Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (140)

Search Parameters:
Keywords = low salt formulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5125 KiB  
Article
Development of a Water-Sensitive Self-Thickening Emulsion Temporary Plugging Diverting Agent for High-Temperature and High-Salinity Reservoirs
by Chong Liang, Ning Qi, Liqiang Zhao, Xuesong Li and Zhenliang Li
Polymers 2025, 17(11), 1543; https://doi.org/10.3390/polym17111543 - 1 Jun 2025
Viewed by 229
Abstract
In oil and gas production, reservoir heterogeneity causes plugging removal fluids to preferentially enter high-permeability zones, hindering effective production enhancement in low-permeability reservoirs. Traditional chemical diverting agents exhibit insufficient stability in high-temperature, high-salinity environments, risking secondary damage. To address these challenges, this study [...] Read more.
In oil and gas production, reservoir heterogeneity causes plugging removal fluids to preferentially enter high-permeability zones, hindering effective production enhancement in low-permeability reservoirs. Traditional chemical diverting agents exhibit insufficient stability in high-temperature, high-salinity environments, risking secondary damage. To address these challenges, this study developed a water-sensitive self-thickening emulsion, targeting improved high-temperature stability, selective plugging, and easy flowback performance. Formulation optimization was achieved via orthogonal experiments and oil–water ratio adjustment, combined with particle size regulation and viscosity characterization. Core plugging experiments demonstrated the new emulsion system’s applicability and diverting effects. Results showed that under 150 °C and 15 × 104 mg/L NaCl, the emulsion maintained a stable viscosity of above 302.7 mPa·s, with particle size D50 increasing from 31.1 μm to 71.2 μm, exceeding API RP 13A’s 100 mPa·s threshold for acidizing diverters, providing an efficient plugging solution for high-temperature, high-salinity reservoirs. The injection pressure difference in high-permeability cores stabilized at 2.1 MPa, significantly enhancing waterflood sweep efficiency. The self-thickening mechanism, driven by salt-induced droplet coalescence, enables selective plugging in heterogeneous formations, as validated by core flooding tests showing a 40% higher pressure differential in high-permeability zones compared to conventional systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 1010 KiB  
Article
Investigation of Ionic Conductivity of Electrolytes for Anode-Free Lithium-Ion Batteries by Impedance Spectroscopy
by Azhar Abdrakhmanova, Alfira Sabitova, Binur Mussabayeva, Bulbul Bayakhmetova, Zhanna Sharipkhan and Elmira Yermoldina
Electrochem 2025, 6(2), 20; https://doi.org/10.3390/electrochem6020020 - 15 May 2025
Viewed by 326
Abstract
Anode-free lithium-ion batteries offer a volumetric energy density approximately 60% higher than that of conventional lithium-ion cells. Despite this advantage, they often experience rapid capacity degradation and a limited cycle life. Optimizing electrolyte formulations—particularly through the use of specific additives, solvents, and lithium [...] Read more.
Anode-free lithium-ion batteries offer a volumetric energy density approximately 60% higher than that of conventional lithium-ion cells. Despite this advantage, they often experience rapid capacity degradation and a limited cycle life. Optimizing electrolyte formulations—particularly through the use of specific additives, solvents, and lithium salts—is essential to improving these systems. This study explores electrolytes composed of fluorinated and carbonate-based solvents applied in anode-free lithium-ion cells featuring copper as the anode substrate and Li1.05Ni0.33Mn0.33Co0.33O2 as the cathode. In the present work, the ionic conductivity of electrolytes was studied by impedance spectroscopy, and the electrochemical parameters of anode-free lithium-ion cells were compared using these electrolyte solutions: lithium difluoro(oxalato)borat (LIDFOB) salts were used in a mixture of solvents such as fluoroethylene carbonate (FEC) and dimethoxyethane (DME) in a ratio of 3:7 and in a mixture of propylene carbonate (PC) and dimethoxyethane in a ratio of 3:7. Enhanced performance was observed upon the substitution of conventional carbonates with fluorinated co-solvents. The findings suggest that LiDFOB is a thermostable salt, and its high conductivity contributes to the formation and stabilization of the interface of solid electrolytes. The results indicate that at low temperature conditions, a double salt should be used for lithium current sources, for example, 0.4 M LiDFOB and 0.6 M LiBF4, as well as electrolyte additives such as fluoroethylene carbonate and lithium nitrate. Full article
Show Figures

