Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = humidifier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1436 KB  
Article
Enhancing Lesion Detection in Rat CT Images: A Deep Learning-Based Super-Resolution Study
by Sungwon Ham, Sang Hoon Jeong, Hong Lee, Yoon Jeong Nam, Hyejin Lee, Jin Young Choi, Yu-Seon Lee, Yoon Hee Park, Su A Park, Wooil Kim, Hangseok Choi, Haewon Kim, Ju-Han Lee and Cherry Kim
Biomedicines 2025, 13(10), 2421; https://doi.org/10.3390/biomedicines13102421 - 3 Oct 2025
Abstract
Background/Objectives: Preclinical chest computed tomography (CT) imaging in small animals is often limited by low resolution due to scan time and dose constraints, which hinders accurate detection of subtle lesions. Traditional super-resolution (SR) metrics, such as peak signal-to-noise ratio (PSNR) and structural similarity [...] Read more.
Background/Objectives: Preclinical chest computed tomography (CT) imaging in small animals is often limited by low resolution due to scan time and dose constraints, which hinders accurate detection of subtle lesions. Traditional super-resolution (SR) metrics, such as peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), may not adequately reflect clinical interpretability. We aimed to evaluate whether deep learning-based SR models could enhance image quality and lesion detectability in rat chest CT, balancing quantitative metrics with radiologist assessment. Methods: We retrospectively analyzed 222 chest CT scans acquired from polyhexamethylene guanidine phosphate (PHMG-p) exposure studies in Sprague Dawley rats. Three SR models were implemented and compared: single-image SR (SinSR), segmentation-guided SinSR with lung cropping (SinSR3), and omni-super-resolution (OmniSR). Models were trained on rat CT data and evaluated using PSNR and SSIM. Two board-certified thoracic radiologists independently performed blinded evaluations of lesion margin clarity, nodule detectability, image noise, artifacts, and overall image quality. Results: SinSR1 achieved the highest PSNR (33.64 ± 1.30 dB), while SinSR3 showed the highest SSIM (0.72 ± 0.08). Despite lower PSNR (29.21 ± 1.46 dB), OmniSR received the highest radiologist ratings for lesion margin clarity, nodule detectability, and overall image quality (mean score 4.32 ± 0.41, κ = 0.74). Reader assessments diverged from PSNR and SSIM, highlighting the limited correlation between conventional metrics and clinical interpretability. Conclusions: Deep learning-based SR improved visualization of rat chest CT images, with OmniSR providing the most clinically interpretable results despite modest numerical scores. These findings underscore the need for reader-centered evaluation when applying SR techniques to preclinical imaging. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

7 pages, 1562 KB  
Article
Co-Adsorption of Formic Acid and Hexane Selenol on Cu
by Mats Ahmadi Götelid, Sareh Ahmadi Götelid, Saman Hosseinpour, Christofer Leygraf and C. Magnus Johnson
Corros. Mater. Degrad. 2025, 6(4), 48; https://doi.org/10.3390/cmd6040048 - 26 Sep 2025
Abstract
Self-assembled monolayers of alkane thiolate and alkane selenolate have been proven to inhibit atmospheric corrosion, but upon prolonged exposure to the important constituents of indoor atmosphere, namely humidified air with formic acid, the protective layer eventually breaks, but the exact reason is not [...] Read more.
Self-assembled monolayers of alkane thiolate and alkane selenolate have been proven to inhibit atmospheric corrosion, but upon prolonged exposure to the important constituents of indoor atmosphere, namely humidified air with formic acid, the protective layer eventually breaks, but the exact reason is not yet clear. In this paper, we report on an XPS study of co-adsorbed formic acid and hexane selenol on a Cu surface. Adsorption of hexane selenol at room temperature breaks the Se-C bond, leaving a monolayer of Se on the surface, whereas adsorption at 140 K leaves a layer of selenolate. Formic acid exposure to the selenolate-Cu surface leads to adsorbed formate on unprotected areas and absorption of formic acid within the alkane chain network. During heating, the formic acid desorbs and the Se-C bond breaks, but formic acid does not accelerate the Se-C scission, which occurs just below room temperature both with and without formic acid. Thus, formic acid alone does not affect the Se-C bond, but its presence may create disorder and open up the alkane carpet for other species. Selenol removes formate and oxide from the surface at room temperature. The Se-C bond breaks and the alkane chain reacts with surface oxygen to form carbon oxides and volatile hydrocarbons. Full article
Show Figures

