Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (461)

Search Parameters:
Keywords = human exposure variability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 341 KiB  
Review
N-Nitrosamines in Meat Products: Formation, Detection and Regulatory Challenges
by Tomislav Rot, Dragan Kovačević, Kristina Habschied and Krešimir Mastanjević
Processes 2025, 13(5), 1555; https://doi.org/10.3390/pr13051555 - 17 May 2025
Viewed by 57
Abstract
Nitrosamines (NAs) are a class of chemical compounds predominantly formed during the processing, curing, and storage of meat products through the reaction of nitrites with amines. Decades of toxicological and epidemiological evidence have unequivocally established several NAs as potent human carcinogens, with strong [...] Read more.
Nitrosamines (NAs) are a class of chemical compounds predominantly formed during the processing, curing, and storage of meat products through the reaction of nitrites with amines. Decades of toxicological and epidemiological evidence have unequivocally established several NAs as potent human carcinogens, with strong associations with gastrointestinal, pancreatic, and liver cancers. This review critically examines the pathways of NA formation in meat, the influence of processing conditions, and the factors contributing to their variability in food products. It also outlines state-of-the-art analytical techniques for their detection and summarizes recent scientific efforts to reduce their formation. Despite scientific consensus on the health hazards posed by dietary exposure to NAs, regulatory control remains fragmented and insufficient. Therefore, this review highlights the pressing need for coordinated international action and the development of a harmonized regulatory framework to mitigate public health risks. Full article
(This article belongs to the Special Issue Food Biochemistry and Health: Recent Developments and Perspectives)
16 pages, 4885 KiB  
Article
Silver Nanoparticles at Low Concentrations Embedded in ECM Promote Endothelial Monolayer Formation and Cell Migration
by Barbara Wójcik, Katarzyna Zawadzka, Anna Hotowy, Maria Jóźwiak, Klaudia Jusińska and Mateusz Wierzbicki
Int. J. Mol. Sci. 2025, 26(10), 4761; https://doi.org/10.3390/ijms26104761 - 16 May 2025
Viewed by 11
Abstract
Several scientific studies have reported the opposing effects of silver nanoparticles (AgNPs) on angiogenesis, ranging from proangiogenic to anti-angiogenic. The widespread use of AgNPs in biomedical applications and the variability of their effects depending on concentration and exposure conditions highlight the need for [...] Read more.
Several scientific studies have reported the opposing effects of silver nanoparticles (AgNPs) on angiogenesis, ranging from proangiogenic to anti-angiogenic. The widespread use of AgNPs in biomedical applications and the variability of their effects depending on concentration and exposure conditions highlight the need for further research into their impact on vascularization and endothelial cell behavior. This study aimed to investigate the potential influence of AgNPs on human umbilical vein endothelial cells (HUVECs) using a model incorporating a thin layer of an extracellular matrix (ECM). To this end, cytotoxicity was assessed, and endogenous nitric oxide and superoxide levels were measured. Additionally, the effects of AgNPs on HUVEC confluence and migration were evaluated. The expression levels of 43 proteins involved in angiogenesis were also analyzed. The results revealed that ECM enriched with AgNPs at a concentration of 0.5 mg/L enhanced cell coverage, promoted migration, and supported monolayer formation without inducing cytotoxicity. Full article
(This article belongs to the Special Issue Advanced Research of Metallic Nanoparticles)
Show Figures

