Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = low retained austenite content

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 18943 KB  
Article
Influence of Tramp Elements on Phase Transformations, Microstructure and Hardness of a 0.3 wt.%C Low-Alloyed Steel
by Marek Gocnik, Lukas Hatzenbichler, Michael Meindlhumer, Phillip Haslberger, Matthew Galler, Andreas Stark, Claes-Olof A. Olsson, Jozef Keckes and Ronald Schnitzer
Metals 2025, 15(9), 1053; https://doi.org/10.3390/met15091053 - 20 Sep 2025
Viewed by 259
Abstract
Decarbonizing the steel industry relies on a transition from carbon-intensive blast furnace technology to scrap-based secondary steelmaking using electric arc furnaces. This transition introduces tramp elements and leads to their gradual accumulation, which can significantly influence the functional properties of chemically sensitive steel [...] Read more.
Decarbonizing the steel industry relies on a transition from carbon-intensive blast furnace technology to scrap-based secondary steelmaking using electric arc furnaces. This transition introduces tramp elements and leads to their gradual accumulation, which can significantly influence the functional properties of chemically sensitive steel grades. In this study, the combined impact of several tramp element contents on the phase transformations, microstructure and mechanical properties of a 0.3 wt.% C low-alloyed steel was investigated. To achieve this, a reference alloy was produced using the conventional blast furnace production route. It was then compared with two trial alloys, which contained intentionally elevated levels of tramp elements and were produced through an experimental melting route designed to simulate scrap-based electric arc furnace production. The experimental characterization included light optical and electron microscopy, electron back-scatter diffraction, in situ synchrotron high-energy X-ray diffraction coupled with dilatometry, and Vickers hardness testing. The results revealed the formation of displacive transformation products such as martensite and showed that austenite was retained in the tramp element-enriched trial alloys. The combination of solid solution strengthening and martensitic transformation led to a gradual increase in hardness. These findings underscore the critical role of tramp elements in determining the microstructural and mechanical response of steels produced from scrap-based feedstock. Full article
Show Figures

Figure 1

23 pages, 13109 KB  
Article
Study of the Effect of Regulating Alloying Elements and Optimizing Heat Treatment Processes on the Microstructure Properties of 20MnCr5 Steel Gears
by Li Luo, Yong Chen, Fucheng Zhao, Weifeng Hua, Xu Song, Zhengyun Xu and Zhicheng Jia
Lubricants 2025, 13(5), 202; https://doi.org/10.3390/lubricants13050202 - 1 May 2025
Viewed by 1040
Abstract
To optimize heat treatment of gears for high-end equipment and enhance their fatigue resistance, this paper studied the effects of Al, Mn and Cr content on surface microstructure, i.e., martensite, retained austenite, grain size, hardened layer depth and residual stress under different carburizing [...] Read more.
To optimize heat treatment of gears for high-end equipment and enhance their fatigue resistance, this paper studied the effects of Al, Mn and Cr content on surface microstructure, i.e., martensite, retained austenite, grain size, hardened layer depth and residual stress under different carburizing temperatures and low tempering of 20MnCr5 steel FZG gear. With numerical simulation combined with experimental verification, this paper establishes a simulation model for the carburizing process of 20MnCr5 steel FZG gear, analyzing the microstructure and retained austenite volume of the gear surface, after carburizing and quenching, by a scanning electronic microscope (SEM) and X-ray diffraction (XRD). In addition, the paper reveals the influence of the optimized heat treatment on the residual stress of the gear regulated with Al, Mn and Cr content in the meshing wear range of 200~280 µm. This study provides a guiding model theory and experimental verification for regulating proportions of alloying elements and optimizing the heat treatment process of low-carbon-alloy steel. Full article
(This article belongs to the Special Issue Novel Tribology in Drivetrain Components)
Show Figures