Figure 1

23 pages, 4793 KB  
Article
Undoped Polybenzimidazole Membranes Composited with CeP5O14 for Use in Hydrogen Fuel Cells at 200 °C
by Oksana Zholobko, Abdul Salam, Muhammad Muzamal. Ashfaq, Xiaoning Qi and Xiang-Fa Wu
Hydrogen 2025, 6(3), 70; https://doi.org/10.3390/hydrogen6030070 - 16 Sep 2025
Viewed by 446
Abstract
Intermediate-temperature (IT) proton-exchange membranes (PEMs) play vital roles in hydrogen and direct liquid fuel cells, electrolyzers, and other electrochemical membrane reactors at elevated temperatures of higher than 150 °C. This article reports the fabrication and performance assessment of a type of new IT [...] Read more.
Intermediate-temperature (IT) proton-exchange membranes (PEMs) play vital roles in hydrogen and direct liquid fuel cells, electrolyzers, and other electrochemical membrane reactors at elevated temperatures of higher than 150 °C. This article reports the fabrication and performance assessment of a type of new IT polymer–inorganic composite (PIC) PEMs that were made of cerium ultraphosphate (CeP5O14-CUP) as the durable solid-state proton conductor and undoped polybenzimidazole (PBI) as the high-temperature (HT) polymeric binder. The proton conductivity and electrochemical performance of the PIC PEMs were characterized at 200 °C with varying membrane thickness, processing parameters, and operating conditions using a single-stack hydrogen fuel cell connected to a fuel cell test station. Experimental results show that the PIC membranes (with CUP of 75 wt.%) carried high mechanical flexibility and strength as well as noticeably reduced water uptake of 4.4 wt.% compared to pristine PBI membranes of 14.0 wt.%. Single-stack hydrogen fuel cell tests at 200 °C in a humidified hydrogen and air environment showed that the proton conductivity of the PIC PEMs was measured up to 0.105 S/cm, and the electrochemical performance exhibited its dependence upon the membrane thickness with the power density of up to 191.7 mW/cm2. Discussions are made to explore performance dependence and improvement strategies. The present study expects the promising future of the IT-PIC-PEMs for broad applications in high-efficiency electrochemical energy conversion and value-added chemical production at elevated temperatures of 200 °C or higher. Full article
Show Figures

Figure 1

24 pages, 4279 KB  
Article
Effects of Exposure of PHMG-p, a Humidifier Disinfectant Component, on Eye Dryness: A Study on a Rat Model Based on 1H-NMR Metabolomics
by Jung Dae Lee, Hyang Yeon Kim, Soo Bean Oh, Hyeyoon Goo, Kyong Jin Cho, Gi-Wook Hwang, Suhkmann Kim and Kyu-Bong Kim
Int. J. Mol. Sci. 2025, 26(17), 8660; https://doi.org/10.3390/ijms26178660 - 5 Sep 2025
Viewed by 980
Abstract
Polyhexamethylene guanidine phosphate (PHMG-p), a widely used disinfectant component in household humidifiers, has been implicated in various health issues, including pulmonary toxicity. Many people use humidifiers to improve dry eye disease (DED). The current study was performed to elucidate the effect of PHMG-p [...] Read more.
Polyhexamethylene guanidine phosphate (PHMG-p), a widely used disinfectant component in household humidifiers, has been implicated in various health issues, including pulmonary toxicity. Many people use humidifiers to improve dry eye disease (DED). The current study was performed to elucidate the effect of PHMG-p on eye dryness in a rat model using metabolomics. Male Sprague Dawley rats were exposed to PHMG-p (0.1% and 0.3%) following a previously established DED induction model using scopolamine hydrobromide and desiccation stress. Ocular surface damage was assessed using corneal fluorescein staining, tear volume measurement, and tear break-up time (TBUT). Plasma and urine samples were analyzed using 1H-NMR-based metabolomics to identify metabolic alterations associated with PHMG-P-p exposure and DED pathogenesis. PHMG-p exposure exacerbated DED symptoms, as evidenced by a significant reduction in tear volume, shorter TBUT, and increased corneal damage compared to the control group. Metabolomic profiling identified distinct metabolic changes in PHMG-p-exposed groups, including alterations in glutamate, glycine, citrate, and succinate metabolism. These metabolic changes correlated with increased levels of inflammatory cytokines such as IL-1β, IL-6, and TNF-α in the corneal and lacrimal gland tissues. Our findings suggest that PHMG-p exposure contributes to DED pathophysiology by inducing metabolic disturbances and inflammatory responses in the ocular surface. This study highlights the need for further investigation into the potential risks of PHMG-p exposure on ocular health and provides novel insights into the metabolic underpinnings of DED. Full article
(This article belongs to the Special Issue Molecular Advances in Dry Eye Syndrome)
Show Figures