Figure 1

28 pages, 8296 KiB  
Article
Survey of Microcystin-Producing Cyanobacteria in French Lakes of Various Trophic Status Using Environmental and Cyanobacterial Parameters and an Active Mussel Biomonitoring
by Emilie Lance, Alexandra Lepoutre, Luc Brient, Nicolas Maurin, Emmanuel Guillon, Alain Geffard and Dominique Amon-Moreau
Toxins 2025, 17(5), 245; https://doi.org/10.3390/toxins17050245 - 15 May 2025
Viewed by 179
Abstract
Microcystins (MCs), hepatotoxins produced by cyanobacteria, represent a potential threat to aquatic ecosystems and human health. Measuring various environmental and cyanobacterial parameters in water samples can be useful for monitoring water quality and assessing risk but remains a short-term approach. Beyond local risk [...] Read more.
Microcystins (MCs), hepatotoxins produced by cyanobacteria, represent a potential threat to aquatic ecosystems and human health. Measuring various environmental and cyanobacterial parameters in water samples can be useful for monitoring water quality and assessing risk but remains a short-term approach. Beyond local risk assessments, estimating global and medium-term levels of freshwater contamination by MC-producing cyanobacteria is challenging in large lakes due to the spatio-temporal variability of their proliferation and the need to multiply sampling dates and locations. In such conditions, a sentinel organism can be valuable for monitoring MCs in situ and providing a time-integrated picture of contamination levels at various stations. We previously assessed the ability of the freshwater bivalves Anodonta anatina and Dreissena polymorpha to act as biointegrators of MCs, even under low exposure levels to cyanobacteria. In this study, through a two-season investigation in several French lakes experiencing moderate cyanobacterial blooms, we evaluated the relevance of various parameters (cyanobacterial density and biovolume, chlorophyll-a, and phycocyanin) as well as the use of bivalves as indicators of medium-term freshwater contamination by MC-producing cyanobacteria. MC concentrations in cyanobacterial biomass (intracellular MCs) and in bivalves (free MCs, being unbound, and total free and protein-bound accumulated MCs) were measured alongside the characterization of phytoplankton communities. Both mussels integrated and highlighted the presence of intracellular MCs in the environment over the period between two successive water samplings, even at low contamination levels, demonstrating their suitability for in situ biomonitoring of MC-producing cyanobacteria. The results are discussed in terms of the strengths and limitations of different parameters for assessing MC contamination levels in waters depending on the objective (managing, preventing, or global evaluation) and the monitoring strategies used. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Graphical abstract

27 pages, 6630 KiB  
Article
Multi-Mycotoxin Contamination in Serbian Maize During 2021–2023: Climatic Influences and Implications for Food and Feed Safety
by Felipe Penagos-Tabares, Anastasija Todorov, Jog Raj, Hunor Farkaš, Goran Grubješić, Zdenka Jakovčević, Svetlana Ćujić, Jelena Nedeljković-Trailović and Marko Vasiljević
Toxins 2025, 17(5), 227; https://doi.org/10.3390/toxins17050227 - 4 May 2025
Viewed by 358
Abstract
Mycotoxin contamination in maize poses significant food and feed safety risks, particularly in regions with variable climatic conditions like Serbia. This study investigated the occurrence of regulated mycotoxins in maize harvested across the Republic of Serbia from 2021 to 2023, emphasizing the impact [...] Read more.
Mycotoxin contamination in maize poses significant food and feed safety risks, particularly in regions with variable climatic conditions like Serbia. This study investigated the occurrence of regulated mycotoxins in maize harvested across the Republic of Serbia from 2021 to 2023, emphasizing the impact of climatic factors. A total of 548 samples of unprocessed maize grains were analysed for the presence of key mycotoxins, including aflatoxins, ochratoxin A, zearalenone, deoxynivalenol, fumonisins, and trichothecenes type A (T-2 and HT-2 toxins), using validated analytical methods. The results revealed high contamination frequencies, with aflatoxins and fumonisins being the most prevalent. The results revealed substantial temporal variability and frequent co-contamination of mycotoxins. Aflatoxin B1 (AFB1) was the most concerning contaminant, with 73.2% of the samples in 2022 exceeding the European regulatory limit for human consumption (5 µg/kg) for un processed maize grains, reaching peak concentrations of 527 µg/kg, which is 105.4 times higher than the allowed limit. For animal feed, the limit of 20 µg/kg was exceeded in 40.5% of the samples, with the highest concentration being 26.4 times greater than the maximum allowable level. In 2021, the non-compliance rates for AFB1 in food and feed were 8.3% and 2.3%, respectively, while in 2023, they were 23.2% and 12.2%, respectively. Fumonisins contamination was also high, particularly in 2021, with fumonisin B1 (FB1) detected in 87.1% of samples and average concentrations reaching 4532 µg/kg. Although levels decreased in 2023 (70.7% occurrence, average 885 µg/kg), contamination remained significant. Deoxynivalenol (DON) contamination was consistently high (>70% of samples), with peak concentrations of 606 µg/kg recorded in 2021. Zearalenone (ZEN) and ochratoxin A (OTA) occurred less frequently, but ZEN levels peaked in 2022 at 357.6 µg/kg, which is above the regulatory limit of 350 µg/kg for food. Trichothecenes (HT-2 and T-2 toxins) were detected sporadically, with concentrations well below critical thresholds. Co-occurrence of mycotoxins was frequent, with significant mixtures detected, particularly between aflatoxins and fumonisins, as well as other fusarial toxins. The analysis demonstrated that temperature, humidity, and rainfall during both the growing and harvest seasons strongly influenced mycotoxin levels, with the most severe contamination occurring under specific climatic conditions. Notably, the highest mycotoxin levels, like aflatoxins, were linked to warmer temperatures and lower rainfall. The high non-compliance rates for aflatoxins and fumonisins and co-contamination pose significant food and feed safety risks. From a public health perspective, chronic exposure to contaminated maize increases the likelihood of carcinogenesis and reproductive disorders. Reduced productivity and bioaccumulation in animal tissues/products represent serious economic and safety concerns for livestock. This study provides insights into the potential risks to food and feed safety and the need for enhanced regulatory frameworks, continuous monitoring, and mitigation strategies in Serbia as well as other geographical regions. Full article
(This article belongs to the Collection Impact of Climate Change on Fungal Population and Mycotoxins)
Show Figures