Figure 1

11 pages, 15871 KiB  
Article
Low-Cost, Sustainable Hybrid Aqueous Zinc Metal Batteries Using Ethyl Cellulose as a Binder
by Pedro Pablo Machado Pico, Stefano Colonna and Fabio Ronci
Batteries 2025, 11(5), 189; https://doi.org/10.3390/batteries11050189 - 11 May 2025
Viewed by 341
Abstract
Despite their inherently lower energy density than lithium-ion batteries (LIBs), aqueous zinc metal batteries (AZMBs) have recently attracted interest as rechargeable energy storage devices due to their low cost and high operational and environmental safety. They are composed of metallic zinc as the [...] Read more.
Despite their inherently lower energy density than lithium-ion batteries (LIBs), aqueous zinc metal batteries (AZMBs) have recently attracted interest as rechargeable energy storage devices due to their low cost and high operational and environmental safety. They are composed of metallic zinc as the anode, an aqueous zinc salt electrolyte and a cathode capable of (de)intercalating Zn2+ ions upon its (oxidation) reduction reaction. In this work, we studied a hybrid AZMB in which a dual-ion electrolyte containing both Zn2+ and Li+ ions was used in conjunction with a Li+ ion intercalation cathode, i.e., LiFePO4 (LFP), one of the most common, reliable, and cheap cathodes for LIBs. In this study, we present evidence that, thanks to its insolubility in water, ethyl cellulose (EC) can be effectively utilized as a binder for cathode membranes in AZMBs. Furthermore, its solubility in alcohol provides a significant advantage in avoiding the use of toxic solvents, contributing to a safer and more environmentally friendly approach to the formulation process. Full article
Show Figures

Graphical abstract

17 pages, 1320 KiB  
Article
Electrochemically Reduced Graphene Oxide Covalently Bound Sensor for Paracetamol Voltammetric Determination
by Amaya Paz de la vega, Fabiana Liendo, Bryan Pichún, Johisner Penagos, Rodrigo Segura and María Jesús Aguirre
Int. J. Mol. Sci. 2025, 26(9), 4267; https://doi.org/10.3390/ijms26094267 - 30 Apr 2025
Viewed by 349
Abstract
Designing a highly sensitive and efficient functionalized electrode for precise drug analysis remains a significant challenge. In this work, an electrochemical sensor based on a glassy carbon electrode (GCE) modified with phenyl diazonium salts (ph) and electrochemically reduced graphene oxide (ERGO), labeled GCE/ph/ERGO, [...] Read more.
Designing a highly sensitive and efficient functionalized electrode for precise drug analysis remains a significant challenge. In this work, an electrochemical sensor based on a glassy carbon electrode (GCE) modified with phenyl diazonium salts (ph) and electrochemically reduced graphene oxide (ERGO), labeled GCE/ph/ERGO, was developed for the detection of paracetamol (PAR) in pharmaceutical matrices using square wave voltammetry (SWV). The modified electrode was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Compared to the bare GCE, the GCE/ph/ERGO sensor demonstrated significantly improved conductivity and anodic current peak for PAR over two orders of magnitude higher, indicating a substantial enhancement in electrochemical performance. Under optimized conditions, the developed sensor exhibited a low detection limit of 18.2 nM and a quantification limit of 60.6 nM. Precision studies yielded relative standard deviations (RSDs) below 8%. The sensor demonstrated excellent selectivity in the presence of common pharmaceutical excipients and high accuracy in the analysis of generic pharmaceutical formulations, with results comparable to those obtained by the HPLC technique. These findings confirm the sensor’s reliability, stability, robustness, and suitability for routine analysis of PAR in pharmaceutical samples. Full article
Show Figures