Figure 1

36 pages, 53013 KB  
Article
Spatial Variations in Urban Outdoor Heat Stress and Its Influencing Factors During a Typical Summer Sea-Breeze Day in the Coastal City of Sendai, Japan, Based on Thermal Comfort Mapping
by Shiyi Peng and Hironori Watanabe
Sustainability 2025, 17(17), 7627; https://doi.org/10.3390/su17177627 - 23 Aug 2025
Viewed by 863
Abstract
Sea breezes alleviate coastal heat stress via cooling and humidifying. Sendai, Japan, in 2015 had a population of 1.08 million and an area of 786 km2. Integrating the WRF model with RayMan, this study employs the PET index to assess spatiotemporal [...] Read more.
Sea breezes alleviate coastal heat stress via cooling and humidifying. Sendai, Japan, in 2015 had a population of 1.08 million and an area of 786 km2. Integrating the WRF model with RayMan, this study employs the PET index to assess spatiotemporal distributions of thermal comfort and heat stress, and their influencing factors, on typical summer sea-breeze days in Sendai, Japan. Results indicate that in the coastal zone, PET was primarily regulated by air temperature (Ta) and relative humidity (RH). In contrast, wind speed was the dominant influence on urban/inland zones, with Ta and RH contributing more during the evening. Sea breezes markedly improved the thermal environment in the coastal zone, suppressing PET increases. PET in urban and inland zones exhibited an initial rise followed by a decline, with the inland zone experiencing sustained extreme heat stress for 3 h. Among regions experiencing extreme heat stress, inland zones showed the highest proportion (17.75%), while coastal zones had the lowest (2.14%). Proportions across the three zones were similar under nighttime conditions with no thermal stress, with the urban zone exhibiting a slightly lower proportion. This study provides a theoretical basis for climate-adaptive urban planning leveraging sea breezes as a resource. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

21 pages, 5804 KB  
Article
Simulation of Microclimate and PM2.5 Dispersion in Typical Urban Parks in Beijing Based on the ENVI-Met Model
by Nina Xiong, Huayang Song, Fei Zhou, Yuna Yan, Junru Jia, Qian Li, Deqing Liu and Jia Wang
Sustainability 2025, 17(16), 7247; https://doi.org/10.3390/su17167247 - 11 Aug 2025
Viewed by 747
Abstract
With rapid advancements in industrialization and urbanization, Beijing is increasingly facing severe urban heat island effects and air pollution, particularly from haze. Urban parks play a vital role in improving the local microclimate and facilitating the dispersion of fine particulate matter (PM2.5 [...] Read more.
With rapid advancements in industrialization and urbanization, Beijing is increasingly facing severe urban heat island effects and air pollution, particularly from haze. Urban parks play a vital role in improving the local microclimate and facilitating the dispersion of fine particulate matter (PM2.5). However, most existing studies have focused primarily on the cooling and humidifying functions of urban parks, with limited attention given to the combined assessment of their regulatory effects on both the microclimate and air pollutants. Moreover, the influence of seasonal variation on these ecological services has rarely been systematically examined. To address these research gaps, this study selected three representative urban parks in Beijing and conducted a quantitative analysis of four key environmental parameters—air temperature, relative humidity, wind speed, and PM2.5 concentration—during spring, summer, and winter. Using Landsat remote sensing imagery and the ENVI-met v3.1 computational fluid dynamics (CFD) model, this study simulated dynamic changes in the microclimate and pollutant dispersion within parks. Model feasibility was evaluated through validation metrics and comparisons with field observations. The results show the following: (1) Urban parks significantly improve the local microclimate and reduce PM2.5 concentrations, with the most notable effects observed in summer when the ecological functions of vegetation are at their peak. (2) The ENVI-met model can be used to simulate the microclimate and PM2.5 dispersion in the three parks, with the highest simulation accuracy occurring during the summer season. This study provides valuable insights for urban park planning in Beijing, particularly for developing strategies to enhance microclimatic conditions and mitigate air pollution. Full article
(This article belongs to the Special Issue Air Quality Characterisation and Modelling—2nd Edition)
Show Figures

