Topic Editors

Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Ayazaga Kampusu, 34469 Istanbul, Turkiye
Prof. Dr. Sam Kacew
Institute of Population Health, R. Samuel McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Environmental Toxicology and Human Health—2nd Edition

Abstract submission deadline
closed (30 September 2025)
Manuscript submission deadline
closed (31 December 2025)
Viewed by
33448

Topic Information

Dear Colleagues,

Environmental contamination has now become a major global issue with adverse effects on our health and food security. Humans and animals are being exposed to debilitating levels of contamination every day. Worldwide, air pollution causes millions of premature deaths annually, which are mainly caused by lung cancer, chronic obstructive pulmonary disease, stroke, heart failure, and respiratory infections. Moreover, according to the World Health Organization (WHO), 99% of humankind breathes air containing contaminants above the recommended levels. The United Nations has identified “a pollution-free planet” goal among its three pillars, in addition to climate change and biodiversity, for 2022–2025. To mitigate contamination and relieve the burden of pollution-related disease, we need to devise target-specific strategies. To that end, risk assessments of each chemical and natural contaminant and solid evidence from toxicity studies are of paramount importance. Meticulous efforts should be made to look into the possible mechanisms of action for each pollutant and detect their toxic potential and safe limits through in vitro approaches and comprehensive in vivo animal testing. Indeed, this topic will include environmental pollutants (such as heavy metals, pesticides, nanoparticles, micro-nanoplastics, indoor air pollutants, pharmaceuticals, and industrial toxicants) and their human health effects, risk assessments, the relationship of various diseases, and environmental pollutants. Human exposure to environmental pollutants may cause adverse effects such as neurotoxicity, carcinogenicity, infertility, and metabolic disorders. We welcome original research articles, reviews, and opinion pieces related to the proposed focus area. 

Prof. Dr. Esref Demir
Prof. Dr. Sam Kacew
Topic Editors

Keywords

  • environment and health
  • risk assessment
  • environmental pollutants
  • cancer
  • carcinogenesis
  • toxicity
  • biological effects
  • molecular toxicology

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Environments
environments
3.7 5.7 2014 19.2 Days CHF 1800
International Journal of Molecular Sciences
ijms
4.9 9.0 2000 17.8 Days CHF 2900
Toxins
toxins
4.0 8.2 2009 19.5 Days CHF 2700
Journal of Xenobiotics
jox
4.4 6.0 2011 22.7 Days CHF 1600
Metabolites
metabolites
3.7 6.9 2011 16.7 Days CHF 2700
J
J
- - 2018 24.1 Days CHF 1200
Current Issues in Molecular Biology
cimb
3.0 3.7 1999 16.3 Days CHF 2200
Toxics
toxics
4.1 6.4 2013 17.8 Days CHF 2600

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (14 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
17 pages, 1126 KB  
Article
Long-Term Per- and Polyfluoroalkyl Substances Exposure and Kidney Function in Taiwanese Adolescents and Young Adults: A 10-Year Prospective Cohort Study
by Chien-Yu Lin, Hui-Ling Lee and Ta-Chen Su
J. Xenobiot. 2026, 16(1), 16; https://doi.org/10.3390/jox16010016 - 21 Jan 2026
Viewed by 164
Abstract
Background and hypothesis: Per- and polyfluoroalkyl substances (PFAS) are highly persistent synthetic chemicals that can accumulate in renal tissue and potentially disrupt kidney function. Most prospective studies on PFAS–renal associations have focused on middle-aged or older adults, leaving uncertainty about whether similar [...] Read more.
Background and hypothesis: Per- and polyfluoroalkyl substances (PFAS) are highly persistent synthetic chemicals that can accumulate in renal tissue and potentially disrupt kidney function. Most prospective studies on PFAS–renal associations have focused on middle-aged or older adults, leaving uncertainty about whether similar patterns exist in younger populations. Methods: We investigated decade-long trajectories of plasma concentrations of 11 PFAS and their longitudinal associations with estimated glomerular filtration rate (eGFR) among 529 Taiwanese adolescents and young adults (aged 12–30 years) enrolled in the prospective YOung TAiwanese Cohort (YOTA), with measurements obtained in 2006–2008 and 2017–2019. Results: Nearly all plasma PFAS declined significantly over the 10-year period. Despite these reductions, higher baseline levels and greater annualized increases (Δln-PFAS/Δt) in linear perfluorooctanoic acid (PFOA), linear and branched perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) were consistently associated with larger eGFR gains over time (β = 0.33–0.40, q < 0.05). In complementary models using follow-up eGFR as the outcome, both baseline and cumulative PFAS changes (Δln-PFAS) remained positively associated with higher eGFR (β = 1.71–3.84, q < 0.05). Polynomial analyses further indicated mild non-linear exposure–response patterns for several PFAS, suggesting that renal effects may deviate from linearity across exposure ranges. The composite PFAS exposure index (mean of standardized ln-PFAS concentrations) was robustly associated with higher eGFR across sensitivity analyses excluding participants with chronic conditions. These associations were more pronounced among individuals with greater metabolic or physiological vulnerability. Conclusions: Higher PFAS exposure was associated with elevated eGFR in young adults, which may be consistent with early glomerular hyperfiltration or other renal hemodynamic alterations. These findings raise the hypothesis of early renal stress in early life and underscore the need for ongoing biomonitoring and longitudinal follow-up with additional kidney injury markers to clarify long-term renal consequences. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