Graphical abstract

19 pages, 1009 KiB  
Review
Recent Advances in Research on Inhibitory Effects of Seaweed Extracts Against Parasites
by Wenbing Cheng, Xiangyang Yang, Dengfeng Yang, Ting Zhang, Liguang Tian, Jiahao Dao, Zheng Feng and Wei Hu
Mar. Drugs 2025, 23(4), 171; https://doi.org/10.3390/md23040171 - 16 Apr 2025
Viewed by 488
Abstract
Parasitic diseases pose a serious threat to the health of humans and the steady development of livestock husbandry. Although there are certain drug-based treatment methods, with the widespread application of drugs, various parasites are gradually developing drug resistance. Natural products are highly favored [...] Read more.
Parasitic diseases pose a serious threat to the health of humans and the steady development of livestock husbandry. Although there are certain drug-based treatment methods, with the widespread application of drugs, various parasites are gradually developing drug resistance. Natural products are highly favored by researchers due to their characteristics such as low toxicity, multi-target effects, and low risk of drug resistance. The ocean, as the largest treasure trove of biological resources on Earth, has a special ecosystem (high pressure, high salt, and low oxygen). This enables marine organisms to develop a large number of unique structures during their survival competition. So far, a variety of compounds, such as terpenoids, have been isolated from the algae. As potential drugs, these compounds have certain curative effects on various diseases, including tumors, parasitic diseases, Alzheimer’s disease, and tuberculosis. This paper systematically reviews and analyzes the current advances in research on the antiparasite effects of seaweed extracts. The primary objective of this research is to formulate a conceptual foundation for marine pharmaceutical exploration, focusing on the creation of innovative marine-based medicinal compounds to overcome the emerging problem of parasite resistance to conventional treatments. Full article
Show Figures

Figure 1

23 pages, 14523 KiB  
Article
An Improved Method for Estimating Blue Carbon Storage in Coastal Salt Marsh Wetlands: Considering the Heterogeneity of Soil Thickness
by Lina Ke, Changkun Yin, Nan Lei, Shilin Zhang, Yao Lu, Guangshuai Zhang, Daqi Liu and Quanming Wang
Land 2025, 14(4), 776; https://doi.org/10.3390/land14040776 - 4 Apr 2025
Viewed by 574
Abstract
Coastal wetlands are vital ecosystems at the land–sea interface. They intercept land-based pollutants, regulate microclimates, and mediate carbon cycles. They play a significant role in enhancing carbon sequestration capacity and maintaining ecological structure and functioning. This study proposes an improved method for estimating [...] Read more.
Coastal wetlands are vital ecosystems at the land–sea interface. They intercept land-based pollutants, regulate microclimates, and mediate carbon cycles. They play a significant role in enhancing carbon sequestration capacity and maintaining ecological structure and functioning. This study proposes an improved method for estimating blue carbon storage in coastal salt marsh wetlands, considering soil thickness, by utilizing an enhanced Soil Land Inference Model (SoLIM) to estimate soil thickness in coastal wetlands with a restricted number of sample points. The wetland soil thickness index is integrated into the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) blue carbon storage estimation model, ultimately enabling the estimation and visualization of blue carbon storage in the Liaohe Estuary coastal wetland. Results indicate the following: (1) The studied area’s soil thickness shows a spatial distribution pattern that becomes progressively thinner from north to south. Soil thickness is more significant in the salt marsh vegetation areas and more minor in the coastal tidal flat areas, with 52% of the region having soil thickness between 40 and 60 cm. (2) In 2023, the blue carbon stock in the study area is estimated at 389.85 × 106 t, with high-value areas concentrated in the northern natural landscapes, and low-value areas in the southern coastal zone, characterized by flat terrain and human influence. The coupled soil thickness–blue carbon storage estimation model provides methodological support for refining the estimation of blue carbon storage in coastal wetlands. It also offers technical support for formulating policies on the ecological restoration, compensation, protection, and management of coastal wetlands. Full article
Show Figures