Figure 1

27 pages, 19279 KB  
Article
Smart Hydroponic Cultivation System for Lettuce (Lactuca sativa L.) Growth Under Different Nutrient Solution Concentrations in a Controlled Environment
by Raul Herrera-Arroyo, Juan Martínez-Nolasco, Enrique Botello-Álvarez, Víctor Sámano-Ortega, Coral Martínez-Nolasco and Cristal Moreno-Aguilera
Appl. Syst. Innov. 2025, 8(4), 110; https://doi.org/10.3390/asi8040110 - 7 Aug 2025
Viewed by 2968
Abstract
The inclusion of the Internet of Things (IoT) in indoor agricultural systems has become a fundamental tool for improving cultivation systems by providing key information for decision-making in pursuit of better performance. This article presents the design and implementation of an IoT-based agricultural [...] Read more.
The inclusion of the Internet of Things (IoT) in indoor agricultural systems has become a fundamental tool for improving cultivation systems by providing key information for decision-making in pursuit of better performance. This article presents the design and implementation of an IoT-based agricultural system installed in a plant growth chamber for hydroponic cultivation under controlled conditions. The growth chamber is equipped with sensors for air temperature, relative humidity (RH), carbon dioxide (CO2) and photosynthetically active photon flux, as well as control mechanisms such as humidifiers, full-spectrum Light Emitting Diode (LED) lamps, mini split air conditioner, pumps, a Wi-Fi surveillance camera, remote monitoring via a web application and three Nutrient Film Technique (NFT) hydroponic systems with a capacity of ten plants each. An ATmega2560 microcontroller manages the smart system using the MODBUS RS-485 communication protocol. To validate the proper functionality of the proposed system, a case study was conducted using lettuce crops, in which the impact of different nutrient solution concentrations (50%, 75% and 100%) on the phenotypic development and nutritional content of the plants was evaluated. The results obtained from the cultivation experiment, analyzed through analysis of variance (ANOVA), show that the treatment with 75% nutrient concentration provides an appropriate balance between resource use and nutritional quality, without affecting the chlorophyll content. This system represents a scalable and replicable alternative for protected agriculture. Full article
(This article belongs to the Special Issue Smart Sensors and Devices: Recent Advances and Applications Volume II)
Show Figures