26 pages, 378 KB  
Review
Airborne Radioiodine: A Comparative View of Chemical Forms in Medicine, Nuclear Industry, and Fallout Scenarios
by Klaus Schomäcker, Ferdinand Sudbrock, Thomas Fischer, Felix Dietlein, Markus Dietlein, Philipp Krapf and Alexander Drzezga
Int. J. Mol. Sci. 2026, 27(2), 590; https://doi.org/10.3390/ijms27020590 - 6 Jan 2026
Viewed by 504
Abstract
Airborne iodine-131 plays a pivotal role in both nuclear medicine and nuclear safety due to its radiotoxicity, volatility, and affinity for the thyroid gland. Although the total exhaled activity after medical I-131 therapy is minimal, over 95% of this activity appears in volatile [...] Read more.
Airborne iodine-131 plays a pivotal role in both nuclear medicine and nuclear safety due to its radiotoxicity, volatility, and affinity for the thyroid gland. Although the total exhaled activity after medical I-131 therapy is minimal, over 95% of this activity appears in volatile organic forms, which evade standard filtration and reflect metabolic pathways of iodine turnover. Our experimental work in patients and mice confirms the metabolic origin of these species, modulated by thyroidal function. In nuclear reactor environments, both under routine operation and during accidents, organic iodides such as [131I]CH3I have also been identified as major airborne components, often termed “penetrating iodine” due to their low adsorption to conventional filters. This review compares the molecular speciation, environmental persistence, and dosimetric impact of airborne I-131 across clinical, technical, and accidental release scenarios. While routine reactor emissions yield negligible doses (<0.1 µSv/year), severe nuclear incidents like Chernobyl and Fukushima have resulted in significant thyroid exposures. Doses from these events ranged from tens of millisieverts to several Sieverts, particularly in children. We argue that a deeper understanding of chemical forms is essential for effective risk assessment, filtration technology, and emergency preparedness. Iodine-131 exemplifies the dual nature of radioactive substances: in nuclear medicine its radiotoxicity is therapeutically harnessed, whereas in industrial or reactor contexts it represents an unwanted hazard. The same physicochemical properties that enable therapeutic efficacy also determine, in the event of uncontrolled release, the range, persistence, and the potential for unwanted radiotoxic exposure in the general population. In nuclear medicine, exhaled activity after radioiodine therapy is minute but largely organically bound, reflecting enzymatic and metabolic methylation processes. During normal reactor operation, airborne iodine levels are negligible and dominated by inorganic vapors efficiently captured by filtration systems. In contrast, major accidents released large fractions of volatile iodine, primarily as elemental [131I]I2 and organically bound iodine species like [131I]CH3I. The chemical nature of these compounds defined their atmospheric lifetime, transport distance, and deposition pattern, thereby governing the thyroid dose to exposed populations. Chemical speciation is the key determinant across all scenarios. Exhaled iodine in medicine is predominantly organic; routine reactor releases are negligible; severe accidents predominantly release elemental and organic iodine that drive environmental transport and exposure. Integrating these domains shows how chemical speciation governs volatility, mobility, and bioavailability. The novelty of this review lies not in introducing new iodine chemistry, but in the systematic comparative synthesis of airborne radioiodine speciation across medical therapy, routine nuclear operation, and severe accident scenarios, identifying chemical form as the unifying determinant of volatility, environmental transport, and dose. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
18 pages, 3414 KB  
Article
Microplastic Toxicity on Gut Microbiota and Intestinal Cells: Evidence from the Simulator of the Human Intestinal Microbial Ecosystem (SHIME)
by Xingchao Ren, Chen Su, Yuyan Zhu, James Kar-Hei Fang and Pei Yee Woh
Toxics 2025, 13(12), 1045; https://doi.org/10.3390/toxics13121045 - 2 Dec 2025
Viewed by 1107
Abstract
Microplastics (MPs) have become widespread environmental contaminants, with increasing evidence of their harmful impacts on human health. MPs generally enter the human body via ingestion, inhalation, or dermal exposure, with the gastrointestinal tract acting as a crucial entrance route. This work utilized the [...] Read more.
Microplastics (MPs) have become widespread environmental contaminants, with increasing evidence of their harmful impacts on human health. MPs generally enter the human body via ingestion, inhalation, or dermal exposure, with the gastrointestinal tract acting as a crucial entrance route. This work utilized the SHIME system to evaluate the effects of polystyrene (PS) MPs on gut microbiota and short-chain fatty acid (SCFA) metabolism in distinct colonic areas. The results demonstrated regional and individual-specific variations in microbial diversity, significant shifts in Firmicutes/Bacteroidetes (F/B) ratio, and declines in beneficial bacteria, such as Bifidobacteriaceae. Moreover, SHIME supernatants were then tested with a co-cultured cell model (Caco-2/HT29-MTX-E12). Results indicated a deteriorative effect on the intestinal model, characterized by enhanced oxidative stress and mitochondrial malfunction. No significant effect on intestinal barrier integrity or mucus secretion was detected. These findings highlight the potential systemic toxicity of PS-MPs on human gut microbiota-mediated mechanisms, emphasizing the necessity for immediate mitigation efforts. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