Figure 1

26 pages, 4680 KiB  
Review
Impact of Drone Disturbances on Wildlife: A Review
by Saadia Afridi, Lucie Laporte-Devylder, Guy Maalouf, Jenna M. Kline, Samuel G. Penny, Kasper Hlebowicz, Dylan Cawthorne and Ulrik Pagh Schultz Lundquist
Drones 2025, 9(4), 311; https://doi.org/10.3390/drones9040311 - 16 Apr 2025
Viewed by 890
Abstract
Drones are becoming increasingly valuable tools in wildlife studies due to their ability to access remote areas and offer high-resolution information with minimal human interference. Their application is, however, causing concern regarding wildlife disturbance. This review synthesizes the existing literature on how animals [...] Read more.
Drones are becoming increasingly valuable tools in wildlife studies due to their ability to access remote areas and offer high-resolution information with minimal human interference. Their application is, however, causing concern regarding wildlife disturbance. This review synthesizes the existing literature on how animals within terrestrial, aerial, and aquatic environments are impacted by drone disturbance in relation to operational variables, sensory stimulation, species-specific sensitivity, and physiological and behavioral responses. We found that drone altitude, speed, approach distance, and noise levels significantly influence wildlife responses, with some species exhibiting increased vigilance, flight responses, or physiological stress. Environmental context and visual cues are also involved in species detection of drones and disturbance thresholds. Although the short-term response to behavior change has been well documented, long-term consequences of repeated drone exposure remain poorly known. This paper identifies the necessity for continued research into drone–wildlife interactions, with an emphasis on the requirement to minimize disturbance by means of improved flight parameters and technology. Full article
Show Figures