Figure 1

20 pages, 849 KiB  
Review
Exploring the Biological Activities of Ionic Liquids and Their Potential to Develop Novel Vaccine Adjuvants
by Snehitha Akkineni, Mutasem Rawas-Qalaji, Samir A. Kouzi, Christiane Chbib and Mohammad N. Uddin
Vaccines 2025, 13(4), 365; https://doi.org/10.3390/vaccines13040365 - 28 Mar 2025
Viewed by 683
Abstract
Ionic liquids (ILs) are salts with poorly coordinated ions, allowing them to exist in a liquid phase below 100 °C or at room temperature. Therefore, they are best described as room temperature ionic liquids (RTILs). In ionic liquids, the presence of a delocalized [...] Read more.
Ionic liquids (ILs) are salts with poorly coordinated ions, allowing them to exist in a liquid phase below 100 °C or at room temperature. Therefore, they are best described as room temperature ionic liquids (RTILs). In ionic liquids, the presence of a delocalized charge in at least one ion, coupled with an organic component, inhibits the establishment of a stable solid crystal lattice. Due to their flexible properties and several distinctive characteristics, such as high ionic conductivity, high solvation power, thermal stability, low volatility, and recyclability, ILs have been extensively used in chemical industries. In addition to their various other applications, they also hold potential for drug formulation development. Ionic liquids can be used as solubility enhancers, permeability enhancers, stabilizers, targeted delivery inducers, stealth property providers, or bioavailability enhancers. Moreover, ILs hold significant potential in vaccine formulation. Many new vaccines are in the pipeline with different types of antigens; however, the existence of only a limited number of adjuvants hinder their potential use. Thus, developing new, highly effective, low-cost adjuvant preparations is a central interest among formulation scientists. With their unique properties and biological functions, ILs can be highly promising candidates for new types of vaccines. Full article
(This article belongs to the Special Issue Novel Adjuvants and Delivery Systems for Vaccines)
Show Figures

Figure 1

14 pages, 973 KiB  
Review
The Potential of Cultivated Mushrooms as Salt Substitutes in Meat Products
by Juana Fernández-López, Manuel Viuda-Martos, Carmen Botella-Martínez, Clara Muñoz-Bas, Patricia Bermúdez-Gómez, Raquel Lucas-González and José Ángel Pérez-Álvarez
Foods 2025, 14(6), 977; https://doi.org/10.3390/foods14060977 - 13 Mar 2025
Viewed by 994
Abstract
This study reviews the feasibility of using cultivated mushrooms in the development of salt-reduced meat products. For this purpose, it is important to know the role of salt in meat products in order to develop viable strategies for its substitution. In addition, mushroom [...] Read more.
This study reviews the feasibility of using cultivated mushrooms in the development of salt-reduced meat products. For this purpose, it is important to know the role of salt in meat products in order to develop viable strategies for its substitution. In addition, mushroom types and properties (composition, nutritional value, umami content, etc.) and examples of successful application as salt substitutes in meat products are addressed. Salt has important roles in meat product processing, mainly affecting its technological, antimicrobial, and sensory properties. Therefore, the different strategies that have been studied (meat product reformulation and technological advances) with the aim of reducing its content have to address these effects. The application of mushrooms as a salt substitute shows several advantages mainly related to the fact that mushrooms are a natural ingredient with a very healthy nutritional composition (rich in protein and dietary fiber but low in fat and sodium) and, from an economic and sustainable cultivation perspective, aligns well with current trends in food production and consumption. Salt substitutions of 50% have been achieved, mainly in fresh meat products (hamburgers) and heat-treated meat products (sausages, pâté, roast meat, etc.), with minimal physicochemical and sensory modifications of the final product. The meat industry could benefit from incorporating cultivated mushrooms as a salt-reducing ingredient, especially in the development of reduced salt meat products with a quality comparable to or superior to traditional products. The optimization of processes for their integration in the formulation of meat products should be the trend to ensure their viability. Full article
(This article belongs to the Special Issue Feature Review on Meat)
Show Figures