21 pages, 1542 KB  
Article
Effects of Different Interventions Aimed at Reducing Dermal and Internal Polycyclic Aromatic Hydrocarbon Exposure Among Firefighters
by Anne Thoustrup Saber, Marie Frederiksen, Simon Pelle Jensen, Vivi Kofoed-Sørensen, Per Axel Clausen, Anja Julie Huusom, Tanja Carøe, Niels Ebbehøj, Maria Helena Guerra Andersen and Ulla Vogel
J. Xenobiot. 2025, 15(5), 150; https://doi.org/10.3390/jox15050150 - 16 Sep 2025
Viewed by 2099
Abstract
Firefighters are inherently exposed to soot and polycyclic aromatic hydrocarbons (PAHs) at work. In this repeated measures study, we assessed if three different interventions reduced PAH exposure. For each sub-study, the firefighters participated in two sampling periods and thereby served as their own [...] Read more.
Firefighters are inherently exposed to soot and polycyclic aromatic hydrocarbons (PAHs) at work. In this repeated measures study, we assessed if three different interventions reduced PAH exposure. For each sub-study, the firefighters participated in two sampling periods and thereby served as their own controls. The first period served as baseline, while the second period was the intervention period where the participants received education on health effects of soot, information on own PAH exposure, and participated in one of three interventions: (1) sauna after fire calls, (2) use of fire suits with improved barrier, and (3) showering after every fire call. We recruited 26 firefighters from three different fire stations. Dermal wipes were assessed for 16 PAHs and spot urine for eight hydroxylated metabolites. Pre-shift PAH burden was significantly reduced compared to our previous biomonitoring study. Post-shift levels of two PAH metabolites (1-hydroxypyrene and 1-hydroxyfluorene) were increased for firefighters after a work shift without fire calls compared to pre-shift. The sauna intervention significantly reduced the levels of all the measured urinary PAH metabolites while the dermal PAH exposure remained unaffected. The fire suit intervention yielded more inconsistent results. While standard shower reduced dermal PAH levels, no additional effects were observed for the shower intervention. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