Figure 1

21 pages, 4593 KiB  
Review
Effects of Indoor Air Quality on Human Physiological Impact: A Review
by Tong Nie, Guofu Zhang, Yinan Sun, Wenhao Wang, Tianai Wang and Haoyan Duan
Buildings 2025, 15(8), 1296; https://doi.org/10.3390/buildings15081296 - 15 Apr 2025
Viewed by 438
Abstract
As urbanization accelerates, indoor air quality has emerged as a critical determinant of population health. To systematically evaluate the relationship between indoor air quality (IAQ) and human physiological responses, we conducted a comprehensive review of 63 experimental studies retrieved from three major databases [...] Read more.
As urbanization accelerates, indoor air quality has emerged as a critical determinant of population health. To systematically evaluate the relationship between indoor air quality (IAQ) and human physiological responses, we conducted a comprehensive review of 63 experimental studies retrieved from three major databases (ScienceDirect, Google Scholar, Web of Science) spanning the years 2000–2023. This systematic review synthesizes evidence from experimental studies examining the physiological impacts of indoor air contaminants, including gaseous pollutants, particulate matter (PM), and volatile organic compounds (VOCs). Through an analysis of cardiovascular biomarkers (heart rate variability, blood pressure), respiratory parameters, and neurological indicators (electroencephalogram patterns), we identify the mechanisms linking air quality degradation to impaired physiological functioning. Our findings demonstrate that optimized ventilation systems and high-efficiency particulate filtration can mitigate exposure risks, potentially enhancing cardiovascular efficiency, pulmonary capacity, and cognitive performance. The evidence further suggests that sustained improvements for indoor environments may decrease incidence rates of respiratory pathologies and neurological disorders. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 2794 KiB  
Article
Characterizing the Soil Microbial Community Associated with the Fungal Pathogen Coccidioides immitis
by Molly Radosevich, Jennifer Head, Lisa Couper, Amanda Weaver, Simon Camponuri, Liliam Montoya, John W. Taylor and Justin Remais
J. Fungi 2025, 11(4), 309; https://doi.org/10.3390/jof11040309 - 14 Apr 2025
Viewed by 340
Abstract
Coccidioidomycosis is a fungal disease affecting humans and other mammals caused by environmental pathogens of the genus Coccidioides. Human exposure to the pathogen occurs via inhalation of spores aerosolized from soil. Thus, understanding the ecological factors that shape the distribution of Coccidioides [...] Read more.
Coccidioidomycosis is a fungal disease affecting humans and other mammals caused by environmental pathogens of the genus Coccidioides. Human exposure to the pathogen occurs via inhalation of spores aerosolized from soil. Thus, understanding the ecological factors that shape the distribution of Coccidioides in soils is important for minimizing the risk of human exposure, though this task remains challenging due to the pathogen’s highly variable spatial distribution. Here, we examined the associations between the soil microbial community and Coccidioides immitis’ presence within the Carrizo Plain National Monument, a minimally disturbed grassland ecosystem, and the site of a longitudinal study examining the effects of rodents and their burrows on C. immitis’ presence in soils. Using internal transcribed spacer 2 (ITS2) and 16S amplicon sequencing to characterize the soil fungal and bacterial communities, we found over 30 fungal species, including several other members of the Onygenales order, that co-occurred with C. immitis more frequently than would be expected by chance. Coccidioides-positive samples were significantly higher in fungal and bacterial diversity than negative samples, an association partly driven by higher Coccidioides presence within rodent burrows compared to surface soils. Soil source (i.e., rodent burrow versus surface soil) explained the largest amount of variation in bacterial and fungal community diversity and composition, with soils collected from rodent burrows having higher fungal and bacterial diversity than those collected from adjacent surface soils. While prior evidence is mixed regarding the relationship between the presence of Coccidioides and microbial diversity, we find that favorable microhabitats, such as rodent burrows, lead to a positive association between soil microbial diversity and Coccidioides presence, particularly in otherwise resource-limited natural environments. Full article
Show Figures

Figure 1

15 pages, 2867 KiB  
Article
Hydroxyzine Effects on Post-Lanosterol Biosynthesis in Smith–Lemli–Opitz Syndrome (SLOS) Models
by Zeljka Korade, Allison C. Anderson, Marta Balog, Keri A. Tallman, Ned A. Porter and Karoly Mirnics
Biomolecules 2025, 15(4), 562; https://doi.org/10.3390/biom15040562 - 10 Apr 2025
Viewed by 269
Abstract
Smith–Lemli–Opitz syndrome (SLOS) is a developmental disability arising from bi-allelic pathogenic variants in the 7-dehydrocholestrol reductase (DHCR7) enzyme and the accumulation of 7-dehydrocholesterol (7-DHC). 7-DHC spontaneously oxidizes and gives rise to cytotoxic oxysterols. Our recent high-throughput screening on Dhcr7-deficient Neuro2a cells identified [...] Read more.
Smith–Lemli–Opitz syndrome (SLOS) is a developmental disability arising from bi-allelic pathogenic variants in the 7-dehydrocholestrol reductase (DHCR7) enzyme and the accumulation of 7-dehydrocholesterol (7-DHC). 7-DHC spontaneously oxidizes and gives rise to cytotoxic oxysterols. Our recent high-throughput screening on Dhcr7-deficient Neuro2a cells identified hydroxyzine (HYZ) as a medication that could counteract the high levels of 7-DHC. We assessed the effects of HYZ in Dhcr7-deficient Neuro2a cells, neuronal cultures and glial cultures from Dhcr7T93M/T93M transgenic mice, and human dermal fibroblasts from patients with SLOS. LC-MS/MS biochemical analyses revealed a strong modulatory effect of HYZ on post-lanosterol biosynthesis across all four SLOS models. However, the HYZ-induced biochemical changes were complex, dose-dependent, and variable across the four SLOS models. Dhcr7-deficient Neuro2a cells showed decreased 7-DHC, 8-dehydrocholesterol (8-DHC), and desmosterol (DES) levels (all p < 0.01), while neuronal and glial cultures from Dhcr7T93M/T93M transgenic mice reported 8 significantly altered analytes (all p < 0.001). Human dermal fibroblast from patients with SLOS reacted to HYZ exposure with significantly decreased 7-DHC, 7-dehydrodesmosterol (7-DHD), and dihydrolanosterol (DHL) levels (p < 0.001), coupled with elevation in zymosterol (ZYM), zymostenol (ZYME), and 8-DHC (p < 0.001). Further evaluations are required to determine if the potentially beneficial effects of decreased 7-DHC, 7-DHD and DHL levels in SLOS models and patient biomaterials are counteracted by the rise in other post-lanosterol intermediates. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

