 | Viewed by 1733
Abstract
The entropy and charge distributions have been calculated for a simple model of polyelectrolytes attached to the surface of DNA using a field-theoretic method that includes fluctuations to the lowest one-loop order beyond mean-field theory. Experiments have revealed correlation-driven behavior of DNA in [...] Read more.
The entropy and charge distributions have been calculated for a simple model of polyelectrolytes attached to the surface of DNA using a field-theoretic method that includes fluctuations to the lowest one-loop order beyond mean-field theory. Experiments have revealed correlation-driven behavior of DNA in charged solutions, including charge inversion and condensation. In our model, the condensed polyelectrolytes are taken to be doubly charged dimers of length comparable to the distance between sites along the phosphate chains. Within this lattice gas model, each adsorption site is assumed to have either a vacancy or a positively charged dimer attached with the dimer oriented either parallel or perpendicular to the double-helix DNA chain. We find that the inclusion of the fluctuation terms decreases the entropy by ∼50% in the weak-binding regime. There, the bound dimer concentration is low because the dimers are repelled from the DNA molecule, which competes with the chemical potential driving them from the solution to the DNA surface. Surprisingly, this decrease in entropy due to correlations is so significant that it overcompensates for the entropy increase at the mean-field level, so that the total entropy is even lower than in the absence of interactions between lattice sites. As a bonus, we present a transparent exposition of the methods used that could be useful to students and others wishing to use this formulation to extend this calculation to more realistic models. Full article
(This article belongs to the Special Issue Entropy in Biological Systems)
Show Figures

Figure 1

18 pages, 15059 KiB  
Article
PolSAR Image Classification by Introducing POA and HA Variances
by Zeying Lan, Yang Liu, Jianhua He and Xin Hu
Remote Sens. 2023, 15(18), 4464; https://doi.org/10.3390/rs15184464 - 11 Sep 2023
Cited by 1 | Viewed by 1502
Abstract
A polarimetric synthetic aperture radar (PolSAR) has great potential in ground target classification. However, current methods experience difficulties in separating forests and buildings, especially oriented buildings. To address this issue, inspired by the three-component decomposition method, multiple new scattering models were proposed to [...] Read more.
A polarimetric synthetic aperture radar (PolSAR) has great potential in ground target classification. However, current methods experience difficulties in separating forests and buildings, especially oriented buildings. To address this issue, inspired by the three-component decomposition method, multiple new scattering models were proposed to describe the difference between forest scattering and building scattering. However, this problem cannot effectively be solved with scattering power alone since HV polarization records significant scattering powers from building areas that are similar to vegetation. Therefore, in this study, two new parameters, the polarization orientation angle (POA) variance and helix angle (HA) variance, were defined to describe the distributions of buildings and forests. By combining scattering power with POA and HA variances, the random forest algorithm was used to conduct the land cover classification, focusing on distinguishing between forests and oriented buildings. Finally, the C- and L-band polarimetric SAR data acquired by the GF-3, ALOS1 PALSAR, and SAOCOM systems were selected to test the proposed method. The results indicate that it is feasible to improve PolSAR classification accuracy by introducing polarimetric parameters. Quantitatively, the classification accuracies increased by 23.78%, 10.80%, and 12.97% for the ALOS1 PALSAR, GF-3, and SAOCOM data, respectively. Full article
(This article belongs to the Special Issue SAR Processing in Urban Planning)
Show Figures

Figure 1

11 pages, 2072 KiB  
Article
Anomalous Spectral Shift of o-Modes in Multilayer Photonic Structure Induced by Homeotropic–Homeoplanar Transition in Chiral–Nematic Defect Layer
by Vladimir A. Gunyakov, Vitaly S. Sutormin, Ivan V. Timofeev, Vasily F. Shabanov and Victor Ya. Zyryanov
Photonics 2023, 10(9), 959; https://doi.org/10.3390/photonics10090959 - 22 Aug 2023
Cited by 1 | Viewed by 1046
Abstract
A chiral nematic is embedded between multilayer mirrors to obtain voltage-inducible polarized resonance spectra. Initially, the nematic director is uniformly oriented perpendicular to the mirrors’ surfaces because the chiral nematic helix is completely untwisted due to the homeotropic boundary conditions specified by the [...] Read more.
A chiral nematic is embedded between multilayer mirrors to obtain voltage-inducible polarized resonance spectra. Initially, the nematic director is uniformly oriented perpendicular to the mirrors’ surfaces because the chiral nematic helix is completely untwisted due to the homeotropic boundary conditions specified by the adsorbed cations. Then, a voltage is applied to remove the layer of surface-active cations from the input mirror. The obtained twisted homeoplanar configuration has a helix pitch exceeding the layer’s thickness. The twisting leads to the anomalous blue shift of the o-modes in the transmittance spectrum of the photonic structure. This blue shift can be effectively compensated by repulsion of spectral peaks as a result of mode coupling in the vicinity of the virtual avoided crossing point. The experimental results obtained are confirmed numerically using the 4 × 4 transfer matrix method and explained with the contribution of a geometric phase. Full article
(This article belongs to the Special Issue Liquid Crystals in Photonics)
Show Figures

Figure 1

19 pages, 10673 KiB  
Article
Investigation of Helix-Pultruded CFRP Rebar Geometry Variants for Carbon-Reinforced Concrete Structures
by Daniel Wohlfahrt, Hannes Franz Maria Peller, Steffen Müller, Niels Modler and Viktor Mechtcherine
Polymers 2023, 15(15), 3285; https://doi.org/10.3390/polym15153285 - 3 Aug 2023
Cited by 3 | Viewed by 2718
Abstract
Carbon concrete is a new, promising class of materials in the construction industry. This corrosion-resistant reinforcement material leads to a reduction in the concrete cover required for medial shielding. This enables lean construction and the conservation of concrete and energy-intensive cement manufacturing. Bar-type [...] Read more.
Carbon concrete is a new, promising class of materials in the construction industry. This corrosion-resistant reinforcement material leads to a reduction in the concrete cover required for medial shielding. This enables lean construction and the conservation of concrete and energy-intensive cement manufacturing. Bar-type reinforcement is essential for heavily loaded structures. The newly developed helix pultrusion is the first process capable of producing carbon fiber-reinforced polymer (CFRP) reinforcement bars with a topological surface in a single pultrusion process step, with fiber orientation tailored to the specific loads. The manufacturing feasibility and load-bearing capacity were thoroughly tested and compared with other design and process variants. Approaches to increase stiffness and strength while maintaining good concrete anchorage have been presented and fabricated. Tensile testing of the helical rebar variants with a 7.2 mm lead-bearing cross-section was conducted using adapted wedge grips with a 300 mm restraint length. The new helix geometry variants achieved, on average, 40% higher strengths and almost reached the values of the base material. Concrete pull-out tests were carried out to evaluate the bond properties. The helix contour design caused the bar to twist out of the concrete test specimen. Utilizing the Rilem beam test setup, the helical contour bars could also be tested. Compared with the original helix variant, the pull-out forces could be increased from 8.5 kN to up to 22.4 kN, i.e., by a factor of 2.5. It was thus possible to derive a preferred solution that is optimally suited for use in carbon concrete. Full article
Show Figures

Figure 1

Back to TopTop