Figure 1

15 pages, 19069 KB  
Article
Effect of Deep Cryogenic Treatment on Microstructure and Mechanical Properties of Friction Stir Welded TRIP590 Steel Joints
by Yashuai Hu, Weidong Liu, Liguo Wang, Yufeng Sun, Wenbo Cao and Shaokang Guan
Metals 2025, 15(3), 298; https://doi.org/10.3390/met15030298 - 9 Mar 2025
Viewed by 1572
Abstract
In this study, friction stir welding was first applied to the 1.4 mm thick TRIP590 steel sheets at a constant transverse speed of 100 mm/min and different rotation speeds from 200 to 500 rpm. Then, the obtained joints received deep cryogenic treatment in [...] Read more.
In this study, friction stir welding was first applied to the 1.4 mm thick TRIP590 steel sheets at a constant transverse speed of 100 mm/min and different rotation speeds from 200 to 500 rpm. Then, the obtained joints received deep cryogenic treatment in liquid nitrogen for 24 and 48 h, respectively. It was revealed that the content of retained austenite in the stir zone of the welded joints decreased from 3.3% to 0.2% when the rotation speed increased from 200 rpm to 500 rpm. The stability of retained austenite increased due to grain refinement and work hardening at low rotation speeds. After deep cryogenic treatment of the welded joints, the retained austenite in the stir zone partially transformed into martensite, which led to the precipitation of nano-sized carbide in the ferrite matrix and the release of local stress. As a result, both the strength and plasticity of the stir zone after 48 h of deep cryogenic treatment increased from 798 MPa, 15% to 927 MPa, 17% for the 200 rpm joint, and from 914 MPa, 14% to 1086 MPa, 16% for the 300 rpm joint during the tensile tests. Full article
Show Figures

Figure 1

22 pages, 4693 KB  
Review
The Influence of Heat Treatment and Laser Alternative Surface Treatment Methods of Non-Alloy Steels: Review
by Oleksandr Kapustynskyi and Nikolaj Višniakov
Photonics 2025, 12(3), 207; https://doi.org/10.3390/photonics12030207 - 27 Feb 2025
Viewed by 922
Abstract
This paper focuses on the microstructural characteristics of non-alloy structural steels with carbon contents below 0.3% (further—Low-Carbon Steel—LCS), as well as the possible structural transformations and the resultant mechanical properties attainable through conventional heat treatment or alternative surface treatment methods. The principal microstructural [...] Read more.
This paper focuses on the microstructural characteristics of non-alloy structural steels with carbon contents below 0.3% (further—Low-Carbon Steel—LCS), as well as the possible structural transformations and the resultant mechanical properties attainable through conventional heat treatment or alternative surface treatment methods. The principal microstructural constituents that govern the properties of these steels include both equilibrium and non-equilibrium phases, such as martensite, retained austenite, sorbite, and troostite. Conventional methodologies for enhancing rigidity involve the implementation of supplementary stiffening ribs, which augment rigidity while concomitantly contributing to an increase in overall weight or dimensions of the structure. In structures where supplementary stiffening ribs are incorporated within the thin-walled steel shell, this may reduce manufacturing efficiency and simplicity of design. Modern laser treatment technologies for thin-walled steel structures, however, involve modifying the internal microstructure and creating rigidity ribs within the structure itself, thus circumventing the need for additional elements. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

26 pages, 53754 KB  
Article
Microstructure Evolution of Cold-Rolled Carbide-Free Bainite Steel Sheets During Continuous Annealing Process
by Bahareh Mobedpour, Fateh Fazeli and Hatem Zurob
Metals 2025, 15(2), 125; https://doi.org/10.3390/met15020125 - 27 Jan 2025
Viewed by 1385
Abstract
A modified carbide-free bainite (CFB) steel has been developed, building on existing alloys for compatibility with commercial continuous annealing lines (CALs), featuring a low austenitization temperature and short overaging time. The microstructural features of such candidate CFB sheets are compared with those of [...] Read more.
A modified carbide-free bainite (CFB) steel has been developed, building on existing alloys for compatibility with commercial continuous annealing lines (CALs), featuring a low austenitization temperature and short overaging time. The microstructural features of such candidate CFB sheets are compared with those of conventional CFB steel sheets that require higher reheating temperatures and longer overaging times. The effects of annealing parameters such as reheating temperatures and overaging temperatures on phase transformation kinetics and microstructure evolution are presented. The annealing process was simulated in a Gleeble thermomechanical processing simulator, and the microstructural characterization was carried out using XRD, SEM, and EBSD. Reconstruction of parent austenite grains from EBSD data did not reveal any variant selection, regardless of changes in the austenitization temperature, overaging temperature, or carbon content. It was observed that the V1–V2 variant pairing is the most common at the lower overaging temperature for reheating at 950 °C; however, this pairing decreases as the isothermal overaging temperature increases, with variant pairings involving low misorientation boundaries—such as V1–V4 and V1–V8—becoming more frequent. Steels with higher carbon content exhibit no significant changes in their variant pairing, regardless of variations in the austenitizing or isothermal temperatures. The XRD results show that the retained austenite fraction is reduced by increasing the isothermal transformation temperature. Full article
Show Figures