16 pages, 4304 KiB  
Article
An Approach for Studying the Direct Effects of Shock Waves on Neuronal Cell Structure and Function
by Michael Hanna and Bryan J. Pfister
Cells 2025, 14(8), 563; https://doi.org/10.3390/cells14080563 - 9 Apr 2025
Viewed by 383
Abstract
Recent U.S. military conflicts have underscored the knowledge gap regarding the neurological changes associated with blast-induced traumatic brain injury (bTBI). In vitro models of TBIs have the advantage of following the neuronal response to biomechanical perturbations in real-time, which can be exceedingly difficult [...] Read more.
Recent U.S. military conflicts have underscored the knowledge gap regarding the neurological changes associated with blast-induced traumatic brain injury (bTBI). In vitro models of TBIs have the advantage of following the neuronal response to biomechanical perturbations in real-time, which can be exceedingly difficult in animal models. Here, we sought to develop an in vitro approach with controlled blast biomechanics to study the direct effects of the primary shock wave at the neuronal level. A blast injury apparatus mimicking the human skull and cerebrospinal fluid was developed. Primary neuronal cells were cultured inside the apparatus and exposed to a 70 kPa peak blast overpressure using helium gas in a blast tube. Neuronal viability was measured 24 h after blast exposure. The transmission of the pressure wave through the skull is believed to be a factor in injury to the cells of the brain. Three thicknesses in the apparatus wall were studied to represent the range of thicknesses in a human skull. To study the transmission of the shock wave to the neurons, the incident pressure at the apparatus location, as well as internal apparatus pressure, were measured. Analysis of the internal pressure wave revealed that wave oscillation frequency, not amplitude, was a significant factor in cell viability after a bTBI. This finding is related to the viscoelastic properties of the brain and suggests that the transmission of the shock wave through the skull is an important variable in blast injury. Full article
Show Figures

Figure 1

26 pages, 7376 KiB  
Review
Memory-Based Navigation in Elephants: Implications for Survival Strategies and Conservation
by Margot Morel, Robert Guldemond, Melissa A. de la Garza and Jaco Bakker
Vet. Sci. 2025, 12(4), 312; https://doi.org/10.3390/vetsci12040312 - 30 Mar 2025
Viewed by 1042
Abstract
Elephants exhibit remarkable cognitive and social abilities, which are integral to their navigation, resource acquisition, and responses to environmental challenges such as climate change and human–wildlife conflict. Their capacity to acquire, recall, and utilise spatial information enables them to traverse large, fragmented landscapes, [...] Read more.
Elephants exhibit remarkable cognitive and social abilities, which are integral to their navigation, resource acquisition, and responses to environmental challenges such as climate change and human–wildlife conflict. Their capacity to acquire, recall, and utilise spatial information enables them to traverse large, fragmented landscapes, locate essential resources, and mitigate risks. While older elephants, particularly matriarchs, are often regarded as repositories of ecological knowledge, the mechanisms by which younger individuals acquire this information remain uncertain. Existing research suggests that elephants follow established movement patterns, yet direct evidence of intergenerational knowledge transfer is limited. This review synthesises current literature on elephant navigation and decision-making, exploring how their behavioural strategies contribute to resilience amid increasing anthropogenic pressures. Empirical studies indicate that elephants integrate environmental and social cues when selecting routes, accessing water, and avoiding human-dominated areas. However, the extent to which these behaviours arise from individual memory, social learning, or passive exposure to experienced individuals requires further investigation. Additionally, elephants function as ecosystem engineers, shaping landscapes, maintaining biodiversity, and contributing to climate resilience. Recent research highlights that elephants’ ecological functions can indeed contribute to climate resilience, though the mechanisms are complex and context-dependent. In tropical forests, forest elephants (Loxodonta cyclotis) disproportionately disperse large-seeded, high-carbon-density tree species, which contribute significantly to above-ground carbon storage. Forest elephants can improve tropical forest carbon storage by 7%, as these elephants enhance the relative abundance of slow-growing, high-biomass trees through selective browsing and seed dispersal. In savannah ecosystems, elephants facilitate the turnover of woody vegetation and maintain grassland structure, which can increase albedo and promote carbon sequestration in soil through enhanced grass productivity and fire dynamics. However, the ecological benefits of such behaviours depend on population density and landscape context. While bulldozing vegetation may appear destructive, these behaviours often mimic natural disturbance regimes, promoting biodiversity and landscape heterogeneity, key components of climate-resilient ecosystems. Unlike anthropogenic clearing, elephant-led habitat modification is part of a long-evolved ecological process that supports nutrient cycling and seedling recruitment. Therefore, promoting connectivity through wildlife corridors supports not only elephant movement but also ecosystem functions that enhance resilience to climate variability. Future research should prioritise quantifying the net carbon impact of elephant movement and browsing in different biomes to further clarify their role in mitigating climate change. Conservation strategies informed by their movement patterns, such as wildlife corridors, conflict-reducing infrastructure, and habitat restoration, may enhance human–elephant coexistence while preserving their ecological roles. Protecting older individuals, who may retain critical environmental knowledge, is essential for sustaining elephant populations and the ecosystems they influence. Advancing research on elephant navigation and decision-making can provide valuable insights for biodiversity conservation and conflict mitigation efforts. Full article
Show Figures