Figure 1

18 pages, 9747 KB  
Article
Humidify Feedback of Wetland Changes in the China Side of the Heilongjiang River Basin
by Zihan Xing, Yansu Bo, Fudong Yu, Yadi Yang, Yongxing Ren and Xiaoyan Li
Remote Sens. 2025, 17(14), 2405; https://doi.org/10.3390/rs17142405 - 11 Jul 2025
Viewed by 275
Abstract
Understanding how wetland changes affect near-surface humidity is essential for evaluating their climate-influencing functions, especially in mid- and high-latitude regions. Here, using multi-source remote sensing data, we investigated the impacts of wetland area changes and leaf area index (LAI) on 2 m specific [...] Read more.
Understanding how wetland changes affect near-surface humidity is essential for evaluating their climate-influencing functions, especially in mid- and high-latitude regions. Here, using multi-source remote sensing data, we investigated the impacts of wetland area changes and leaf area index (LAI) on 2 m specific humidity (2m SH) within the China side of the Heilongjiang River Basin (CHRB) from 2003 to 2020 across latitudinal gradients and seasonal scales. The results indicated that the wetland area initially decreased and then increased, while the LAI rose by 0.015/year. A significant positive correlation was identified between wetland coverage and 2m SH, with a threshold of 60%. A transition point at 50°N was observed in the response of humidity to wetland area changes, shifting from an increase to a decrease in humidity. The Wetland LAI Change Humidity Index increased with latitude from 2003 until 2010, significantly decreasing thereafter (R2 = 0.634, p < 0.05). Seasonally, the humidifying effect strengthened with latitude in spring and autumn, with a strong negative correlation observed in autumn between 2003 and 2010 (R2 = 0.789, p < 0.001). These findings deepen the understanding of wetland–humidity interactions and provide a scientific basis for wetland conservation and regional climate adaptation, supporting SDG13. Full article
(This article belongs to the Special Issue Application of Remote Sensing Technology in Wetland Ecology)
Show Figures

Figure 1

17 pages, 3372 KB  
Article
Combustion Air Humidifier for a Biomass Boiler with Flue Gas Condensation
by Jan Havlík and Tomáš Dlouhý
ChemEngineering 2025, 9(4), 68; https://doi.org/10.3390/chemengineering9040068 - 25 Jun 2025
Viewed by 438
Abstract
This paper deals with combustion air humidification for application with a biomass boiler and a spray flue gas condenser. The use of a combustion air humidifier increases the dew point temperature of the flue gas, thereby increasing the potential for heat recovery in [...] Read more.
This paper deals with combustion air humidification for application with a biomass boiler and a spray flue gas condenser. The use of a combustion air humidifier increases the dew point temperature of the flue gas, thereby increasing the potential for heat recovery in the flue gas condenser and increasing the amount of heat supplied to the thermal system. The air humidification process in a counter current spray humidifier was experimentally analysed under conditions corresponding to the use before a biomass boiler with a flue gas condenser. For air heating and humidification, temperature factor values of up to 0.90 can be obtained; this value is mainly influenced by the ratio of the spray water and humidified air flow rates. The volumetric heat transfer coefficient is significantly affected by the humidified air velocity, although this velocity is negligible compared to the counter current spray water velocity. The volumetric heat transfer coefficient reaches higher values at higher spray water temperatures and therefore higher air heating. The whole process is also affected by the saturation of the incoming air, where the dew point temperature of the air drawn in from the surroundings is lower than its temperature. These results can be used as basic information for the design of combustion air humidifiers, for the selection of their operating parameters, and for a basic balancing of the energy contribution of the combustion air humidifier before a more detailed design of the whole system. Full article
Show Figures

Figure 1

17 pages, 5119 KB  
Article
Anode-Supported SOFCs with a Bi2O3-Doped NiO–ScSZ Anode and ScSZ Electrolyte: Low-Temperature Co-Sintering and High Performance
by Shang Peng, Zhao Liu, Pairuzha Xiaokaiti, Tiancheng Fang, Jiwei Wang, Guoqing Guan and Abuliti Abudula
ChemEngineering 2025, 9(4), 66; https://doi.org/10.3390/chemengineering9040066 - 24 Jun 2025
Viewed by 591
Abstract
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O [...] Read more.
In this study, a novel anode-supported solid oxide fuel cell (SOFC) comprising a Bi2O3-doped NiO-ScSZ anode and an ScSZ electrolyte was successfully fabricated via a low-temperature co-sintering process at 1300 °C. The incorporation of 3 wt% Bi2O3 effectively promoted the sintering of both the anode support and electrolyte layer, resulting in a dense, gas-tight electrolyte and a mechanically robust porous anode support. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses confirmed the formation of phase-pure, highly crystalline ScSZ with an optimized microstructure. Electrochemical performance measurements demonstrated that the fabricated cells achieved excellent power density, reaching a peak value of 0.861 W cm−2 at 800 °C under humidified hydrogen fuel conditions. The cells maintained stable performance under dry methane operation, with a maximum power density of 0.624 W cm−2 at 800 °C, indicating resistance to carbon deposition. Gas chromatographic analyses further revealed that the Bi2O3-doped NiO-ScSZ anode facilitated earlier and more stable electrochemical oxidation of methane-derived species compared with the conventional NiO-YSZ system, even under conditions of an elevated methane partial pressure. These findings demonstrate that Bi2O3 co-doping, combined with low-temperature co-sintering, provides an effective approach for fabricating high-performance intermediate-temperature SOFCs with enhanced structural integrity and electrochemical stability. The developed methodology presents a promising pathway toward achieving cost-effective and durable SOFC technologies. Full article
Show Figures