Graphical abstract

9 pages, 6143 KB  
Communication
Impact of TiC/TiB2 Inoculation on the Electrochemical Performance of an Arc-Directed Energy-Deposited PH 13-8Mo Martensitic Stainless Steel
by Alireza Vahedi Nemani, Mahya Ghaffari, Khashayar Morshed-Behbahani, Salar Salahi and Ali Nasiri
J. Manuf. Mater. Process. 2024, 8(5), 212; https://doi.org/10.3390/jmmp8050212 - 27 Sep 2024
Cited by 1 | Viewed by 1227
Abstract
This study investigates the impact of incorporating TiC and TiB2 inoculants on the microstructure and corrosion performance of an arc-directed energy-deposited PH 13-8Mo martensitic stainless steel. The microstructural characterizations revealed partial dissolution of the incorporated ceramic-based nanoparticles, resulting in the formation of [...] Read more.
This study investigates the impact of incorporating TiC and TiB2 inoculants on the microstructure and corrosion performance of an arc-directed energy-deposited PH 13-8Mo martensitic stainless steel. The microstructural characterizations revealed partial dissolution of the incorporated ceramic-based nanoparticles, resulting in the formation of in situ TiC phase in the TiC-inoculated sample, while TiC and chromium-enriched M3B2 phases were formed in the TiB2-inoculated sample. Further investigations into the electrochemical response of the fabricated samples confirmed that the applied inoculation strategy slightly enhanced the corrosion resistance of the alloy, offering a valuable advantage for in-service performance for applications in harsher environments. The slight improvement in the corrosion resistance of the inoculated samples was found to be attributed to the formation of a higher fraction of low-angle grain boundaries and enhanced retained austenite content in the microstructure. However, it is essential to note that the formation of chromium-enriched M3B2 phases in the TiB2-inoculated sample led to a slight deterioration in its corrosion resistance compared to the TiC-inoculated counterpart. Full article
Show Figures

Figure 1

11 pages, 4002 KB  
Article
Microstructure Evolution and Tensile Properties of Medium Manganese Steel Heat Treated by Two-Step Annealing
by Tao Kang, Zhanyu Zhan, Changcheng Wang, Zhengzhi Zhao, Juhua Liang and Lele Yao
Metals 2024, 14(9), 1008; https://doi.org/10.3390/met14091008 - 3 Sep 2024
Cited by 2 | Viewed by 1832
Abstract
In this paper, the nucleation and growth of austenite are controlled through a two-step annealing process to achieve multi-scale distribution and content increase of retained austenite in low manganese series medium-Mn steel. Combining SEM, EBSD, AES, and other experimental equipment, the evolution rules [...] Read more.
In this paper, the nucleation and growth of austenite are controlled through a two-step annealing process to achieve multi-scale distribution and content increase of retained austenite in low manganese series medium-Mn steel. Combining SEM, EBSD, AES, and other experimental equipment, the evolution rules of the microstructure, properties, and element distribution behavior of the test steel during the annealing process are studied. Compared with one-step annealing, the two-step annealing significantly broadens the size distribution range of retained austenite. In the first step, after annealing at a higher intercritical temperature (760 °C), the ferrite and the M/A island are obtained, completing the initial partition of Mn and the refinement of microstructures. During the second step of annealing (720 °C), the primary Mn-rich martensite region provides higher nucleation driving force and finer dispersed nucleation sites, promoting the nucleation and growth of reverse transformation austenite. At the same time, the metastable-retained austenite formed after the first step of annealing continues to grow through interface movement. Furthermore, a high proportion (23.4%) of retained austenite with multi-scale distribution is formed in the final microstructure, and the product of strength and elongation increased from 21.8 GPa·% by the one-step annealing process to 30.1 GPa·%. Full article
Show Figures