Figure 1

18 pages, 4387 KiB  
Article
Anion-π Type Polymeric Nanoparticle Dispersants for Enhancing the Dispersion Stability of Organic Pigments in Water
by Na Li, Lulu Li, Chenghua Sun, Dror Fixler, Shizhuo Xiao and Shuyun Zhou
Molecules 2025, 30(5), 975; https://doi.org/10.3390/molecules30050975 - 20 Feb 2025
Viewed by 921
Abstract
High-performance water-based inkjet inks are critical for advancing inkjet printing technology. The performance of water-based inkjet inks depends largely on the dispersion stability of organic pigments. This imposes higher demands on the performance of polymeric dispersants. However, the relatively weak interaction between polymeric [...] Read more.
High-performance water-based inkjet inks are critical for advancing inkjet printing technology. The performance of water-based inkjet inks depends largely on the dispersion stability of organic pigments. This imposes higher demands on the performance of polymeric dispersants. However, the relatively weak interaction between polymeric dispersants and organic pigments limits their performance in water-based inkjet inks. Consequently, it is crucial to seek dispersants that exhibit stronger interactions with pigments, alongside high performance, and universality. In this work, five types of polymeric nanoparticles (PNPs) with anion-π groups were synthesized via a simple emulsion polymerization method. Compared to traditional polymeric dispersants, anion-π type PNPs exhibited significant advantages including low viscosity, solvent resistance, and high temperature resistance. Stronger interactions, including salt-bridge hydrogen bondings (H-bonds) and π–π interactions, between these PNPs and different types of organic pigments were demonstrated by FTIR, UV-Vis, and XPS spectral tests. In particular, PNPs-5, bearing -PhSO3 groups, exhibited the strongest interaction with the organic pigments. The water-based inkjet inks, formulated with PNPs-5 serving as a dispersant, exhibited remarkable dispersion stability and outstanding weatherability. This work rationally constructs a strategy for preparing universally applicable polymeric dispersants to enhance the dispersion of pigments in water-based inkjet inks, thereby presenting a broader perspective for applications in the field of inkjet printing. Full article
Show Figures

Graphical abstract

16 pages, 4592 KiB  
Article
Combined Effects of Compound Low-Sodium Alternative Salts and Vacuum Tumbling on the Quality, Water Distribution, and Microstructure of Marinated Beef
by Yanfeng Huang, Shujie Yang, Longtao Zhang, Song Miao, Zhiyong Xu, Baodong Zheng and Kaibo Deng
Foods 2025, 14(4), 605; https://doi.org/10.3390/foods14040605 - 12 Feb 2025
Viewed by 896
Abstract
This study proposes a compound low-sodium alternative salt (CLSAS) formulation (2.4% sodium chloride, 0.8% K lactate, 0.4% magnesium chloride, 0.4% Ca ascorbate, 0.2% L lysine, and 4% sorbitol) combined with vacuum tumbling for beef marination. The effects of 4% NaCl static marination (F), [...] Read more.
This study proposes a compound low-sodium alternative salt (CLSAS) formulation (2.4% sodium chloride, 0.8% K lactate, 0.4% magnesium chloride, 0.4% Ca ascorbate, 0.2% L lysine, and 4% sorbitol) combined with vacuum tumbling for beef marination. The effects of 4% NaCl static marination (F), CLSAS static marination (L), and CLSAS vacuum tumbling (VT-L) on the physicochemical properties, water distribution, and microstructure of marinated beef were evaluated. Compared with F, L maintained similar yield and color, reduced cooking loss, and improved texture while lowering sodium content. VT-L further enhanced product yield, water content, color, texture, and tenderness. Both CLSAS and vacuum tumbling reduced the relaxation time of immobilized water, promoted orderly formation of protein structure, and altered the microstructure of myogenic fibers. VT-L additionally improved the water-holding capacity of myofibrils and further reduced the relaxation times of immobilized and free water. Overall, VT-L could be an effective approach for enhancing the quality of low-sodium meat products, providing a feasible basis for the industrial application of CLSAS for low-sodium marinated meat products. Full article
Show Figures