Figure 1

20 pages, 689 KB  
Article
Efficiency of Ozone Applied in Flow and at Low Pressures in the Inactivation of Salmonella in Black Peppercorns (Piper nigrum L.) and the Effects of Ozone Treatment on Grain Quality and Essential Oil Composition
by Handina da Graça Lurdes Langa Massango, Lêda Rita D’Antonino Faroni, Maria Cristina Dantas Vanetti, Ernandes Rodrigues de Alencar, Marcus Vinícius de Assis Silva, Alessandra Aparecida Zinato Rodrigues, Paulo Roberto Cecon, Carollayne Gonçalves Magalhães, Daniele Almeida Teixeira and Letícia Elisa Rossi
Foods 2025, 14(13), 2215; https://doi.org/10.3390/foods14132215 - 24 Jun 2025
Viewed by 657
Abstract
Food contamination by Salmonella poses a significant public health risk, rendering products unfit for consumption. This study aimed to evaluate the efficiency of ozone gas (O3), applied in flow and at low pressures, in inactivating Salmonella on black peppercorns (Piper [...] Read more.
Food contamination by Salmonella poses a significant public health risk, rendering products unfit for consumption. This study aimed to evaluate the efficiency of ozone gas (O3), applied in flow and at low pressures, in inactivating Salmonella on black peppercorns (Piper nigrum L.). Samples were inoculated with a cocktail of four Salmonella serotypes and subjected to ozonation under flow or low-pressure conditions in a hypobaric chamber. For the flow treatment, ozone gas at 16 mg L−1 was humidified by passing it through a 40% (w/v) sodium chloride solution and applied for 2, 4, and 8 h. For the hypobaric chamber treatment, an inlet O3 concentration of 60 mg L−1 was used, with 10, 15, and 20 injections. The results showed that, under flow ozonation for 8 h, Salmonella was absent in 25 g of the sample. Ozone treatment increased pH, total titratable acidity (TTA), antioxidant activity (DPPH*), lightness (L*), color saturation (C*), total phenolic content (TPC), and the concentration of major essential oil compounds in all treatments. Under low-pressure ozonation, Salmonella persisted in all tested conditions, along with changes in color difference (∆E*), moisture content, TTA, DPPH*, L*, C*, pH, TPC, and the concentration of major essential oil compounds. The essential oil yield was not affected. Although the application of ozone at low pressures reduced Salmonella contamination, it was not sufficient for complete inactivation under the tested conditions. However, the flow-applied ozone treatment proved effective in the inactivation of Salmonella in black peppercorns. Full article
Show Figures