Figure 1

15 pages, 19085 KB  
Article
Microstructure Image Segmentation of 23crni3mo Steel Carburized Layer Based on a Deep Neural Network
by Boxiang Gong and Zhenlong Zhu
Metals 2024, 14(7), 761; https://doi.org/10.3390/met14070761 - 27 Jun 2024
Cited by 1 | Viewed by 1267
Abstract
This paper identifies and analyzes the microstructure of a carburized layer by using a deep convolutional neural network, selecting different carburizing processes to conduct surface treatment on 23CrNi3Mo steel, collecting many metallographic pictures of the carburized layer based on laser confocal microscopy, and [...] Read more.
This paper identifies and analyzes the microstructure of a carburized layer by using a deep convolutional neural network, selecting different carburizing processes to conduct surface treatment on 23CrNi3Mo steel, collecting many metallographic pictures of the carburized layer based on laser confocal microscopy, and building a microstructure dataset (MCLD) database for training and testing. Five algorithms—a full convolutional network (FCN), U-Net, DeepLabv3+, pyramid scene parsing network (PSPNet), and image cascade network (ICNet)—are used to segment the self-built microstructural dataset (MCLD). By comparing the five deep learning algorithms, a neural network model suitable for the MCLD database is identified and optimized. The research results achieve recognition, segmentation, and statistic verification of metallographic microstructure images through a deep convolutional neural network. This approach can replace the high cost and complicated process of experimental testing of retained austenite and martensite. This new method is provided to identify and calculate the content of residual austenite and martensite in the carburized layer of low-carbon steel, which lays a theoretical foundation for optimizing the carburizing process. Full article
Show Figures

Figure 1

11 pages, 8239 KB  
Article
Effect of Si Content on Microstructure and Properties of Low-Carbon Medium-Manganese Steel after Intercritical Heat Treatment
by Zihan Hu and Hanguang Fu
Metals 2024, 14(6), 675; https://doi.org/10.3390/met14060675 - 6 Jun 2024
Cited by 6 | Viewed by 2134
Abstract
The microstructure and mechanical properties of three kinds of low-carbon medium-manganese steels with different Si contents under an intercritical heat treatment process were studied. The results show that the microstructure of the test forged steel is mainly composed of ferrite and pearlite. After [...] Read more.
The microstructure and mechanical properties of three kinds of low-carbon medium-manganese steels with different Si contents under an intercritical heat treatment process were studied. The results show that the microstructure of the test forged steel is mainly composed of ferrite and pearlite. After 900 °C complete austenitizing quenching + 720 °C intercritical quenching, the microstructure of the test steel is mainly composed of ferrite and martensite. With the increase in Si content, the microstructure becomes finer and more uniform. The microstructure of the test steel after 900 °C complete austenitizing quenching + 720 °C intercritical quenching + 680 °C intercritical tempering is dominated by ferrite and tempered martensite, with a small amount of retained austenite and cementite. As the Si content increases, the boundaries between ferrite and tempered martensite become more clear. The tensile strength and hardness of the test steel increase with the increase in Si content, while the elongation first increases and then decreases; the comprehensive performance of the test steel is the best when the Si content is 0.685 wt. %, with a tensile strength of 726 MPa, a yield ratio of only 0.65, the highest elongation of 30.5%, and the highest strong plastic product of 22,143 MPa.%. Full article
(This article belongs to the Special Issue Design, Preparation and Properties of High Performance Steels)
Show Figures