20 pages, 2087 KB  
Review
Lead Poisoning in the Americas: Sources, Regulations, Health Impacts, and Molecular Mechanisms
by Blanca Miriam Torres-Mendoza, Asbiel Felipe Garibaldi-Ríos, Lourdes Del Carmen Rizo De La Torre, Ana María Puebla-Pérez, Luis E. Figuera, Guillermo Moisés Zúñiga-González, Belinda Claudia Gómez-Meda, Itzae Adonai Gutiérrez-Hurtado, Elvia Harumi Scott-López, Verónica Vázquez-González, Celeste Patricia Gazcón-Rivas and Martha Patricia Gallegos-Arreola
J. Xenobiot. 2025, 15(4), 134; https://doi.org/10.3390/jox15040134 - 20 Aug 2025
Cited by 1 | Viewed by 3588
Abstract
Lead poisoning is a significant public health issue, contributing to 0.6% of the global disease burden and disproportionately affecting developing countries. Vulnerable populations, such as children, pregnant women, and low-income communities, remain at high risk, often exposed to lead levels exceeding safe thresholds. [...] Read more.
Lead poisoning is a significant public health issue, contributing to 0.6% of the global disease burden and disproportionately affecting developing countries. Vulnerable populations, such as children, pregnant women, and low-income communities, remain at high risk, often exposed to lead levels exceeding safe thresholds. While the problem is global, this review focuses specifically on the Americas, regions with diverse regulatory landscapes and persistent environmental lead exposure. Regulatory frameworks vary widely, and the lack of global consensus on acceptable blood lead levels leaves important gaps in protection. This review compiles and updates knowledge on emerging sources of lead exposure in the region, evaluates advancements in regulatory approaches, and analyzes the molecular impacts of lead on human health. Using the Comparative Toxicogenomics Database (CTD), lead was found to interact with 3448 genes, including those linked to inflammation and oxidative stress, and is associated with 4401 diseases and 799 disrupted pathways. These findings emphasize the need for regionally tailored interventions, strengthened policies, and further research on its health impacts. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Figure 1

18 pages, 466 KB  
Article
Assessing Bioconcentration and Biotransformation of BDE-47 In Vitro: The Relevance of Bioavailable and Intracellular Concentrations
by Paloma De Oro-Carretero and Jon Sanz-Landaluze
J. Xenobiot. 2025, 15(3), 93; https://doi.org/10.3390/jox15030093 - 16 Jun 2025
Cited by 1 | Viewed by 1244
Abstract
The development of alternative methods that link cellular and predictive toxicity to high-level toxicity is a key focus of current research within the framework of the 3Rs in animal experimentation. In this context, this study aimed to evaluate the previously developed in vitro [...] Read more.
The development of alternative methods that link cellular and predictive toxicity to high-level toxicity is a key focus of current research within the framework of the 3Rs in animal experimentation. In this context, this study aimed to evaluate the previously developed in vitro approach using the zebrafish liver cell line (ZFL) for assessing bioaccumulation and biotransformation of the compound BDE-47, which is more hydrophobic than phenanthrene, and is the compound used in the previous study. For this purpose, experimentally, the internal concentrations in the cells (Ccell) and the exposure medium of both BDE-47 and its main metabolites were quantified at different exposure times by GC-MS. Additionally, the free bioavailable concentration (Cfree) was determined with a solid-phase microextraction (SPME) experiment. With the aim of refine models, Ccell and Cfree were also estimated using a predictive chemical distribution model (MBM). Bioconcentration factors (BCFs) were determined by relating all these values, as well as by toxicokinetic fitting and by in vitro–in vivo extrapolation modelling (IVIVE). The results showed a high concordance with the values obtained in vivo. Moreover, the study highlighted the importance of experimentally determining Cfree and Ccell, as the predicted values can vary depending on the chemical, thereby influencing the BCF outcome. This variation occurs because models do not account for the absorption and biotransformation kinetics of the compounds. The data presented may contribute to refining predictive models. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

10 pages, 216 KB  
Article
Absence of Adverse Effects on Pulmonary Histopathology and Functions Following Inhalation Exposure to Chloromethylisothiazolinone/Methylisothiazolinone
by Sam Kacew and Esref Demir
Toxics 2025, 13(6), 482; https://doi.org/10.3390/toxics13060482 - 6 Jun 2025
Cited by 1 | Viewed by 1091
Abstract
In South Korea, issues have been raised regarding exposure to humidifier disinfectant products containing certain chemicals postulated to induce lung diseases in consumers. Several rodent studies utilizing whole-body inhalation, which comprises freely moving animals breathing through the nares, and intranasal instillation involving restraint, [...] Read more.
In South Korea, issues have been raised regarding exposure to humidifier disinfectant products containing certain chemicals postulated to induce lung diseases in consumers. Several rodent studies utilizing whole-body inhalation, which comprises freely moving animals breathing through the nares, and intranasal instillation involving restraint, were conducted by various Korean Governmental Agencies on these products to investigate whether there is a causal relationship between these products and the development of lung diseases. In particular, the humidifier disinfectant product Kathon, containing chloromethylisothiazolinone and methylisothiazolinone (CMIT and MIT), when directly introduced into inhalation chambers at varying concentrations for up to 13 weeks, produced no significant histopathological alterations and no marked changes in pulmonary function parameters. Further, there was no evidence of cytotoxicity; total and differential cell counts did not differ from control. In addition, the levels of cytokine markers of inflammation were not markedly altered. In contrast to published papers utilizing intratracheal and intranasal instillation, where the animal is anesthetized and chemical bypasses the defense mechanisms in the respiratory tract, then reaches the pulmonary region, ignoring recommended dose levels was found to initiate fibrotic responses in mice and rats. However, the usefulness of experimental results to extrapolate to humans obtained following intratracheal and intranasal instillation studies is of limited value because the data generated did not use a realistic design and appropriate dosimetry. Therefore, these findings have significant drawbacks in their use to characterize an inhalation risk for pulmonary fibrosis in humans and cannot be used for the extrapolation of such risk to humans. It is thus evident that the inhalation data generated by the Korean Regulatory Agencies are more realistic and show that exposure to CMIT and MIT does not initiate pulmonary fibrosis. Although inhalation studies still do not fully replicate real-world human exposure scenarios and have limitations for direct extrapolation to humans, they are nevertheless more appropriate than intratracheal or intranasal instillation models. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