Figure 1

25 pages, 5193 KiB  
Article
Polyelectrolyte Complex Dry Powder Formulations of Tobramycin with Hyaluronic Acid and Sodium Hyaluronate for Inhalation Therapy in Cystic Fibrosis-Associated Infections
by Yanina de Lafuente, Eride Quarta, María S. Magi, Ana L. Apas, Joaquín Pagani, María C. Palena, Paulina L. Páez, Fabio Sonvico and Alvaro F. Jimenez-Kairuz
Antibiotics 2025, 14(2), 169; https://doi.org/10.3390/antibiotics14020169 - 8 Feb 2025
Viewed by 859
Abstract
Background/Objectives: Pulmonary delivered tobramycin (TOB) is a standard treatment for Pseudomonas aeruginosa lung infections, that, along with Staphylococcus aureus, is one of the most common bacteria causing recurring infections in CF patients. However, the only available formulation on the market containing tobramycin, TOBI [...] Read more.
Background/Objectives: Pulmonary delivered tobramycin (TOB) is a standard treatment for Pseudomonas aeruginosa lung infections, that, along with Staphylococcus aureus, is one of the most common bacteria causing recurring infections in CF patients. However, the only available formulation on the market containing tobramycin, TOBI®, is sold at a price that makes the access to the treatment difficult. Therefore, this work focuses on the development and characterization of an ionic complex between a polyelectrolyte, hyaluronic acid (HA) and its salt, sodium hyaluronate (NaHA), and TOB to be formulated as an inhalable dry powder. Methods: The solid state complex obtained by spray drying technique was physicochemically characterized by infrared spectroscopy, thermal analysis and X-ray diffraction, confirming an ionic interaction for both complexes. Results: The powder density, geometric size, and morphology along with the aerodynamic performance showed suitable properties for the powder formulations to reach the deep lung. Moisture uptake was found to be low, with the complex HA-TOB remaining physicochemically unchanged, while the NaHA-TOB required significant protection against humidity. The biopharmaceutical in vitro experiments showed a rapid dissolution which can have a positively impact in reducing side effects, while the drug release study demonstrated a reversible polyelectrolyte–drug interaction. Microbiological experiments against P. aeruginosa and S. aureus showed improved bacterial growth inhibition and bactericidal efficacy, as well as better inhibition and eradication of biofilms when compared with to TOB. Conclusions: A simple polyelectrolyte-drug complex technique represents a promising strategy for the development of antimicrobial dry powder formulations for pulmonary delivery in the treatment of cystic fibrosis (CF) lung infections. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

16 pages, 1010 KiB  
Article
Lactic Acid Bacteria from Northern Thai (Lanna) Fermented Foods: A Promising Source of Probiotics with Applications in Synbiotic Formulation
by Nittiya Suwannasom, Achiraya Siriphap, Ornampai Japa, Chonthida Thephinlap, Chutamas Thepmalee and Krissana Khoothiam
Foods 2025, 14(2), 244; https://doi.org/10.3390/foods14020244 - 14 Jan 2025
Viewed by 1368
Abstract
Northern Thai culture offers a rich variety of traditional fermented foods beneficial for gastrointestinal health. In this study, we characterized lactic acid bacteria (LAB) from various indigenous fermented foods as potential probiotic candidates and determined their properties for application in commercial synbiotic formulation. [...] Read more.
Northern Thai culture offers a rich variety of traditional fermented foods beneficial for gastrointestinal health. In this study, we characterized lactic acid bacteria (LAB) from various indigenous fermented foods as potential probiotic candidates and determined their properties for application in commercial synbiotic formulation. Five isolates demonstrating high tolerance to low pH (2.0) and 0.3% bile salts were collected and characterized. These included three strains of Lactiplantibacillus plantarum isolated from nham (NB1, NP2, and NP11) and two strains of Limosilactobacillus fermentum isolated from pla-som (PS4 and PS7). All the selected LAB isolates exhibited γ-hemolytic activity, strong antimicrobial activity, and high resistance to gastric and duodenal digestion conditions. Among the LAB isolates, L. plantarum NB1 demonstrated the highest capacity for adhesion to Caco-2 cells, auto-aggregation, and antioxidant activity, differing significantly (p < 0.05) from the other isolates. Furthermore, the NB1 strain exhibited preferential growth in the presence of commercial prebiotics (fructooligosaccharide, lactose, and inulin) and good survival after lyophilization, which is a desirable characteristic for a powdered ingredient. Therefore, the NB1 strain is a suitable probiotic candidate for applications in synbiotic formulation or as a functional food ingredient. Full article
Show Figures