Figure 1

15 pages, 18868 KB  
Article
Carbon Atom Distribution and Impact Toughness of High-Carbon Bainitic Steel
by Xiaoyan Long, Zhao Dai, Wanshuai Wang, Zhinan Yang, Fucheng Zhang and Yanguo Li
Coatings 2024, 14(4), 457; https://doi.org/10.3390/coatings14040457 - 10 Apr 2024
Cited by 1 | Viewed by 1499
Abstract
High-carbon nano bainitic steel is currently a hot research topic. The effect of the matrix’s carbon content and carbon atom distribution on the toughness of high-silicon, high-carbon bainitic steel is studied. The microstructure under an incomplete austenitization process consists of undissolved carbides, bainitic [...] Read more.
High-carbon nano bainitic steel is currently a hot research topic. The effect of the matrix’s carbon content and carbon atom distribution on the toughness of high-silicon, high-carbon bainitic steel is studied. The microstructure under an incomplete austenitization process consists of undissolved carbides, bainitic ferrite, and retained austenite. Using this process, the carbon content in bainitic ferrite is relatively low. Under the complete austenitization process, the carbon content in the bainite ferrite in the sample is high, and there is more retained austenite in the blocky type. The sample exhibits high impact toughness under an incomplete austenitization process, which is mainly affected by the low carbon content of bainite ferrite, high coordination ability of retained austenite, and high interface density of microstructure. The EBSD results show that the crack easily propagates between parallel bainite laths with low interface density compared with the high interface density perpendicular to the laths. Full article
(This article belongs to the Special Issue Microstructure, Fatigue and Wear Properties of Steels, 2nd Edition)
Show Figures

Figure 1

16 pages, 7754 KB  
Article
Achieving 2.2 GPa Ultra-High Strength in Low-Alloy Steel Using a Direct Quenching and Partitioning Process
by Gang Niu, Donghao Jin, Yong Wang, Haoxiu Chen, Na Gong and Huibin Wu
Materials 2023, 16(24), 7533; https://doi.org/10.3390/ma16247533 - 6 Dec 2023
Cited by 3 | Viewed by 2470
Abstract
Advanced high-strength steels (AHSS) have a wide range of applications in equipment safety and lightweight design, and enhancing the strength of AHSS to the ultra-high level of 2 GPa is currently a key focus. In this study, a new process of thermo-mechanical control [...] Read more.
Advanced high-strength steels (AHSS) have a wide range of applications in equipment safety and lightweight design, and enhancing the strength of AHSS to the ultra-high level of 2 GPa is currently a key focus. In this study, a new process of thermo-mechanical control process followed by direct quenching and partitioning (TMCP-DQP) was developed based on Fe-0.4C-1Mn-0.6Si (wt.%) low-alloy steel, and the effects of microstructure evolution on mechanical properties under TMCP-DQP process and conventional hot rolled quenched and tempered process (HR-QT) were comparatively studied. The results show that the TMCP-DQP process not only shortened the processing steps but also achieved outstanding comprehensive mechanical properties. The TMCP-DQP steel exhibited a tensile strength of 2.23 GPa, accompanied by 11.9% elongation and a Brinell hardness of 624 HBW, with an impact toughness of 28.5 J at −20 °C. In contrast, the HR-QT steel exhibited tensile strengths ranging from 2.16 GPa to 1.7 GPa and elongations between 5.2% and 12.2%. The microstructure of TMCP-DQP steel primarily consisted of lath martensite, containing thin-film retained austenite (RA), nanoscale rod-shaped carbides, and a minor number of nanoscale twins. The volume fraction of RA reached 7.7%, with an average carbon content of 7.1 at.% measured by three-dimensional atom probe tomography (3DAP). Compared with the HR-QT process, the TMCP-DQP process resulted in a finer microstructure, with a prior austenite grain (PAG) size of 11.91 μm, forming packets and blocks with widths of 5.12 μm and 1.63 μm. The TMCP-DQP process achieved the ultra-high strength of low-alloy steel through the synergistic effects of grain refinement, dislocation strengthening, and precipitation strengthening. The dynamic partitioning stage stabilized the RA through carbon enrichment, while the relaxation stage reduced a small portion of the dislocations generated by thermal deformation, and the self-tempering stage eliminated internal stresses, all guaranteeing considerable ductility and toughness. The TMCP-DQP process may offer a means for industries to streamline their manufacturing processes and provide a technological reference for producing 2.2 GPa grade AHSS. Full article
Show Figures