15 pages, 1559 KB  
Article
Effect of Retinoic Acid on the Cerebral Vasculature: Analysis of the Vasoactive Response of Smooth Muscle Cells in Normal and Ischemic Contexts
by Manuel R. Pouso, Emanuel Farinha, Henrique E. Costa, Margarida Lorigo, Graça Baltazar and Elisa Cairrao
J. Xenobiot. 2025, 15(3), 69; https://doi.org/10.3390/jox15030069 - 10 May 2025
Viewed by 1144
Abstract
Retinoic acid (RA), a vitamin A derivative, has been shown to prevent the development of neurological disorders by ensuring the integrity of the physiological structure of the neurovascular unit and regulating the physiological cell’s function. After an ischemia event, RA reduces the effects [...] Read more.
Retinoic acid (RA), a vitamin A derivative, has been shown to prevent the development of neurological disorders by ensuring the integrity of the physiological structure of the neurovascular unit and regulating the physiological cell’s function. After an ischemia event, RA reduces the effects of blood–brain barrier disruption by blocking the apoptotic signaling pathway. However, the effect of RA on smooth muscle cells (SMCs), which are crucial to maintaining blood perfusion, has never been investigated. This study aimed to evaluate the effect of RA on the vasoactive response of middle cerebral artery SMCs in normal and ischemic contexts (O2 and glucose deprivation, OGD). For this purpose, SMCs cultures were incubated with RA, and the vasoactive response was evaluated in both conditions (OGD and non-OGD). To simulate OGD, co-cultures of neurons and astrocytes were made and incubated with RA to analyze the effect of the secretome released by these cells on SMCs contractility. In non-OGD conditions, RA induced rapid relaxation of SMCs and, in the long term (24 h), promoted cell contraction. In OGD conditions, SMCs contractility patterns were different when pre-incubated with RA. In these conditions, NA loses its contractility effect, and SNP seems to revert its relaxant effect. However, SMCs pre-incubated with 5 uM RA show the vasorelaxant pattern typical of SNP, despite the OGD condition. These effects demonstrate an effect of RA on the vasoactive profile of SMCs, with therapeutic potential in OGD conditions. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

15 pages, 803 KB  
Article
Assessing the Application of Physiologically Based Pharmacokinetic Models in Acute Chemical Incidents
by Sydney Boone, Wenjie Sun, Pavani Gonnabathula, Jennifer Wu, Maureen F. Orr, M. Moiz Mumtaz and Patricia Ruiz
J. Xenobiot. 2025, 15(2), 42; https://doi.org/10.3390/jox15020042 - 11 Mar 2025
Cited by 1 | Viewed by 1994
Abstract
Chemical release incidents in the United States involve hazardous chemicals that can harm nearby communities. A historical tracking of these chemical release incidents from 1991 to 2014 across up to 16 states has been conducted by The Agency for Toxic Substances and Disease [...] Read more.
Chemical release incidents in the United States involve hazardous chemicals that can harm nearby communities. A historical tracking of these chemical release incidents from 1991 to 2014 across up to 16 states has been conducted by The Agency for Toxic Substances and Disease Registry (ATSDR), utilizing the Hazardous Substances Emergency Events Surveillance (HSEES) and the National Toxic Substance Incidents Program (NTSIP) systems. By analyzing surveillance data, patterns of these different chemical releases can be identified to develop and construct a health-protective course of action. Physiologically Based Pharmacokinetic (PBPK) models can simulate chemical exposures during acute chemical incidents. For a retrospective study of an acute chemical release in 2012, we examined the components necessary to integrate PBPK-modeled exposure assessments in ATSDR’s Assessment of Chemical Exposure (ACE) program. We focused on data from a published investigation of vinyl chloride (VC) exposure to assess the utility of PBPK in evaluating exposures among residential populations near the release site. The initial estimate from the real-time air monitoring at the release site revealed that air levels greatly exceeded the Acute Exposure Guideline Levels (AEGL) of 1200 ppm, with PBPK models predicting corresponding VC blood levels of 3.17 mg/L. “Real-time” and “after-action” air modeling estimated VC levels at various distances from the release site over time. PBPK modeling provided insight into possible residential blood levels of VC over several days following the incident. These findings indicate that PBPK modeling could be valuable for reconstructing exposure scenarios associated with acute chemical releases. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Figure 1