Figure 1

18 pages, 22881 KB  
Article
An Experimental Investigation on the Microscopic Damage and Mechanical Properties of Coal Under Hygrothermal Conditions
by Haisen Zhao, Guichen Li, Jiahui Xu, Yuantian Sun, Fengzhen He, Haoran Hao, Mengzhuo Han and Bowen Tian
Appl. Sci. 2025, 15(13), 7013; https://doi.org/10.3390/app15137013 - 21 Jun 2025
Viewed by 364
Abstract
Investigating the microstructural damage and mechanical properties of coal under deep mine hygrothermal conditions is essential for ensuring the safe and efficient extraction of coal resources. In this study, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and nanoindentation techniques were [...] Read more.
Investigating the microstructural damage and mechanical properties of coal under deep mine hygrothermal conditions is essential for ensuring the safe and efficient extraction of coal resources. In this study, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and nanoindentation techniques were employed to examine the surface morphology and microscale mechanical properties of coal samples exposed to four environmental conditions, initial, humidified, heated, and coupled hygrothermal, under a peak indentation load of 70 mN. The results indicate that humidification led to the formation of dissolution pores and localized surface softening, resulting in a 15.9% increase in the peak indentation depth and reductions in the hardness and elastic modulus by 29.53% and 17.14%, respectively. Heating caused localized disintegration and the collapse of the coal surface, accompanied by surface hardening, with a slight 0.4% decrease in the peak indentation depth and increases in hardness and the elastic modulus by 1.32% and 1.56%, respectively. Under the coupled hygrothermal condition, numerous fine dissolution pores and microcracks developed on the coal surface, and the mechanical properties exhibited intermediate values between those observed in the humidified and heated states. Notably, the elevated temperature suppressed the moisture penetration into the coal matrix to some extent in the hygrothermal environment. A positive correlation was found between the hardness and elastic modulus, independent of the coal sample condition. The mineralogical composition significantly influenced the microscale mechanical behavior, with hard quartz minerals corresponding to lower peak indentation depths and a higher hardness, whereas soft kaolinite showed the opposite trend. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

20 pages, 5757 KB  
Article
Temporal and Spatial Variation Characteristics of Precipitation Isohyets on the Qinghai–Tibet Plateau from 1961 to 2023
by Xuan Liu, Qiang Zhou, Yonggui Ma, Zemin Zhi, Rui Liu and Weidong Ma
Atmosphere 2025, 16(6), 698; https://doi.org/10.3390/atmos16060698 - 10 Jun 2025
Viewed by 1254
Abstract
Under a warming–humidifying climate, precipitation patterns on the Qinghai–Tibet Plateau have significantly shifted due to a water imbalance in its solid–liquid structure. Using monthly precipitation data (1961–2023), we analyzed the spatial distribution and dynamics of 200 mm and 400 mm isohyets through climate [...] Read more.
Under a warming–humidifying climate, precipitation patterns on the Qinghai–Tibet Plateau have significantly shifted due to a water imbalance in its solid–liquid structure. Using monthly precipitation data (1961–2023), we analyzed the spatial distribution and dynamics of 200 mm and 400 mm isohyets through climate propensity rates and centroid center migration. The results show: (1) precipitation increased significantly (4.17 mm/decade), decreasing spatially from southeast to northwest. Regionally, it increased in areas like the southern Qinghai Plateau region, but declined in the southern Himalayas and central–southern Altyn−Tagh Mountains. (2) The 200 mm line migrated northward in southern Qiangtang, shrank around Qaidam Basin, with an overall northeastward shift; the 400 mm line moved westward in eastern Qiangtang and Hehuang Valley, northward in southern Qinghai, trending northwest. (3) From 1961 to 1990 and 1991 to 2023, the 200 mm isohyet’s centroid shifted 49 km north and 17 km east, while the 400 mm isohyet moved 22 km north and 19 km west. (4) Vertically, the 200 mm isohyet ascended by 7.11 m/decade, while the 400 mm line rose more slowly (2.61 m/decade). These changes indicate a significant shift in precipitation distribution, impacting regional hydrological processes. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 6305 KB  
Article
Controlled Growth of α-Al2O3 Nanofilm on FeCrAl Alloy as an Effective Cr Barrier for Solid Oxide Fuel Cell (SOFC) Cathode Air Pre-Heaters
by Kun Zhang, Ahmad El-Kharouf and Robert Steinberger-Wilckens
Energies 2025, 18(12), 3055; https://doi.org/10.3390/en18123055 - 9 Jun 2025
Viewed by 709
Abstract
Solid oxide fuel cell (SOFC) systems often employ metallic cathode air pre-heaters (CAPHs), frequently made from alloys with high chromium (Cr) content, to recover thermal energy from exhaust gases and pre-heat incoming air and fuel. Cr evaporation from metallic CAPHs can poison SOFC [...] Read more.
Solid oxide fuel cell (SOFC) systems often employ metallic cathode air pre-heaters (CAPHs), frequently made from alloys with high chromium (Cr) content, to recover thermal energy from exhaust gases and pre-heat incoming air and fuel. Cr evaporation from metallic CAPHs can poison SOFC cathodes, reducing their durability. To mitigate this, we investigated controlled pre-oxidation of a FeCrAl alloy (alloy 318) to form a protective alumina scale by self-growing, assessing its impact on and oxidation resistance and Cr retention capability for CAPH applications. The effects of pre-oxidation were investigated across a temperature range of 800 to 1100 °C and dwelling times of 0.5 to 4 h. The formed oxide scales were characterised using gravimetry in combination with advanced analytic techniques, such as SEM/EDX, STEM/EDX, TEM, and XRD. Subsequently, the pre-oxidised FeCrAl alloys were characterised with respect to the oxidation rate and Cr2O3 evaporation in a tubular furnace at 850 °C, with 6.0 L/min air flow and 3 vol% H2O to simulate the SOFC cathode environment. TEM analysis confirmed that the FeCrAl alloys formed alumina scales with 10 nm and 34 nm thickness after 1 h of pre-oxidation at 900 and 1100 °C, respectively. The corrosion and Cr2O3 evaporation rates of the FeCrAl alloy at 850 °C in humidified air were shown to be dramatically decreased by pre-oxidation. It was found that the mechanisms of oxidation and Cr2O3 evaporation were found to be controlled by the formation of different alumina phases during the pre-oxidation. Measurements of Cr2O3 evaporation and weight gain revealed that the alloy 318 pre-treated at 1100 °C for 1 h will form an α-Al2O3 scale, leading to a 98% reduction of the oxidation rate and 90% reduction of Cr2O3 evaporation compared to the non-oxidised alloy 318 under simulated SOFC cathode conditions. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Graphical abstract