Figure 1

14 pages, 12260 KB  
Article
Achieving High Plasticity and High Toughness of Low-Carbon Low-Alloy Steel through Intercritical Heat Treatment
by Long Huang, Jia Liu, Xiangtao Deng and Zhaodong Wang
Metals 2023, 13(10), 1737; https://doi.org/10.3390/met13101737 - 13 Oct 2023
Cited by 1 | Viewed by 2358
Abstract
Medium manganese steel has excellent comprehensive properties due to the TRIP effect of retained austenite, but its welding performance is unsatisfactory for its high alloy content. This study obtained retained austenite in low-carbon low-alloy steel with low contents of silicon and manganese elements [...] Read more.
Medium manganese steel has excellent comprehensive properties due to the TRIP effect of retained austenite, but its welding performance is unsatisfactory for its high alloy content. This study obtained retained austenite in low-carbon low-alloy steel with low contents of silicon and manganese elements through intercritical heat treatment. The influence of intercritical quenching temperature on the content and characteristics of the retained austenite, as well as the functional mechanism of the retained austenite during low-temperature impact, was studied. The results showed that the content of the retained austenite increased from 12% to 17%, and its distribution extended from grain boundaries to martensite lath boundaries, with increasing intercritical quenching temperature. The retained austenite on the grain boundaries was in blocks, and that on the martensitic lath boundaries formed slender domains. The stability of the retained austenite was achieved through the enrichment of C and Mn during intercritical heat treatment. The contribution of retained austenite to low-temperature mechanical properties was closely related to its stability. The retained austenite with poor stability underwent martensite transformation at low temperatures, and the high-carbon martensite was a brittle phase that became the nucleation site of cracks or the path of crack growth during impact. Stable retained austenite passivated crack tips and hindered crack propagation during impacts, which improved the impact performance of the steel. Full article
(This article belongs to the Special Issue Metal Rolling and Heat Treatment Processing)
Show Figures

Figure 1

22 pages, 29452 KB  
Article
Relationships between Strength, Ductility and Fracture Toughness in a 0.33C Steel after Quenching and Partitioning (Q&P) Treatment
by Evgeniy Tkachev, Sergey Borisov, Yuliya Borisova, Tatiana Kniaziuk and Rustam Kaibyshev
Crystals 2023, 13(10), 1431; https://doi.org/10.3390/cryst13101431 - 26 Sep 2023
Cited by 8 | Viewed by 2696
Abstract
The effect of quenching and partitioning (Q&P) processing on strength, ductility and fracture toughness is considered in a 0.33% C-1.8% Si-1.44 Mn-0.58% Cr steel. The steel was fully austenitized at 900 °C and quenched to 210 °C for 30 s. Partitioning at 350 [...] Read more.
The effect of quenching and partitioning (Q&P) processing on strength, ductility and fracture toughness is considered in a 0.33% C-1.8% Si-1.44 Mn-0.58% Cr steel. The steel was fully austenitized at 900 °C and quenched to 210 °C for 30 s. Partitioning at 350 °C for 600 s produces a martensitic matrix with transition carbides, bainitic ferrite and film-like retained austenite (RA) that is stable against transformation to strain-induced martensite under tension. This processing provided the highest strength and fracture toughness but the lowest ductility and product of strength and elongation (PSE), σB·δ (MPa·%). Partitioning at 500 °C produced RA with a relatively low carbon content and low volume fraction of carbides. The steel after this Q&P processing exhibits the highest ductility and PSE but low YS and Charpy V-notch (CVN) impact toughness. High ductility and PSE correlate with the ability of RA to transform into strain-induced martensite, while high strength and impact toughness are associated with the high-volume fraction of transition carbides in the carbon-depleted martensitic matrix and a lack of transformation of RA to strain-induced martensite. The highest CVN impact energy was attained in the steel exhibiting transgranular quasi-cleavage fracture with the lowest effective grain size for brittle fracture. No correlation between strength, ductility and fracture toughness is observed in Q&P steels if these materials have distinct structural constituents. Full article
(This article belongs to the Special Issue Feature Papers in Crystals 2023)
Show Figures