19 pages, 3392 KB  
Article
Impact of Short-Term Exposure to Non-Functionalized Polystyrene Nanoparticles on DNA Methylation and Gene Expression in Human Peripheral Blood Mononuclear Cells
by Kinga Malinowska, Kateryna Tarhonska, Marek Foksiński, Paulina Sicińska, Ewa Jabłońska, Edyta Reszka, Ewelina Zarakowska, Daniel Gackowski, Karolina Górecka, Aneta Balcerczyk and Bożena Bukowska
Int. J. Mol. Sci. 2024, 25(23), 12786; https://doi.org/10.3390/ijms252312786 - 28 Nov 2024
Cited by 6 | Viewed by 2067
Abstract
The aim of the present study was to investigate the concentration- and size-dependent effects of non-functionalized polystyrene nanoparticles (PS-NPs) of varying diameters (29 nm, 44 nm, and 72 nm) on specific epigenetic modifications and gene expression profiles related to carcinogenesis in human peripheral [...] Read more.
The aim of the present study was to investigate the concentration- and size-dependent effects of non-functionalized polystyrene nanoparticles (PS-NPs) of varying diameters (29 nm, 44 nm, and 72 nm) on specific epigenetic modifications and gene expression profiles related to carcinogenesis in human peripheral blood mononuclear cells (PBMCs) in vitro. This in vitro human-cell-based model is used to investigate the epigenetic effect of various environmental xenobiotics. PBMCs were exposed to PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 h period. The analysis encompassed epigenetic DNA modifications, including levels of 5-methyl-2′-deoxycytidine (5-mdC) and 5-(hydroxymethyl)-2′-deoxycytidine (5-hmdC), as well as the levels of 2′-deoxyuridine (dU) and 5-(hydroxymethyl)-2′-deoxyuridine (5-hmdU) by mass spectrometry methods, methylation in the promoter regions of selected tumor suppressor genes TP53 (P53), CDKN2A (P16), and CDKN1A (P21) and proto-oncogenes (CCND1, BCL2, BCL6), along with the expression profile of the indicated genes by real-time PCR assays. The results obtained revealed no significant changes in global DNA methylation/demethylation levels in PBMCs after short-term exposure to non-functionalized PS-NPs. Furthermore, there were no changes observed in the level of dU, a product of cytosine deamination. However, the level of 5-hmdU, a product of both 5-hmdC deamination and thymine oxidation, was increased at the highest concentrations of larger PS-NPs (72 nm). None of the PS-NPs caused a change in the methylation pattern of the promoter regions of the TP53, CDKN2A, CDKN1A, CCND1, BCL2 and BCL6 genes. However, gene profiling indicated that PS-NPs with a diameter of 29 nm and 44 nm altered the expression of the TP53 gene. The smallest PS-NPs with a diameter of 29 nm increased the expression of the TP53 gene at a concentration of 10 µg/mL, while PS-NPs with a diameter of 44 nm did so at a concentration of 100 µg/mL. An increase in the expression of the CDKN2A gene was also observed when PBMCs were exposed to PS-NPs with 29 nm in diameter at the highest concentration. The observed effect depended on both the concentration and the size of the PS-NPs. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Figure 1

