Topic Editors

Vocational School of Health Services, Department of Medical Services and Techniques, Antalya Bilim University, Antalya 07190, Turkey
Prof. Dr. Sam Kacew
Institute of Population Health, R. Samuel McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Environmental Toxicology and Human Health—2nd Edition

Abstract submission deadline
30 September 2025
Manuscript submission deadline
31 December 2025
Viewed by
9279

Topic Information

Dear Colleagues,

Environmental contamination has now become a major global issue with adverse effects on our health and food security. Humans and animals are being exposed to debilitating levels of contamination every day. Worldwide, air pollution causes millions of premature deaths annually, which are mainly caused by lung cancer, chronic obstructive pulmonary disease, stroke, heart failure, and respiratory infections. Moreover, according to the World Health Organization (WHO), 99% of humankind breathes air containing contaminants above the recommended levels. The United Nations has identified “a pollution-free planet” goal among its three pillars, in addition to climate change and biodiversity, for 2022–2025. To mitigate contamination and relieve the burden of pollution-related disease, we need to devise target-specific strategies. To that end, risk assessments of each chemical and natural contaminant and solid evidence from toxicity studies are of paramount importance. Meticulous efforts should be made to look into the possible mechanisms of action for each pollutant and detect their toxic potential and safe limits through in vitro approaches and comprehensive in vivo animal testing. Indeed, this topic will include environmental pollutants (such as heavy metals, pesticides, nanoparticles, micro-nanoplastics, indoor air pollutants, pharmaceuticals, and industrial toxicants) and their human health effects, risk assessments, the relationship of various diseases, and environmental pollutants. Human exposure to environmental pollutants may cause adverse effects such as neurotoxicity, carcinogenicity, infertility, and metabolic disorders. We welcome original research articles, reviews, and opinion pieces related to the proposed focus area. 

Prof. Dr. Esref Demir
Prof. Dr. Sam Kacew
Topic Editors

Keywords

  • environment and health
  • risk assessment
  • environmental pollutants
  • cancer
  • carcinogenesis
  • toxicity
  • biological effects
  • molecular toxicology

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Environments
environments
3.5 5.7 2014 22.8 Days CHF 1800 Submit
International Journal of Molecular Sciences
ijms
4.9 8.1 2000 16.8 Days CHF 2900 Submit
Toxins
toxins
3.9 7.5 2009 20.3 Days CHF 2700 Submit
Journal of Xenobiotics
jox
6.8 5.3 2011 28 Days CHF 1600 Submit
Metabolites
metabolites
3.5 5.7 2011 16.1 Days CHF 2700 Submit
J
J
- - 2018 39.6 Days CHF 1200 Submit
Current Issues in Molecular Biology
cimb
2.8 2.9 1999 15.8 Days CHF 2200 Submit
Toxics
toxics
3.9 4.5 2013 18.3 Days CHF 2600 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (6 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
15 pages, 803 KiB  
Article
Assessing the Application of Physiologically Based Pharmacokinetic Models in Acute Chemical Incidents
by Sydney Boone, Wenjie Sun, Pavani Gonnabathula, Jennifer Wu, Maureen F. Orr, M. Moiz Mumtaz and Patricia Ruiz
J. Xenobiot. 2025, 15(2), 42; https://doi.org/10.3390/jox15020042 - 11 Mar 2025
Viewed by 574
Abstract
Chemical release incidents in the United States involve hazardous chemicals that can harm nearby communities. A historical tracking of these chemical release incidents from 1991 to 2014 across up to 16 states has been conducted by The Agency for Toxic Substances and Disease [...] Read more.
Chemical release incidents in the United States involve hazardous chemicals that can harm nearby communities. A historical tracking of these chemical release incidents from 1991 to 2014 across up to 16 states has been conducted by The Agency for Toxic Substances and Disease Registry (ATSDR), utilizing the Hazardous Substances Emergency Events Surveillance (HSEES) and the National Toxic Substance Incidents Program (NTSIP) systems. By analyzing surveillance data, patterns of these different chemical releases can be identified to develop and construct a health-protective course of action. Physiologically Based Pharmacokinetic (PBPK) models can simulate chemical exposures during acute chemical incidents. For a retrospective study of an acute chemical release in 2012, we examined the components necessary to integrate PBPK-modeled exposure assessments in ATSDR’s Assessment of Chemical Exposure (ACE) program. We focused on data from a published investigation of vinyl chloride (VC) exposure to assess the utility of PBPK in evaluating exposures among residential populations near the release site. The initial estimate from the real-time air monitoring at the release site revealed that air levels greatly exceeded the Acute Exposure Guideline Levels (AEGL) of 1200 ppm, with PBPK models predicting corresponding VC blood levels of 3.17 mg/L. “Real-time” and “after-action” air modeling estimated VC levels at various distances from the release site over time. PBPK modeling provided insight into possible residential blood levels of VC over several days following the incident. These findings indicate that PBPK modeling could be valuable for reconstructing exposure scenarios associated with acute chemical releases. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Figure 1