Graphical abstract

19 pages, 8273 KiB  
Article
Numerical Simulation of Gas–Liquid–Solid Erosive Wear in Gas Storage Columns
by Zongxiao Ren, Chenyu Zhang, Wenbo Jin, Bingyue Han and Zhaoyang Fan
Coatings 2025, 15(1), 82; https://doi.org/10.3390/coatings15010082 - 14 Jan 2025
Viewed by 660
Abstract
Gas reservoirs play an increasingly important role in oil and gas consumption and safety in China. To study the problem of erosion and wear caused by gas-carrying particles in the process of gas extraction from gas storage reservoirs, a mathematical model of gas–liquid–solid [...] Read more.
Gas reservoirs play an increasingly important role in oil and gas consumption and safety in China. To study the problem of erosion and wear caused by gas-carrying particles in the process of gas extraction from gas storage reservoirs, a mathematical model of gas–liquid–solid three-phase erosion of gas storage reservoir columns was established through theories of multiphase flow and particle motion. Based on this model, the effects of the water volume fraction, gas extraction rate, particle mass flow rate, particle size, and bending angle on the erosion location and rate of the pipe columns were investigated. The findings indicate that when the water content volume fraction is low, the water production volume minimally affects the maximum erosion rate of pipe columns. Conversely, the gas extraction rate exerted the most significant influence on the column erosion, showing a power function relationship between the two. When gas extraction volume exceeds 60 × 104 m3/d, the maximum erosion rate surpasses the critical erosion rate of 0.076 mm/a. This coincided with the increased sand mass flow rate, although the maximum erosion rate of the pipe columns remained relatively steady. The salt mass flow rate demonstrated a linear relationship with the erosion rate, with the maximum erosion rate exceeding the critical erosion rate of 0.076 mm/a. The maximum erosion rate of the pipe columns increased, stabilized with larger sand and salt particle sizes, and exhibited an increasing trend with the bending angle. For gas extraction volumes exceeding 46.4 × 104 m3/d and salt mass flow rates exceeding 22 kg/d, the maximum erosion rate of pipe columns exceeds the critical erosion rate of 0.076 mm/a. The conclusions of this study are of some importance for the clarification of the influencing law of pipe column erosion under high temperature and high pressure in gas storage reservoirs and for the formulation of measures for the prevention and control of pipe column erosion in gas storage reservoirs. Full article
(This article belongs to the Collection Feature Paper Collection in Corrosion, Wear and Erosion)
Show Figures