20 pages, 3265 KB  
Article
Mechanisms of Adsorption of Phenoxyalkanoic Herbicides on Fulvic and Humic Acids
by Tadeusz Paszko, Joanna Matysiak, Claudio A. Spadotto, Patrycja Boguta and Kamil Skic
Int. J. Mol. Sci. 2024, 25(23), 12699; https://doi.org/10.3390/ijms252312699 - 26 Nov 2024
Cited by 3 | Viewed by 1703
Abstract
Our recent study demonstrated that fulvic and humic acids are the major contributors to the adsorption of phenoxyalkanoic acid herbicides in soils. At very low pH, the neutral forms of these herbicides are bound directly to fulvic and humic acids, whereas at higher [...] Read more.
Our recent study demonstrated that fulvic and humic acids are the major contributors to the adsorption of phenoxyalkanoic acid herbicides in soils. At very low pH, the neutral forms of these herbicides are bound directly to fulvic and humic acids, whereas at higher pH, their anionic forms are adsorbed mainly via bridges created by Al3+ species. The number of active sorption sites associated with Al3+ species complexed with fulvic acids is pH-dependent, whereas the number of corresponding sites in humic acids is pH-independent. Based on the results of the FTIR analysis, research into adsorption thermodynamics, and molecular modeling, an attempt was made in the present study to explain the adsorption mechanisms of six phenoxyalkanoic herbicides used currently in the European Union on the surfaces of the above fractions of humic substances. The obtained values of standard enthalpy (ΔH0) for the adsorption of the anionic forms of phenoxyalkanoic herbicides on fulvic or humic acids complexed with Al3+ were in the range of physical adsorption, i.e., from −8.4 kJ/mol to −2.9 kJ/mol for the former, and from −5.3 kJ/mol to −2.4 kJ/mol for the latter. The study demonstrated that the neutral forms of phenoxyalkanoic herbicides were bound to humic substances mainly via H-bonds, π-π stacking interactions, and hydrophobic interactions. Al3+ species were complexed with fulvic and humic acids to form outer-sphere complexes. Ternary outer-sphere complexes were also created between the anionic forms of phenoxyalkanoic acid herbicides and positively charged Al3+ species complexed with fulvic acids. The mechanisms of adsorption on humic acids involved a ligand exchange between a loosely bound hydroxyl group of hydrolyzed Al3+ complexed with this adsorbent and the anionic form of the herbicide. However, in this case, adsorption took place only in the presence of sufficiently strong hydrophobic and π-π stacking interactions supported by H-bonds. These findings elucidate why phenoxyalkanoic herbicides are mobile in the soil profile and are often rapidly degraded in soils. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

24 pages, 1949 KB  
Article
Exploring Toxicity of Per- and Polyfluoroalkyl Substances (PFAS) Mixture Through ADMET and Toxicogenomic In Silico Analysis: Molecular Insights
by Katarina Baralić, Teodora Petkovski, Nađa Piletić, Đurđica Marić, Aleksandra Buha Djordjevic, Biljana Antonijević and Danijela Đukić-Ćosić
Int. J. Mol. Sci. 2024, 25(22), 12333; https://doi.org/10.3390/ijms252212333 - 17 Nov 2024
Cited by 10 | Viewed by 5509
Abstract
This study aimed to explore the health impacts, mechanisms of toxicity, and key gene biomarkers of a mixture of the most prominent perfluoroalkyl/polyfluoroalkyl substances (PFAS) through in silico ADMET and toxicogenomic analysis. The following databases and tools were used: AdmetSAR (2.0), ADMETlab (2.0), [...] Read more.
This study aimed to explore the health impacts, mechanisms of toxicity, and key gene biomarkers of a mixture of the most prominent perfluoroalkyl/polyfluoroalkyl substances (PFAS) through in silico ADMET and toxicogenomic analysis. The following databases and tools were used: AdmetSAR (2.0), ADMETlab (2.0), Comparative Toxicogenomic Database, ToppGene Suite portal, Metascape (3.5), GeneMANIA server, and CytoHubba and CytoNCA Cytoscape (3.10.3) plug-ins. ADMET analysis showed that PFAS compounds pose risks of organ-specific toxicity, prolonged retention, and metabolic disruptions. Forty mutual genes were identified for all the tested PFAS. The mutual gene set was linked to disruption of lipid metabolism, particularly through nuclear receptors. The most important gene clusters identified were nuclear receptor signaling and PPAR signaling pathways, with kidney and liver diseases, diabetes, and obesity as the most significant related diseases. Phenotype data showed that PFAS compounds impact cell death, growth, inflammation, steroid biosynthesis, and thyroid hormone metabolism. Gene network analysis revealed that 52% of the 40 mutual genes showed co-expression, with co-localization as the next major interaction (18.23%). Eight key genes were extracted from the network: EHHADH, APOA2, MBL2, SULT2A1, FABP1, PPARA, PCK2, and PLIN2. These results highlight the need for further research to fully understand the health risks of PFAS mixtures. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