19 pages, 3392 KiB  
Article
Impact of Short-Term Exposure to Non-Functionalized Polystyrene Nanoparticles on DNA Methylation and Gene Expression in Human Peripheral Blood Mononuclear Cells
by Kinga Malinowska, Kateryna Tarhonska, Marek Foksiński, Paulina Sicińska, Ewa Jabłońska, Edyta Reszka, Ewelina Zarakowska, Daniel Gackowski, Karolina Górecka, Aneta Balcerczyk and Bożena Bukowska
Int. J. Mol. Sci. 2024, 25(23), 12786; https://doi.org/10.3390/ijms252312786 - 28 Nov 2024
Cited by 1 | Viewed by 1040
Abstract
The aim of the present study was to investigate the concentration- and size-dependent effects of non-functionalized polystyrene nanoparticles (PS-NPs) of varying diameters (29 nm, 44 nm, and 72 nm) on specific epigenetic modifications and gene expression profiles related to carcinogenesis in human peripheral [...] Read more.
The aim of the present study was to investigate the concentration- and size-dependent effects of non-functionalized polystyrene nanoparticles (PS-NPs) of varying diameters (29 nm, 44 nm, and 72 nm) on specific epigenetic modifications and gene expression profiles related to carcinogenesis in human peripheral blood mononuclear cells (PBMCs) in vitro. This in vitro human-cell-based model is used to investigate the epigenetic effect of various environmental xenobiotics. PBMCs were exposed to PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 h period. The analysis encompassed epigenetic DNA modifications, including levels of 5-methyl-2′-deoxycytidine (5-mdC) and 5-(hydroxymethyl)-2′-deoxycytidine (5-hmdC), as well as the levels of 2′-deoxyuridine (dU) and 5-(hydroxymethyl)-2′-deoxyuridine (5-hmdU) by mass spectrometry methods, methylation in the promoter regions of selected tumor suppressor genes TP53 (P53), CDKN2A (P16), and CDKN1A (P21) and proto-oncogenes (CCND1, BCL2, BCL6), along with the expression profile of the indicated genes by real-time PCR assays. The results obtained revealed no significant changes in global DNA methylation/demethylation levels in PBMCs after short-term exposure to non-functionalized PS-NPs. Furthermore, there were no changes observed in the level of dU, a product of cytosine deamination. However, the level of 5-hmdU, a product of both 5-hmdC deamination and thymine oxidation, was increased at the highest concentrations of larger PS-NPs (72 nm). None of the PS-NPs caused a change in the methylation pattern of the promoter regions of the TP53, CDKN2A, CDKN1A, CCND1, BCL2 and BCL6 genes. However, gene profiling indicated that PS-NPs with a diameter of 29 nm and 44 nm altered the expression of the TP53 gene. The smallest PS-NPs with a diameter of 29 nm increased the expression of the TP53 gene at a concentration of 10 µg/mL, while PS-NPs with a diameter of 44 nm did so at a concentration of 100 µg/mL. An increase in the expression of the CDKN2A gene was also observed when PBMCs were exposed to PS-NPs with 29 nm in diameter at the highest concentration. The observed effect depended on both the concentration and the size of the PS-NPs. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Figure 1

20 pages, 3265 KiB  
Article
Mechanisms of Adsorption of Phenoxyalkanoic Herbicides on Fulvic and Humic Acids
by Tadeusz Paszko, Joanna Matysiak, Claudio A. Spadotto, Patrycja Boguta and Kamil Skic
Int. J. Mol. Sci. 2024, 25(23), 12699; https://doi.org/10.3390/ijms252312699 - 26 Nov 2024
Cited by 1 | Viewed by 705
Abstract
Our recent study demonstrated that fulvic and humic acids are the major contributors to the adsorption of phenoxyalkanoic acid herbicides in soils. At very low pH, the neutral forms of these herbicides are bound directly to fulvic and humic acids, whereas at higher [...] Read more.
Our recent study demonstrated that fulvic and humic acids are the major contributors to the adsorption of phenoxyalkanoic acid herbicides in soils. At very low pH, the neutral forms of these herbicides are bound directly to fulvic and humic acids, whereas at higher pH, their anionic forms are adsorbed mainly via bridges created by Al3+ species. The number of active sorption sites associated with Al3+ species complexed with fulvic acids is pH-dependent, whereas the number of corresponding sites in humic acids is pH-independent. Based on the results of the FTIR analysis, research into adsorption thermodynamics, and molecular modeling, an attempt was made in the present study to explain the adsorption mechanisms of six phenoxyalkanoic herbicides used currently in the European Union on the surfaces of the above fractions of humic substances. The obtained values of standard enthalpy (ΔH0) for the adsorption of the anionic forms of phenoxyalkanoic herbicides on fulvic or humic acids complexed with Al3+ were in the range of physical adsorption, i.e., from −8.4 kJ/mol to −2.9 kJ/mol for the former, and from −5.3 kJ/mol to −2.4 kJ/mol for the latter. The study demonstrated that the neutral forms of phenoxyalkanoic herbicides were bound to humic substances mainly via H-bonds, π-π stacking interactions, and hydrophobic interactions. Al3+ species were complexed with fulvic and humic acids to form outer-sphere complexes. Ternary outer-sphere complexes were also created between the anionic forms of phenoxyalkanoic acid herbicides and positively charged Al3+ species complexed with fulvic acids. The mechanisms of adsorption on humic acids involved a ligand exchange between a loosely bound hydroxyl group of hydrolyzed Al3+ complexed with this adsorbent and the anionic form of the herbicide. However, in this case, adsorption took place only in the presence of sufficiently strong hydrophobic and π-π stacking interactions supported by H-bonds. These findings elucidate why phenoxyalkanoic herbicides are mobile in the soil profile and are often rapidly degraded in soils. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

24 pages, 1949 KiB  
Article
Exploring Toxicity of Per- and Polyfluoroalkyl Substances (PFAS) Mixture Through ADMET and Toxicogenomic In Silico Analysis: Molecular Insights
by Katarina Baralić, Teodora Petkovski, Nađa Piletić, Đurđica Marić, Aleksandra Buha Djordjevic, Biljana Antonijević and Danijela Đukić-Ćosić
Int. J. Mol. Sci. 2024, 25(22), 12333; https://doi.org/10.3390/ijms252212333 - 17 Nov 2024
Cited by 2 | Viewed by 2320
Abstract
This study aimed to explore the health impacts, mechanisms of toxicity, and key gene biomarkers of a mixture of the most prominent perfluoroalkyl/polyfluoroalkyl substances (PFAS) through in silico ADMET and toxicogenomic analysis. The following databases and tools were used: AdmetSAR (2.0), ADMETlab (2.0), [...] Read more.
This study aimed to explore the health impacts, mechanisms of toxicity, and key gene biomarkers of a mixture of the most prominent perfluoroalkyl/polyfluoroalkyl substances (PFAS) through in silico ADMET and toxicogenomic analysis. The following databases and tools were used: AdmetSAR (2.0), ADMETlab (2.0), Comparative Toxicogenomic Database, ToppGene Suite portal, Metascape (3.5), GeneMANIA server, and CytoHubba and CytoNCA Cytoscape (3.10.3) plug-ins. ADMET analysis showed that PFAS compounds pose risks of organ-specific toxicity, prolonged retention, and metabolic disruptions. Forty mutual genes were identified for all the tested PFAS. The mutual gene set was linked to disruption of lipid metabolism, particularly through nuclear receptors. The most important gene clusters identified were nuclear receptor signaling and PPAR signaling pathways, with kidney and liver diseases, diabetes, and obesity as the most significant related diseases. Phenotype data showed that PFAS compounds impact cell death, growth, inflammation, steroid biosynthesis, and thyroid hormone metabolism. Gene network analysis revealed that 52% of the 40 mutual genes showed co-expression, with co-localization as the next major interaction (18.23%). Eight key genes were extracted from the network: EHHADH, APOA2, MBL2, SULT2A1, FABP1, PPARA, PCK2, and PLIN2. These results highlight the need for further research to fully understand the health risks of PFAS mixtures. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

13 pages, 2463 KiB  
Article
Vanadium Toxicity Is Altered by Global Warming Conditions in Sea Urchin Embryos: Metal Bioaccumulation, Cell Stress Response and Apoptosis
by Chiara Martino, Fabiana Geraci, Rosaria Scudiero, Giampaolo Barone, Flores Naselli and Roberto Chiarelli
J. Xenobiot. 2024, 14(3), 1130-1142; https://doi.org/10.3390/jox14030064 - 22 Aug 2024
Cited by 4 | Viewed by 1204
Abstract
In recent decades, the global vanadium (V) industry has been steadily growing, together with interest in the potential use of V compounds as therapeutics, leading to V release in the marine environment and making it an emerging pollutant. Since climate change can amplify [...] Read more.
In recent decades, the global vanadium (V) industry has been steadily growing, together with interest in the potential use of V compounds as therapeutics, leading to V release in the marine environment and making it an emerging pollutant. Since climate change can amplify the sensitivity of marine organisms already facing chemical contamination in coastal areas, here, for the first time, we investigated the combined impact of V and global warming conditions on the development of Paracentrotus lividus sea urchin embryos. Embryo-larval bioassays were carried out in embryos exposed for 24 and 48 h to sodium orthovanadate (Na3VO4) under conditions of near-future ocean warming projections (+3 °C, 21 °C) and of extreme warming at present-day marine heatwave conditions (+6 °C, 24 °C), compared to the control temperature (18 °C). We found that the concomitant exposure to V and higher temperature caused an increased percentage of malformations, impaired skeleton growth, the induction of heat shock protein (HSP)-mediated cell stress response and the activation of apoptosis. We also found a time- and temperature-dependent increase in V bioaccumulation, with a concomitant reduction in intracellular calcium ions (Ca2+). This work demonstrates that embryos’ sensitivity to V pollution is increased under global warming conditions, highlighting the need for studies on multiple stressors. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Figure 1

24 pages, 6321 KiB  
Article
Decontamination Effect of Hypochlorous Acid Dry Mist on Selected Bacteria, Viruses, Spores, and Fungi as Well as on Components of Electronic Systems
by Barbara Nasiłowska, Maksymilian Włodarski, Miron Kaliszewski, Zdzisław Bogdanowicz, Łukasz Krzowski, Krzysztof Kopczyński, Grzegorz Witkowski, Agnieszka Czeczott-Urban, Aneta Bombalska, Magdalena Urbańska, Katarzyna Garbat, Aleksandra Sowińska, Marta Kutwin, Wojciech Koperski, Ryszard Woźniak and Zygmunt Mierczyk
Int. J. Mol. Sci. 2024, 25(13), 7198; https://doi.org/10.3390/ijms25137198 - 29 Jun 2024
Cited by 3 | Viewed by 2114
Abstract
This publication presents the effect of hypochlorous acid dry mist as a disinfectant on selected bacteria, viruses, spores, and fungi as well as on portable Microlife OXY 300 finger pulse oximeters and electronic systems of Raspberry Pi Zero microcomputers. The impact of hypochlorous [...] Read more.
This publication presents the effect of hypochlorous acid dry mist as a disinfectant on selected bacteria, viruses, spores, and fungi as well as on portable Microlife OXY 300 finger pulse oximeters and electronic systems of Raspberry Pi Zero microcomputers. The impact of hypochlorous acid on microbiological agents was assessed at concentrations of 300, 500, and 2000 ppm of HClO according to PN-EN 17272 (Variant I). Studies of the impact of hypochlorous acid fog on electronic components were carried out in an aerosol chamber at concentrations of 500 ppm and 2000 ppm according to two models consisting of 30 (Variant II) and 90 fogging cycles (Variant III). Each cycle included the process of generating a dry mist of hypochlorous acid (25 mL/m3), decontamination of the test elements, as well as cleaning the chamber of the disinfectant agent. The exposure of the materials examined on hypochlorous acid dry mist in all variants resulted in a decrease in the number of viruses, bacteria, spores, and fungi tested. In addition, the research showed that in the variants of hypochlorous acid fogging cycles analyzed, no changes in performance parameters and no penetration of dry fog of hypochlorous acid into the interior of the tested medical devices and electronic systems were observed. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Figure 1

Back to TopTop