10 pages, 216 KB  
Article
Absence of Adverse Effects on Pulmonary Histopathology and Functions Following Inhalation Exposure to Chloromethylisothiazolinone/Methylisothiazolinone
by Sam Kacew and Esref Demir
Toxics 2025, 13(6), 482; https://doi.org/10.3390/toxics13060482 - 6 Jun 2025
Viewed by 623
Abstract
In South Korea, issues have been raised regarding exposure to humidifier disinfectant products containing certain chemicals postulated to induce lung diseases in consumers. Several rodent studies utilizing whole-body inhalation, which comprises freely moving animals breathing through the nares, and intranasal instillation involving restraint, [...] Read more.
In South Korea, issues have been raised regarding exposure to humidifier disinfectant products containing certain chemicals postulated to induce lung diseases in consumers. Several rodent studies utilizing whole-body inhalation, which comprises freely moving animals breathing through the nares, and intranasal instillation involving restraint, were conducted by various Korean Governmental Agencies on these products to investigate whether there is a causal relationship between these products and the development of lung diseases. In particular, the humidifier disinfectant product Kathon, containing chloromethylisothiazolinone and methylisothiazolinone (CMIT and MIT), when directly introduced into inhalation chambers at varying concentrations for up to 13 weeks, produced no significant histopathological alterations and no marked changes in pulmonary function parameters. Further, there was no evidence of cytotoxicity; total and differential cell counts did not differ from control. In addition, the levels of cytokine markers of inflammation were not markedly altered. In contrast to published papers utilizing intratracheal and intranasal instillation, where the animal is anesthetized and chemical bypasses the defense mechanisms in the respiratory tract, then reaches the pulmonary region, ignoring recommended dose levels was found to initiate fibrotic responses in mice and rats. However, the usefulness of experimental results to extrapolate to humans obtained following intratracheal and intranasal instillation studies is of limited value because the data generated did not use a realistic design and appropriate dosimetry. Therefore, these findings have significant drawbacks in their use to characterize an inhalation risk for pulmonary fibrosis in humans and cannot be used for the extrapolation of such risk to humans. It is thus evident that the inhalation data generated by the Korean Regulatory Agencies are more realistic and show that exposure to CMIT and MIT does not initiate pulmonary fibrosis. Although inhalation studies still do not fully replicate real-world human exposure scenarios and have limitations for direct extrapolation to humans, they are nevertheless more appropriate than intratracheal or intranasal instillation models. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop