Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = integrated Schottky diode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5551 KB  
Article
State-Space Modelling of Schottky Diode Rectifiers Including Parasitic and Coupling Effects up to the Terahertz Band
by Martins Aizanabor Odiamenhi, Haleh Jahanbakhsh Basherlou, Chan Hwang See, Naser Ojaroudi Parchin, Keng Goh and Hongnian Yu
Electronics 2025, 14(18), 3718; https://doi.org/10.3390/electronics14183718 - 19 Sep 2025
Viewed by 373
Abstract
A nonlinear state-space model for Schottky diode rectifiers is presented that incorporates junction dynamics, layout parasitic effects, and electromagnetic coupling effects. Unlike prior approaches, the model resolves conduction intervals under harmonic-rich excitation and integrates electromagnetic voltage–current feedback to capture field-induced perturbations at high [...] Read more.
A nonlinear state-space model for Schottky diode rectifiers is presented that incorporates junction dynamics, layout parasitic effects, and electromagnetic coupling effects. Unlike prior approaches, the model resolves conduction intervals under harmonic-rich excitation and integrates electromagnetic voltage–current feedback to capture field-induced perturbations at high frequencies. The framework was validated through the design of a 5.8 GHz rectifier, achieving 62% RF–DC efficiency at −10 dBm into a 500 Ω load, with close agreement between the simulation and measurement. The results confirm the model’s predictive accuracy and its utility for high-efficiency rectenna systems in microwave and terahertz applications. Full article
Show Figures

Figure 1

24 pages, 8518 KB  
Article
Two-Dimensional Materials for Raman Thermometry on Power Electronic Devices
by Mohammed Boussekri, Lucie Frogé, Raphael Sommet, Julie Cholet, Dominique Carisetti, Bruno Dlubak, Eva Desgué, Patrick Garabedian, Pierre Legagneux, Nicolas Sarazin, Mathieu Moreau, David Brunel, Pierre Seneor, Etienne Carré, Marie-Blandine Martin, Vincent Renaudin and Tony Moinet
Nanomaterials 2025, 15(17), 1344; https://doi.org/10.3390/nano15171344 - 1 Sep 2025
Viewed by 935
Abstract
Raman thermometry is a powerful technique for sub-microscale thermal measurements on semiconductor-based devices, provided that the active region remains accessible and is not obscured by metallization. Since pure metals do not exhibit Raman scattering, traditional Raman thermometry becomes ineffective in such cases. To [...] Read more.
Raman thermometry is a powerful technique for sub-microscale thermal measurements on semiconductor-based devices, provided that the active region remains accessible and is not obscured by metallization. Since pure metals do not exhibit Raman scattering, traditional Raman thermometry becomes ineffective in such cases. To overcome this limitation, we propose the use of atomically thin Two-Dimensional materials as local temperature sensors. These materials generate Raman spectra at the nanoscale, enabling highly precise absolute surface temperature measurements. In this study, we investigate the feasibility and effectiveness of this approach by applying it to power devices, including a calibrated gold resistor and an SiC Junction Barrier Schottky (JBS) diode. We assess the processing challenges and measurement reliability of 2D materials for thermal characterization. To validate our findings, we complement Raman thermometry with thermoreflectance measurements, which are well suited for metallized surfaces. For example, on the serpentine resistor, Raman thermometry applied to the 2D material yielded a thermal resistance of 22.099 °C/W, while thermoreflectance on the metallic surface measured 21.898 °C/W. This close agreement suggests good thermal conductance at the metal/2D material interface. The results demonstrate the potential of integrating 2D materials as effective nanoscale temperature probes, offering new insights into thermal management strategies for advanced electronic components. Additionally, thermal simulations are conducted to further analyze the thermal response of these devices under operational conditions. Furthermore, we investigate two 2D material integration methods, transfer and direct growth, and evaluate them through measured thermal resistances for the SiC JBS diode, highlighting the influence of the deposition technique on thermal performance. Full article
Show Figures

Graphical abstract

10 pages, 4005 KB  
Article
Novel 4H-SiC Double-Trench MOSFETs with Integrated Schottky Barrier and MOS-Channel Diodes for Enhanced Breakdown Voltage and Switching Characteristics
by Peiran Wang, Chenglong Li, Chenkai Deng, Qinhan Yang, Shoucheng Xu, Xinyi Tang, Ziyang Wang, Wenchuan Tao, Nick Tao, Qing Wang and Hongyu Yu
Nanomaterials 2025, 15(12), 946; https://doi.org/10.3390/nano15120946 - 18 Jun 2025
Viewed by 752
Abstract
In this study, a novel silicon carbide (SiC) double-trench MOSFET (DT-MOS) combined Schottky barrier diode (SBD) and MOS-channel diode (MCD) is proposed and investigated using TCAD simulations. The integrated MCD helps inactivate the parasitic body diode when the device is utilized as a [...] Read more.
In this study, a novel silicon carbide (SiC) double-trench MOSFET (DT-MOS) combined Schottky barrier diode (SBD) and MOS-channel diode (MCD) is proposed and investigated using TCAD simulations. The integrated MCD helps inactivate the parasitic body diode when the device is utilized as a freewheeling diode, eliminating bipolar degradation. The adjustment of SBD position provides an alternative path for reverse conduction and mitigates the electric field distribution near the bottom source trench region. As a result of the Schottky contact adjustment, the reverse conduction characteristics are less influenced by the source oxide thickness, and the breakdown voltage (BV) is largely improved from 800 V to 1069 V. The gate-to-drain capacitance is much lower due to the removal of the bottom oxide, bringing an improvement to the turn-on switching rise time from 2.58 ns to 0.68 ns. These optimized performances indicate the proposed structure with both SBD and MCD has advantages in switching and breakdown characteristics. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

11 pages, 3869 KB  
Article
A Wide-Angle and Polarization-Insensitive Rectifying Metasurface for 5.8 GHz RF Energy Harvesting
by Zhihui Guo, Juan Yu and Lin Dong
Micromachines 2025, 16(6), 611; https://doi.org/10.3390/mi16060611 - 23 May 2025
Cited by 1 | Viewed by 716
Abstract
This paper presents a rectifying metasurface (RMS) that enables wide-angle, polarization-insensitive wireless energy harvesting in the Wi-Fi frequency range. The RMS consists of a metasurface integrated with rectifying diodes, a low-pass filter (LPF), and a resistive load. In the structural design, the RMS [...] Read more.
This paper presents a rectifying metasurface (RMS) that enables wide-angle, polarization-insensitive wireless energy harvesting in the Wi-Fi frequency range. The RMS consists of a metasurface integrated with rectifying diodes, a low-pass filter (LPF), and a resistive load. In the structural design, the RMS incorporates four Schottky diodes placed on the bottom structure and connected to the top structure through four metallized vias. This configuration facilitates impedance matching between the metasurface and the diodes, omitting the need for conventional rectifier circuits or external matching networks and removing the impact of soldering variations. A 3 × 3 RMS prototype was manufactured and subjected to experimental validation. The measurements confirm that the RMS achieves a peak RF-to-DC conversion efficiency of 68.3% at 5.8 GHz with a 12.5 dBm input power, while maintaining stable performance across a wide range of incident angles and polarization states. Full article
Show Figures

Figure 1

23 pages, 3110 KB  
Article
Optimization of PID Controllers Using Groupers and Moray Eels Optimization with Dual-Stream Multi-Dependency Graph Neural Networks for Enhanced Dynamic Performance
by Vaishali H. Kamble, Manisha Dale, R. B. Dhumale and Aziz Nanthaamornphong
Energies 2025, 18(8), 2034; https://doi.org/10.3390/en18082034 - 16 Apr 2025
Viewed by 667
Abstract
Traditional proportional–integral–derivative (PID) controllers are often utilized in industrial control applications due to their simplicity and ease of implementation. This study presents a novel control strategy that integrates the Groupers and Moray Eels Optimization (GMEO) algorithm with a Dual-Stream Multi-Dependency Graph Neural Network [...] Read more.
Traditional proportional–integral–derivative (PID) controllers are often utilized in industrial control applications due to their simplicity and ease of implementation. This study presents a novel control strategy that integrates the Groupers and Moray Eels Optimization (GMEO) algorithm with a Dual-Stream Multi-Dependency Graph Neural Network (DMGNN) to optimize PID controller parameters. The approach addresses key challenges such as system nonlinearity, dynamic adaptation to fluctuating conditions, and maintaining robust performance. In the proposed framework, the GMEO technique is employed to optimize the PID gain values, while the DMGNN model forecasts system behavior and enables localized adjustments to the PID parameters based on feedback. This dynamic tuning mechanism enables the controller to adapt effectively to changes in input voltage and load variations, thereby enhancing system accuracy, responsiveness, and overall performance. The proposed strategy is assessed and contrasted with existing strategies on the MATLAB platform. The proposed system achieves a significantly reduced settling time of 100 ms, ensuring rapid response and stability under varying load conditions. Additionally, it minimizes overshoot to 1.5% and reduces the steady-state error to just 0.005 V, demonstrating superior accuracy and efficiency compared to existing methods. These improvements demonstrate the system’s ability to deliver optimal performance while effectively adapting to dynamic environments, showcasing its superiority over existing techniques. Full article
(This article belongs to the Special Issue Advanced Power Electronics Technology)
Show Figures

Figure 1

22 pages, 22157 KB  
Article
A Watt-Level RF Wireless Power Transfer System with Intelligent Auto-Tracking Function
by Zhaoxu Yan, Chuandeng Hu, Bo Hou and Weijia Wen
Electronics 2025, 14(7), 1259; https://doi.org/10.3390/electronics14071259 - 22 Mar 2025
Cited by 1 | Viewed by 1947
Abstract
Radio-frequency (RF) microwave wireless power transfer (WPT) offers an efficient means of delivering energy to a wide array of devices over long distances. Previous RF WPT systems faced significant challenges, including complex hardware and control systems, software deficiencies, insufficient rectification power, lack of [...] Read more.
Radio-frequency (RF) microwave wireless power transfer (WPT) offers an efficient means of delivering energy to a wide array of devices over long distances. Previous RF WPT systems faced significant challenges, including complex hardware and control systems, software deficiencies, insufficient rectification power, lack of high-performance substrate materials, and electromagnetic radiation hazards. Addressing these issues, this paper proposes the world’s first watt-level RF WPT system capable of intelligent continuous tracking and occlusion judgment. Our 5.8 GHz band RF WPT system integrates several advanced technologies, such as millimeter-precision lidar, the multi-object image recognition algorithm, the accurate 6-bit continuous beamforming algorithm, a compact 16-channel 32 W high-power transmitting system, a pair of ultra-low axial ratio circularly polarized antenna arrays, ultra-low-loss high-strength ceramic substrates, and a 2.4 W high-power Schottky diode array rectifier achieving a rectification efficiency of 66.8%. Additionally, we construct a platform to demonstrate the application of the proposed RF WPT system in battery-free vehicles, achieving unprecedented 360 uninterrupted power supply to the battery-free vehicle. In summary, this system represents the most functionally complete RF WPT system to date, serving as a milestone for several critical fields such as smart living, transportation electrification, and battery-less/free societies. Full article
Show Figures

Figure 1

16 pages, 3135 KB  
Article
Short-Circuit Characteristic Analysis of SiC Trench MOSFETs with Dual Integrated Schottky Barrier Diodes
by Ling Sang, Xiping Niu, Zhanwei Shen, Yu Huang, Xuan Tang, Kaige Huang, Jinyi Xu, Yawei He, Feng He, Zheyang Li, Rui Jin, Shizhong Yue and Feng Zhang
Electronics 2025, 14(5), 853; https://doi.org/10.3390/electronics14050853 - 21 Feb 2025
Viewed by 1449
Abstract
A 4H-silicon carbide (SiC) trench gate metal–oxide–semiconductor field-effect transistor (MOSFET) with dual integrated Schottky barrier diodes (SBDs) was characterized using numerical simulations. The advantage of three-dimensional stacked integration is that it allows the proposed structure to obtain an electric field of below 0.6 [...] Read more.
A 4H-silicon carbide (SiC) trench gate metal–oxide–semiconductor field-effect transistor (MOSFET) with dual integrated Schottky barrier diodes (SBDs) was characterized using numerical simulations. The advantage of three-dimensional stacked integration is that it allows the proposed structure to obtain an electric field of below 0.6 MV/cm in the gate oxide and SBD contacts and achieve ~10% lower forward voltage of SBDs than the planar gate SBD-integrated MOSFET (PSI-MOS) and the trench gate structure with three p-type-protecting layers (TPL-MOS). The dual-SBD-integrated MOSFET (DSI-MOS) also highlights the better influences of the more than 70% reduction in the miller charge, as well as the over 50% reduction in switching loss compared to the others. Furthermore, the short-circuit (SC) robustness of the three devices was identified. The DSI-MOS attains the critical energy and the aluminum melting point in a longer SC time interval than the TPL-MOS. The p-shield layers in the DSI-MOS are demonstrated to yield the huge benefit of improving the reliability of the contacts when SC reliability is considered. Full article
Show Figures

Figure 1

28 pages, 7293 KB  
Article
Integration of p-Type PdPc and n-Type SnZnO into Hybrid Nanofibers Using Simple Chemical Route for Enhancement of Schottky Diode Efficiency
by A. Al-Sayed, Miad Ali Siddiq and Elsayed Elgazzar
Physics 2025, 7(1), 4; https://doi.org/10.3390/physics7010004 - 23 Jan 2025
Viewed by 2652
Abstract
Palladium phthalocyanine (PdPc) and palladium phthalocyanine integrated with tin–zinc oxide (PdPc:SnZnO) were prepared using a simple chemical approach, and their structural and morphological properties were identified using X-ray diffraction, energy dispersive X-ray analysis, scanning electron microscopy, and transmission electron microscopy techniques. The PdPc:SnZnO [...] Read more.
Palladium phthalocyanine (PdPc) and palladium phthalocyanine integrated with tin–zinc oxide (PdPc:SnZnO) were prepared using a simple chemical approach, and their structural and morphological properties were identified using X-ray diffraction, energy dispersive X-ray analysis, scanning electron microscopy, and transmission electron microscopy techniques. The PdPc:SnZnO nanohybrid revealed a polycrystalline structure combining n-type metal oxide SnZnO nanoparticles with p-type organic PdPc molecules. The surface morphology exhibited wrinkled nanofibers decorated with tiny spheres and had a large aspect ratio. The thin film revealed significant optical absorption within the ultraviolet and visible spectra, with narrow band gaps measured at 1.52 eV and 2.60 eV. The electronic characteristics of Al/n-Si/PdPc/Ag and Al/n-Si/PdPc:SnZnO/Ag Schottky diodes were investigated using the current–voltage dependence in both the dark conditions and under illumination. The photodiodes displayed non-ideal behavior with an ideality factor greater than unity. The hybrid diode showed considerably high rectification ratio of 899, quite a low potential barrier, substantial specific photodetectivity, and high enough quantum efficiency, found to be influenced by dopant atoms and the unique topological architecture of the nanohybrid. The capacitance/conductance–voltage dependence measurements revealed the influence of alternative current signals on trapped centers at the interface state, leading to an increase in charge carrier density. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

14 pages, 7523 KB  
Article
Integrated Junction Barrier Schottky Diode and MOS-Channel Diode in SiC Planar MOSFETs for Optimization of Reverse Performances
by Xinyu Li, Feng He, Xiping Niu, Ling Sang, Yawei He, Kaixuan Xu, Yan Tian, Xintian Zhou, Yunpeng Jia and Rui Jin
Electronics 2024, 13(23), 4770; https://doi.org/10.3390/electronics13234770 - 2 Dec 2024
Viewed by 1205
Abstract
A novel planar silicon carbide (SiC) MOSFET integrated with both MOS-channel diode (MCD) and junction barrier Schottky diode (JBS) on the same chip (MCD-JBSFET) is proposed and investigated through Technology Computer-Aided Design (TCAD) simulations in this paper. The proposed device features the lowest [...] Read more.
A novel planar silicon carbide (SiC) MOSFET integrated with both MOS-channel diode (MCD) and junction barrier Schottky diode (JBS) on the same chip (MCD-JBSFET) is proposed and investigated through Technology Computer-Aided Design (TCAD) simulations in this paper. The proposed device features the lowest turn-on voltage and the best current conduction capability under the reverse-biased conditions, allowing it to achieve the same reverse conduction capability with fewer MCDs compared to conventional MOSFET with MCD structures (MCDFET). This reduction in the number of MCDs enables more channels to operate under forward-biased conditions, thereby improving power density. Compared to a conventional MOSFET integrated with JBS structure (JBSFET), the reverse current in the MCD-JBSFET flows through both the MCD and JBS, which suppresses the peak lattice temperature at Schottky contact and enhances the high-temperature robustness, especially under surge current conditions. In addition, the split-gate structure in the proposed structure optimizes the reverse capacitance and the figure of merit Ron,sp × Qg by factors of 0.65 and 2.15, respectively. Finally, the switching losses are reduced by 40.2%, indicating the suitability of MCD-JBSFET for high-frequency and high-current applications. Full article
Show Figures

Figure 1

8 pages, 1914 KB  
Article
A Reconfigurable Polarimetric Photodetector Based on the MoS2/PdSe2 Heterostructure with a Charge-Trap Gate Stack
by Xin Huang, Qinghu Bai, Yang Guo, Qijie Liang, Tengzhang Liu, Wugang Liao, Aizi Jin, Baogang Quan, Haifang Yang, Baoli Liu and Changzhi Gu
Nanomaterials 2024, 14(23), 1936; https://doi.org/10.3390/nano14231936 - 1 Dec 2024
Cited by 2 | Viewed by 1729
Abstract
Besides the intensity and wavelength, the ability to analyze the optical polarization of detected light can provide a new degree of freedom for numerous applications, such as object recognition, biomedical applications, environmental monitoring, and remote sensing imaging. However, conventional filter-integrated polarimetric sensing systems [...] Read more.
Besides the intensity and wavelength, the ability to analyze the optical polarization of detected light can provide a new degree of freedom for numerous applications, such as object recognition, biomedical applications, environmental monitoring, and remote sensing imaging. However, conventional filter-integrated polarimetric sensing systems require complex optical components and a complicated fabrication process, severely limiting their on-chip miniaturization and functionalities. Herein, the reconfigurable polarimetric photodetection with photovoltaic mode is developed based on a few-layer MoS2/PdSe2 heterostructure channel and a charge-trap structure composed of Al2O3/HfO2/Al2O3 (AHA)-stacked dielectrics. Because of the remarkable charge-trapping ability of carriers in the AHA stack, the MoS2/PdSe2 channel exhibits a high program/erase current ratio of 105 and a memory window exceeding 20 V. Moreover, the photovoltaic mode of the MoS2/PdSe2 Schottky diode can be operated and manipulable, resulting in high and distinct responsivities in the visible broadband. Interestingly, the linear polarization of the device can be modulated under program/erase states, enabling the reconfigurable capability of linearly polarized photodetection. This study demonstrates a new prototype heterostructure-based photodetector with the capability of both tunable responsivity and linear polarization, demonstrating great potential application toward reconfigurable photosensing and polarization-resolved imaging applications. Full article
(This article belongs to the Special Issue 2D Materials for Advanced Sensors: Fabrication and Applications)
Show Figures

Figure 1

13 pages, 5511 KB  
Article
A Novel 4H-SiC SGT MOSFET with Improved P+ Shielding Region and Integrated Schottky Barrier Diode
by Xiaobo Cao, Jing Liu, Yingnan An, Xing Ren and Zhonggang Yin
Micromachines 2024, 15(7), 933; https://doi.org/10.3390/mi15070933 - 22 Jul 2024
Cited by 1 | Viewed by 1948
Abstract
A silicon carbide (SiC) SGT MOSFET featuring a “一”-shaped P+ shielding region (PSR), named SPDT-MOS, is proposed in this article. The improved PSR is introduced as a replacement for the source trench to enhance the forward performance of the device. Its improvement consists [...] Read more.
A silicon carbide (SiC) SGT MOSFET featuring a “一”-shaped P+ shielding region (PSR), named SPDT-MOS, is proposed in this article. The improved PSR is introduced as a replacement for the source trench to enhance the forward performance of the device. Its improvement consists of two parts. One is to optimize the electric field distribution of the device, and the other is to expand the current conduction path. Based on the improved PSR and grounded split gate (SG), the device remarkably improves the conduction characteristics, gate oxide reliability, and frequency response. Moreover, the integrated sidewall Schottky barrier diode (SBD) prevents the inherent body diode from being activated and improves the reverse recovery characteristics. As a result, the gate-drain capacitance, gate charge, and reverse recovery charge (Qrr) of the SPDT-MOS are 81.2%, 41.2%, and 90.71% lower than those of the DTMOS, respectively. Compared to the double shielding (DS-MOS), the SPDT-MOS exhibits a 20% reduction in on-resistance and an 8.1% increase in breakdown voltage. Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications, 2nd Edition)
Show Figures

Figure 1

12 pages, 3302 KB  
Article
Dual-Module Ultrawide Dynamic-Range High-Power Rectifier for WPT Systems
by Xiaochen Yu, Jinyao Zhang, Minzhang Liu, Xiantao Yang, Yi Huang, Ta-Jen Yen and Jiafeng Zhou
Energies 2024, 17(11), 2707; https://doi.org/10.3390/en17112707 - 3 Jun 2024
Cited by 5 | Viewed by 3009
Abstract
Rectifier plays a pivotal role in wireless power transfer systems. While numerous studies have concentrated on enhancing efficiency and bandwidth at specific high-power levels, practical scenarios often involve unpredictable power inputs. Consequently, a distinct need arises for a rectifier that demonstrates superior efficiency [...] Read more.
Rectifier plays a pivotal role in wireless power transfer systems. While numerous studies have concentrated on enhancing efficiency and bandwidth at specific high-power levels, practical scenarios often involve unpredictable power inputs. Consequently, a distinct need arises for a rectifier that demonstrates superior efficiency across a broad range of input power levels. This paper introduces a high-power RF-to-DC rectifier designed for WPT applications, featuring an ultrawide dynamic range of input power. The rectification process leverages a GaN (gallium nitride) high electron mobility transistor (HEMT) to efficiently handle high power levels up to 12.6 W. The matching circuit was designed to ensure that the rectifier will operate in class-F mode. A Schottky diode is incorporated into the design for relatively lower-power rectification. Seamless switching between the rectification modes of the two circuits is accomplished through the integration of a circulator. The proposed rectifier exhibits a 27.5 dB dynamic range, achieving an efficiency exceeding 55% at 2.4 GHz. Substantial improvement in power handling and dynamic range over traditional rectifiers is demonstrated. Full article
Show Figures

Figure 1

29 pages, 22193 KB  
Article
Rectenna System Development Using Harmonic Balance and S-Parameters for an RF Energy Harvester
by Muhamad Nurarif Bin Md Jamil, Madiah Omar, Rosdiazli Ibrahim, Kishore Bingi and Mochammad Faqih
Sensors 2024, 24(9), 2843; https://doi.org/10.3390/s24092843 - 29 Apr 2024
Cited by 2 | Viewed by 2902
Abstract
With the escalating demand for Radio Frequency Identification (RFID) technology and the Internet of Things (IoT), there is a growing need for sustainable and autonomous power solutions to energize low-powered devices. Consequently, there is a critical imperative to mitigate dependency on batteries during [...] Read more.
With the escalating demand for Radio Frequency Identification (RFID) technology and the Internet of Things (IoT), there is a growing need for sustainable and autonomous power solutions to energize low-powered devices. Consequently, there is a critical imperative to mitigate dependency on batteries during passive operation. This paper proposes the conceptual framework of rectenna architecture-based radio frequency energy harvesters’ performance, specifically optimized for low-power device applications. The proposed prototype utilizes the surroundings’ Wi-Fi signals within the 2.4 GHz frequency band. The design integrates a seven-stage Cockroft-Walton rectifier featuring a Schottky diode HSMS286C and MA4E2054B1-1146T, a low-pass filter, and a fractal antenna. Preliminary simulations conducted using Advanced Design System (ADS) reveal that a voltage of 3.53 V can be harvested by employing a 1.57 mm thickness Rogers 5880 printed circuit board (PCB) substrate with an MA4E2054B1-1146T rectifier prototype, given a minimum power input of −10 dBm (0.1 mW). Integrating the fabricated rectifier and fractal antenna successfully yields a 1.5 V DC output from Wi-Fi signals, demonstrable by illuminating a red LED. These findings underscore the viability of deploying a fractal antenna-based radio frequency (RF) harvester for empowering small electronic devices. Full article
(This article belongs to the Special Issue Hardware Enablement of Integrated Sensing and Communication Systems)
Show Figures

Figure 1

28 pages, 14874 KB  
Review
β-Ga2O3-Based Heterostructures and Heterojunctions for Power Electronics: A Review of the Recent Advances
by Dinusha Herath Mudiyanselage, Bingcheng Da, Jayashree Adivarahan, Dawei Wang, Ziyi He, Kai Fu, Yuji Zhao and Houqiang Fu
Electronics 2024, 13(7), 1234; https://doi.org/10.3390/electronics13071234 - 27 Mar 2024
Cited by 18 | Viewed by 5979
Abstract
During the past decade, Gallium Oxide (Ga2O3) has attracted intensive research interest as an ultra-wide-bandgap (UWBG) semiconductor due to its unique characteristics, such as a large bandgap of 4.5–4.9 eV, a high critical electric field of ~8 MV/cm, and [...] Read more.
During the past decade, Gallium Oxide (Ga2O3) has attracted intensive research interest as an ultra-wide-bandgap (UWBG) semiconductor due to its unique characteristics, such as a large bandgap of 4.5–4.9 eV, a high critical electric field of ~8 MV/cm, and a high Baliga’s figure of merit (BFOM). Unipolar β-Ga2O3 devices such as Schottky barrier diodes (SBDs) and field-effect transistors (FETs) have been demonstrated. Recently, there has been growing attention toward developing β-Ga2O3-based heterostructures and heterojunctions, which is mainly driven by the lack of p-type doping and the exploration of multidimensional device architectures to enhance power electronics’ performance. This paper will review the most recent advances in β-Ga2O3 heterostructures and heterojunctions for power electronics, including NiOx/β-Ga2O3, β-(AlxGa1−x)2O3/β-Ga2O3, and β-Ga2O3 heterojunctions/heterostructures with other wide- and ultra-wide-bandgap materials and the integration of two-dimensional (2D) materials with β-Ga2O3. Discussions of the deposition, fabrication, and operating principles of these heterostructures and heterojunctions and the associated device performance will be provided. This comprehensive review will serve as a critical reference for researchers engaged in materials science, wide- and ultra-wide-bandgap semiconductors, and power electronics and benefits the future study and development of β-Ga2O3-based heterostructures and heterojunctions and associated power electronics. Full article
(This article belongs to the Special Issue Young Investigators in Electronics)
Show Figures

Figure 1

25 pages, 9555 KB  
Article
A Novel Integrated Electronic Lighting Driver Circuit for Supplying an LED Projection Lamp with High Power Factor and Soft Switching Characteristics
by Chun-An Cheng, Ching-Min Lee, En-Chih Chang, Sheng-Hong Hou, Long-Fu Lan and Cheng-Kuan Lin
Electronics 2023, 12(22), 4642; https://doi.org/10.3390/electronics12224642 - 14 Nov 2023
Cited by 6 | Viewed by 1914
Abstract
The traditional light source of projection lamps adopts a halogen lamp, which has the advantages of high brightness, but its luminous efficiency is not good and consumes energy. A light-emitting diode (LED) has the characteristics of high luminous efficiency and energy savings and [...] Read more.
The traditional light source of projection lamps adopts a halogen lamp, which has the advantages of high brightness, but its luminous efficiency is not good and consumes energy. A light-emitting diode (LED) has the characteristics of high luminous efficiency and energy savings and can be used as a new light source for projection lamps. The conventional two-stage electronic lighting driver circuit for supplying an LED projection lamp is composed of an AC-DC converter with power factor correction (PFC) as the first stage and a DC-DC converter for providing rated lamp voltage and current as the second stage. The conventional LED projection lamp driver circuit has more circuit components, a higher cost and limited efficiency. Therefore, this paper proposes a novel electronic lighting driver circuit for supplying an LED projection lamp with PFC function, which integrates a modified stacked dual boost converter and a half-bridge LLC resonant converter into a single-stage power-conversion circuit. The inductor inside the modified stacked boost converter is designed to operate at discontinuous conduction mode (DCM) for the driver circuit achieving PFC. Wide bandgap semiconductor devices silicon carbide (SiC)-based Schottky diodes are utilized to reduce power diode losses, and soft switching is implemented in the proposed LED projector lamp driver circuit to reduce the switching losses of the power switches and thus improve circuit efficiency. This paper has completed a single-stage prototype driver circuit for an LED projection lamp with PFC function, and the prototype circuit has a high power factor (PF > 0.98), low input current total-harmonic-distortion (THD < 6%) and high efficiency (>89%) in the case of an AC input power supply with an RMS value of 110 volts, and both power switches have the characteristics of soft switching. Full article
(This article belongs to the Special Issue Innovative Technologies in Power Converters, 2nd Edition)
Show Figures

Figure 1

Back to TopTop