Figure 1

30 pages, 10670 KiB  
Article
Impact of Multiple HVAC Systems on Indoor Air VOC and Radon Concentrations from Vapor Intrusion During Seasonal Usage
by John H. Zimmerman, Alan Williams, Brian Schumacher, Christopher Lutes, Rohit Warrier, Brian Cosky, Ben Thompson, Chase W. Holton and Kate Bronstein
Atmosphere 2025, 16(4), 378; https://doi.org/10.3390/atmos16040378 - 27 Mar 2025
Viewed by 370
Abstract
Subsurface contamination can migrate upward into overlying buildings, exposing the buildings’ inhabitants to contaminants that can cause detrimental health effects. This phenomenon is known as vapor intrusion (VI). When evaluating a building for VI, one must understand that seasonal and short-term variability are [...] Read more.
Subsurface contamination can migrate upward into overlying buildings, exposing the buildings’ inhabitants to contaminants that can cause detrimental health effects. This phenomenon is known as vapor intrusion (VI). When evaluating a building for VI, one must understand that seasonal and short-term variability are significant factors in determining the reasonable maximum exposure (RME) to the occupants. RME is a semi-quantitative term that refers to the lower portion of the high end of the exposure distribution—conceptually, above the 90th percentile exposure but less than the 98th percentile exposure. Samples were collected between December 2020 and April 2022 at six non-residential commercial buildings in Fairbanks, Alaska. The types of samples collected included indoor air (IA); outdoor air; subslab soil gas; soil gas; indoor radon; differential pressure; indoor and outdoor temperature; heating, ventilation, and air conditioning (HVAC) parameters; and other environmental factors. The buildings in close proximity to the volatile organic compound (VOC) source/release points presented less variability in indoor air concentrations of trichloroethylene (TCE) and tetrachloroethylene (PCE) compared to the buildings farther down gradient in the contaminated groundwater plume. The VOC data pattern for the source area buildings shows an outdoor air temperature-dominated behavior for indoor air concentrations in the summer season. HVAC system operations had less influence on long-term indoor air concentration trends than environmental factors, which is supported by similar indoor air concentration patterns independent of location within the plume. The use of soil temperature and indoor/outdoor temperatures as indicators and tracers (I&Ts) across the plume as predictors of the sampling period could produce a good estimation of the RME for the building occupants. These results, which show the use of soil temperature and indoor/outdoor temperatures as I&Ts, will help advance investigative methods for evaluation of VI in similar settings and thereby improve the protection of human health in indoor environments. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Graphical abstract