13 pages, 2463 KB  
Article
Vanadium Toxicity Is Altered by Global Warming Conditions in Sea Urchin Embryos: Metal Bioaccumulation, Cell Stress Response and Apoptosis
by Chiara Martino, Fabiana Geraci, Rosaria Scudiero, Giampaolo Barone, Flores Naselli and Roberto Chiarelli
J. Xenobiot. 2024, 14(3), 1130-1142; https://doi.org/10.3390/jox14030064 - 22 Aug 2024
Cited by 5 | Viewed by 1964
Abstract
In recent decades, the global vanadium (V) industry has been steadily growing, together with interest in the potential use of V compounds as therapeutics, leading to V release in the marine environment and making it an emerging pollutant. Since climate change can amplify [...] Read more.
In recent decades, the global vanadium (V) industry has been steadily growing, together with interest in the potential use of V compounds as therapeutics, leading to V release in the marine environment and making it an emerging pollutant. Since climate change can amplify the sensitivity of marine organisms already facing chemical contamination in coastal areas, here, for the first time, we investigated the combined impact of V and global warming conditions on the development of Paracentrotus lividus sea urchin embryos. Embryo-larval bioassays were carried out in embryos exposed for 24 and 48 h to sodium orthovanadate (Na3VO4) under conditions of near-future ocean warming projections (+3 °C, 21 °C) and of extreme warming at present-day marine heatwave conditions (+6 °C, 24 °C), compared to the control temperature (18 °C). We found that the concomitant exposure to V and higher temperature caused an increased percentage of malformations, impaired skeleton growth, the induction of heat shock protein (HSP)-mediated cell stress response and the activation of apoptosis. We also found a time- and temperature-dependent increase in V bioaccumulation, with a concomitant reduction in intracellular calcium ions (Ca2+). This work demonstrates that embryos’ sensitivity to V pollution is increased under global warming conditions, highlighting the need for studies on multiple stressors. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Figure 1

24 pages, 6321 KB  
Article
Decontamination Effect of Hypochlorous Acid Dry Mist on Selected Bacteria, Viruses, Spores, and Fungi as Well as on Components of Electronic Systems
by Barbara Nasiłowska, Maksymilian Włodarski, Miron Kaliszewski, Zdzisław Bogdanowicz, Łukasz Krzowski, Krzysztof Kopczyński, Grzegorz Witkowski, Agnieszka Czeczott-Urban, Aneta Bombalska, Magdalena Urbańska, Katarzyna Garbat, Aleksandra Sowińska, Marta Kutwin, Wojciech Koperski, Ryszard Woźniak and Zygmunt Mierczyk
Int. J. Mol. Sci. 2024, 25(13), 7198; https://doi.org/10.3390/ijms25137198 - 29 Jun 2024
Cited by 5 | Viewed by 6335
Abstract
This publication presents the effect of hypochlorous acid dry mist as a disinfectant on selected bacteria, viruses, spores, and fungi as well as on portable Microlife OXY 300 finger pulse oximeters and electronic systems of Raspberry Pi Zero microcomputers. The impact of hypochlorous [...] Read more.
This publication presents the effect of hypochlorous acid dry mist as a disinfectant on selected bacteria, viruses, spores, and fungi as well as on portable Microlife OXY 300 finger pulse oximeters and electronic systems of Raspberry Pi Zero microcomputers. The impact of hypochlorous acid on microbiological agents was assessed at concentrations of 300, 500, and 2000 ppm of HClO according to PN-EN 17272 (Variant I). Studies of the impact of hypochlorous acid fog on electronic components were carried out in an aerosol chamber at concentrations of 500 ppm and 2000 ppm according to two models consisting of 30 (Variant II) and 90 fogging cycles (Variant III). Each cycle included the process of generating a dry mist of hypochlorous acid (25 mL/m3), decontamination of the test elements, as well as cleaning the chamber of the disinfectant agent. The exposure of the materials examined on hypochlorous acid dry mist in all variants resulted in a decrease in the number of viruses, bacteria, spores, and fungi tested. In addition, the research showed that in the variants of hypochlorous acid fogging cycles analyzed, no changes in performance parameters and no penetration of dry fog of hypochlorous acid into the interior of the tested medical devices and electronic systems were observed. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Figure 1

Back to TopTop