Figure 1

12 pages, 5312 KB  
Article
High Ductile Medium Mn Lightweight Alloy: The Role of Intensive Quenching and Deep Cryogenic Treatment
by Fan Fei, Shenghui Sun, Ziqiang Wei, Huiwen Li and Minghui Cai
Metals 2023, 13(3), 499; https://doi.org/10.3390/met13030499 - 1 Mar 2023
Cited by 1 | Viewed by 1953
Abstract
Medium Mn lightweight steels with a relatively higher Mn content of 9–12 wt% have been actively developed recently to meet the demands of crashworthiness and lightweight vehicles. In this study, a combined intensive quenching (IQ) and deep cryogenic treatment (DCT) was first proposed [...] Read more.
Medium Mn lightweight steels with a relatively higher Mn content of 9–12 wt% have been actively developed recently to meet the demands of crashworthiness and lightweight vehicles. In this study, a combined intensive quenching (IQ) and deep cryogenic treatment (DCT) was first proposed to achieve the microstructural homogeneity as well as the final strength–ductility synergy of medium Mn lightweight steels with Mn segregation bands, together with a comparison with the conventional intercritical annealing. The proposed IQ and DCT process induced the formation of finer large fractioned plate-like martensite in the austenite matrix and thereby contributed to finer and uniform austenite grains after subsequent intercritical annealing. The martensitic transformation rate (dVγ/dε) and transformation kinetics (k value) were used to evaluate the mechanical stability of retained austenite, showing that the D700&750 sample exhibited a similar dVγ/dε value and extremely low k value when compared to the conventional IA650–850 samples, implying that the former had the higher mechanical stability of austenite. The higher mechanical stability of austenite enabled the TRIP effect to occur in a larger strain range, leading to continuous strain hardening behavior. Thus, the highest yield strength (728 MPa) and the largest total elongation of 61.6% were achieved in the D700&750 sample, where the ductility was more than three times higher than that of the conventional IA samples. The grain size and morphologies of retained austenite were believed to be the main factors influencing the strain-hardening behavior of this type of ultrafine lamellar and equiaxed ferrite and austenite duplex structure. Full article
(This article belongs to the Special Issue Microalloying in Ferrous and Non-ferrous Alloys)
Show Figures

Figure 1

12 pages, 6590 KB  
Article
Evaluation of the Impact and Fracture Toughness of a Nanostructured Bainitic Steel with Low Retained Austenite Content
by Mihael Brunčko, Peter Kirbiš, Ivan Anžel, Leo Gusel, Darja Feizpour, Tomaž Irgolič and Tomaž Vuherer
Materials 2023, 16(5), 2003; https://doi.org/10.3390/ma16052003 - 28 Feb 2023
Viewed by 1996
Abstract
The impact and fracture toughness of a nanostructured, kinetically activated bainitic steel was determined using Standard methods. Prior to testing, the steel was quenched in oil and aged naturally for a period of 10 days in order to obtain a fully bainitic microstructure [...] Read more.
The impact and fracture toughness of a nanostructured, kinetically activated bainitic steel was determined using Standard methods. Prior to testing, the steel was quenched in oil and aged naturally for a period of 10 days in order to obtain a fully bainitic microstructure with a retained austenite content below 1%, resulting in a high hardness of 62HRC. The high hardness originated from the very fine microstructure of bainitic ferrite plates formed at low temperatures. It was determined that the impact toughness of the steel in the fully aged condition improved remarkably, whereas the fracture toughness was in line with expectations based on the extrapolated data available in the literature. This suggests that a very fine microstructure is most beneficial to rapid loading conditions, whereas material flaws such as coarse nitrides and non-metallic inclusions are the major limitation for obtaining a high fracture toughness. Full article
(This article belongs to the Special Issue Advances in Solid State and Materials Chemistry)
Show Figures

Figure 1

Back to TopTop