21 pages, 9023 KiB  
Article
Antitumor Assessment of Liposomal Beta-Carotene with Tamoxifen Against Breast Carcinoma Cell Line: An In Vitro Study
by Marim H. Elsayed, Medhat W. Shafaa, Mohga S. Abdalla, Manal F. El-Khadragy, Ahmed E. Abdel Moneim and Shimaa S. Ramadan
Biomolecules 2025, 15(4), 486; https://doi.org/10.3390/biom15040486 - 26 Mar 2025
Cited by 1 | Viewed by 437
Abstract
The present study was designed to characterize the interactions between lecithin liposomes, a model membrane, and either β-carotene or tamoxifen. In addition, the cytotoxicity of liposomal beta-carotene with tamoxifen was screened in vitro in human breast cancer cell lines MCF-7 and MDA-MB-231 in [...] Read more.
The present study was designed to characterize the interactions between lecithin liposomes, a model membrane, and either β-carotene or tamoxifen. In addition, the cytotoxicity of liposomal beta-carotene with tamoxifen was screened in vitro in human breast cancer cell lines MCF-7 and MDA-MB-231 in addition to the normal WI38 cell line. All liposomes were nearly spherical and evenly distributed and had fewer aggregates for encapsulated and empty vesicles. Measurements using dynamic light scattering verified that each sample was monodisperse. When tamoxifen is incorporated into liposomal membranes, the zeta potential values tend to decrease. In the test for cytotoxicity using MCF-7 treated cells, the liposomal β-carotene IC50 value was at least 0.45 μg/mL, whereas the IC50 of free β-carotene treated cells was 7.8 μg/mL. For MCF-7 treated cells treated with free tamoxifen, the IC50 was 9.92 μg/mL, but for its liposomal form, it was 20.88 μg/mL. According to the cytotoxicity test using MDA-MB-231 treated cells, the IC50 values for free tamoxifen, free β-carotene, liposomal β-carotene, liposomal tamoxifen, and liposomal tamoxifen β-carotene were 15.5 μg/mL, 38.1 μg/mL, 12.1 μg/mL, 21.2 μg/mL, and 11.4 μg/mL, respectively. This investigation demonstrated that free β-carotene has a more potent cytotoxic impact than tamoxifen. The findings showed that each comet assay variable for the liposomal β-carotene was significantly (p < 0.05) elevated in comparison with tamoxifen and control values. Analysis using flow cytometry revealed that the MCF-7 cells displayed a greater degree of cell apoptosis than the control cells following a 48 h exposure to liposomal β-carotene. Based on available data, a novel treatment plan that includes liposomal β-carotene may boost antitumor activity toward the MCF-7 cancer cell line. The current findings demonstrated that preparations of natural products might be a good substitute for pharmaceutical interventions in the treatment of breast cancer. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

18 pages, 1120 KiB  
Article
Raising Awareness of Canine, Feline and Human Dirofilariosis in Aveiro, Portugal: A One Health Perspective
by Joana Esteves-Guimarães, José Alberto Montoya-Alonso, Jorge Isidoro Matos, Elmano Ramalheira, Elena Carretón, Ivan Rodríguez-Escolar, Alfonso Balmori-de la Puente, Manuel Collado-Cuadrado, Rodrigo Morchón and Ana Patrícia Fontes-Sousa
Animals 2025, 15(7), 952; https://doi.org/10.3390/ani15070952 - 26 Mar 2025
Viewed by 478
Abstract
Climatic and various socio-geographical variables have significantly influenced the global spread of Dirofilaria immitis. The coastal district of Aveiro, Portugal, marked by its unique hydrographic structure, Ria de Aveiro, and a concerning rise in heartworm disease, was the focus of our study. [...] Read more.
Climatic and various socio-geographical variables have significantly influenced the global spread of Dirofilaria immitis. The coastal district of Aveiro, Portugal, marked by its unique hydrographic structure, Ria de Aveiro, and a concerning rise in heartworm disease, was the focus of our study. We aimed to update the prevalence of D. immitis in dogs and the seroprevalence in cats and humans, correlating these data with epidemiological information. A total of 430 dogs were sampled for D. immitis antigens, and 426 cats and 398 humans for D. immitis and Wolbachia sp. antibodies. In addition, we developed and validated an infection risk map for D. immitis with the geolocation of positive samples. Our results indicate a canine prevalence of 4.7%, peaking at 16.7% in Vagos. Feline and human seroprevalences were 8.9% (26.7% in Espinho) and 3.0% (Vagos presented the most alarming results), respectively. Positive samples were found in both high- and low-risk areas highlighting the need for chemoprophylaxis in all municipalities. Risk factors identified included lack of vaccination and internal deworming in cats, while dogs faced risks from inadequate vaccination and outdoor exposure. Our study identifies Aveiro as an endemic area, with a need for control measures to address this public health threat. Full article
(This article belongs to the Topic Zoonotic Vector-Borne Diseases of Companion Animals)
Show Figures