Figure 1

57 pages, 17824 KiB  
Review
Eco-Friendly and Complex Processing of Vanadium-Bearing Waste for Effective Extraction of Valuable Metals and Other By-Products: A Critical Review
by Ahmed H. Ibrahim, Xianjun Lyu, Hani E. Sharafeldin and Amr B. ElDeeb
Recycling 2025, 10(1), 6; https://doi.org/10.3390/recycling10010006 - 5 Jan 2025
Cited by 1 | Viewed by 1604
Abstract
Achieving the New World Sustainability Vision 2030 leads to enacting environmental restrictions, which aim to partially or totally reduce the negative impacts of different forms of waste and develop alternative technologies for eco-friendly and cost-effective utilization. Solid waste is a hazardous waste with [...] Read more.
Achieving the New World Sustainability Vision 2030 leads to enacting environmental restrictions, which aim to partially or totally reduce the negative impacts of different forms of waste and develop alternative technologies for eco-friendly and cost-effective utilization. Solid waste is a hazardous waste with many environmental and economic problems resulting from its storage and disposal. However, at the same time, these wastes contain many valuable elements. One of these solid wastes is heavy oil fly ash “HOFA” generated in power stations using heavy oil as fuel. HOFA is produced annually in massive amounts worldwide, the storage of which leads to the contamination of water resources by the contained heavy metals, resulting in many cancerogenic diseases. At the same time, these ashes contain many valuable metals in significant amounts, such as vanadium “V” and nickel “Ni” that can be extracted effectively compared to their low content and difficulty processing in their main ores. Hence, recycling these types of wastes reduces the environmental adverse effects of their storage and the harmful elements in their composition. This paper critically reviews the world resources of vanadium-bearing waste and various approaches described in the literature for recovering V, Ni, as well as other valuable metals from (HOFA) and other wastes, including pyro- and hydro-metallurgical processes or a combination. Hydro-metallurgical processes include alkaline or acidic leaching using different reagents followed by chemical precipitation, solvent extraction, and ion exchange to extract individual elements. The pyro-metallurgical processes involve the non-salt or salt roasting processes followed by acidic or alkaline leaching processes. The operational parameters and their impact on the efficiency of recovery are also discussed. The digestion mixtures of strong mineral acids used to dissolve metal ions in HOFA are also investigated. Bioleaching is a promising eco-friendly technology for recovering V and Ni through appropriate bacteria and fungi. Oxidation leaching is also a promising environmentally friendly approach and more effective. Among all these processes, the salt roasting treatment showed promising results concerning the cost, technological, and environmental effectiveness. The possibility of complex processing of HOFA has also been investigated, proposing innovative technology for completely utilizing this waste without any remaining residue. Effective zeolite for wastewater treatment has been formulated as a good alternative for conserving the available water resources. Full article
Show Figures

Figure 1

21 pages, 9724 KiB  
Article
Study on pH-Responsive Delayed, Cross-Linking and Weighted Fracturing Fluid
by Hao Bai, Fujian Zhou, Xinlei Liu, Xiaozhi Xin, Huimin Zhao, Zhiyuan Ding, Yunjin Wang, Xin Wang, Xingting Li, Wei Li and Erdong Yao
Molecules 2024, 29(24), 5847; https://doi.org/10.3390/molecules29245847 - 11 Dec 2024
Viewed by 861
Abstract
Hydraulic fracturing of deep, high-temperature reservoirs poses challenges due to elevated temperatures and high fracture pressures. Conventional polymer fracturing fluid (QCL) has high viscosity upon adding cross-linking agents and significantly increases wellbore friction. This paper examines a polymer fracturing fluid with pH response [...] Read more.
Hydraulic fracturing of deep, high-temperature reservoirs poses challenges due to elevated temperatures and high fracture pressures. Conventional polymer fracturing fluid (QCL) has high viscosity upon adding cross-linking agents and significantly increases wellbore friction. This paper examines a polymer fracturing fluid with pH response and low friction. Experimental results indicate that cross-linking occurs quickly in acid, while alkali can slow the cross-linking process and reduce friction. Sodium carbonate (Na2CO3) serves as an effective candidate. An optimized formulation consisting of “salt + pH + polymer + cross-linking agent” is proposed in two stages: low viscosity for fracture generation and high viscosity for sand transport. PH control enhances polymer hydration, increasing sand-carrying in the low-viscosity stage. Scanning electron microscopy (SEM) reveals that the fluid’s structure varies with pH, showing that alkali promotes a stable network structure. Infrared spectroscopy (IR) shows that higher pH increases negative charges of the polymer chains, which enhances their hydrodynamic radius, slightly raises viscosity, and enhances sand carrying. Field tests confirm the formulation’s effectiveness, leading to lower operating pressures, stable sand transport, and notable production, averaging 107.57 m3 of oil and 276 m3 of gas per day. Overall, this research provides low-friction solutions for the efficient development of deep reservoirs. Full article
Show Figures

Graphical abstract

Back to TopTop