Figure 1

13 pages, 656 KiB  
Review
Evaluation of DNA in Human Teeth—Ante-Mortem and Post-Mortem Factors Affecting Degradation and Preservation: A Literature Review
by Ana María Salazar, Patricia Alejandra Huerta, Viviana Coliboro-Dannich, Ariel F. Castro and Anna Barbaro
Genes 2025, 16(4), 364; https://doi.org/10.3390/genes16040364 - 22 Mar 2025
Viewed by 670
Abstract
The identification of human remains is a major challenge in forensic science, particularly in cases of advanced decomposition. Human teeth are among the most resilient tissues to environmental and post-mortem degradation, making them a valuable source of DNA for forensic identification. However, DNA [...] Read more.
The identification of human remains is a major challenge in forensic science, particularly in cases of advanced decomposition. Human teeth are among the most resilient tissues to environmental and post-mortem degradation, making them a valuable source of DNA for forensic identification. However, DNA preservation in teeth is influenced by multiple factors that can compromise the success of genetic analysis. Objective: This review analyzes the intrinsic and extrinsic factors affecting DNA preservation in human teeth, focusing on ante-mortem and post-mortem variables rather than the methodological aspects of DNA extraction and analysis. Methodology: A review of the literature was conducted, evaluating studies that assess the impact of biological factors (such as dental structure, pathology, and treatment) and environmental conditions (such as burial environment, temperature, and humidity) on DNA degradation in human teeth. Results: The findings indicate that DNA preservation is significantly influenced by the type of tooth, the presence of dental restorations or pathological conditions, and exposure to environmental factors. While some studies address these variables individually, forensic cases often involve complex interactions among multiple factors, making DNA recovery outcomes unpredictable. Conclusions: The degradation of DNA in human teeth results from a multifactorial process where intrinsic and extrinsic elements interact dynamically. A comprehensive understanding of these factors is essential for optimizing sampling strategies and improving DNA recovery success rates in forensic applications. Future research should aim to develop predictive models that account for these variables, enabling more effective case-specific approaches to forensic DNA analysis. Full article
Show Figures

Figure 1

13 pages, 2329 KiB  
Systematic Review
The Effects of Thirdhand Vape Residue from Nicotine and Non-Nicotine Vapes on Cells: A Systematic Review
by Jazzlin Marie Adele Stracci, Alyssa Priyanka Ganesan, Prescious Grace Pitogo and Sheree Margaret Smith
Int. J. Environ. Res. Public Health 2025, 22(4), 465; https://doi.org/10.3390/ijerph22040465 - 21 Mar 2025
Viewed by 494
Abstract
Rationale: Vapes are increasingly popular, however, their clouds leave a residue on surfaces, referred to as thirdhand smoke. Recent studies have reported the detrimental cellular impacts of thirdhand smoke. However, research on thirdhand vape residue exposure is relatively new and understudied. Objectives: This [...] Read more.
Rationale: Vapes are increasingly popular, however, their clouds leave a residue on surfaces, referred to as thirdhand smoke. Recent studies have reported the detrimental cellular impacts of thirdhand smoke. However, research on thirdhand vape residue exposure is relatively new and understudied. Objectives: This review aims to evaluate the current literature associated with the impact of thirdhand vape residue from nicotine and non-nicotine vapes on cells, compared to unexposed controls. Methods: A systematic search was performed in PubMed (Medline), Embase, Web of Science, Scopus, and Google databases to identify relevant studies. Two independent reviewers screened articles using the inclusion criteria of controlled experimental studies on human and animal in vitro and in vivo models which investigate thirdhand vape residue as the exposure variable and cell concepts. Studies were assessed for bias through tools specialised for animal studies. Data were extracted and synthesised in accordance with PRISMA guidelines. Results: Of 139 articles retrieved, three are included in this review, focusing on mice cell models only, one of which investigates non-nicotine vapes. No studies on human cell models that fit the criteria were found. Mice were directly exposed to vape-infused materials from which their cells were extracted and evaluated, finding that exposure to thirdhand nicotine vape residue damages mice cells. The effects of non-nicotine vapes are inconclusive. Conclusions: Thirdhand nicotine vape residue contributes to changes in some cells in mouse models but not others. Data available to date provide no convincing evidence of likely significant harm to humans. Further investigation is warranted to confirm or deny this impression. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

Back to TopTop