Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,681)

Search Parameters:
Keywords = marine communications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2910 KiB  
Article
Underwater Digital Twin Sensor Network-Based Maritime Communication and Monitoring Using Exponential Hyperbolic Crisp Adaptive Network-Based Fuzzy Inference System
by Bala Anand Muthu and Claudia Cherubini
Water 2025, 17(9), 1324; https://doi.org/10.3390/w17091324 - 28 Apr 2025
Viewed by 171
Abstract
The underwater conditions of the coastal ecosystem require careful monitoring to anticipate potential environmental hazards. Moreover, the unique characteristics of the marine underwater environment have presented numerous challenges for the advancement of underwater sensor networks. Current studies have not extensively integrated Digital Twins [...] Read more.
The underwater conditions of the coastal ecosystem require careful monitoring to anticipate potential environmental hazards. Moreover, the unique characteristics of the marine underwater environment have presented numerous challenges for the advancement of underwater sensor networks. Current studies have not extensively integrated Digital Twins with underwater sensor networks aimed at monitoring the marine ecosystem. Consequently, this study proposes a decision-making framework based on Underwater Digital Twins (UDTs) utilizing the Exponential Hyperbolic Crisp Adaptive Network-based Fuzzy Inference System (EHC-ANFIS). The process begins with the initialization and registration of an Underwater Autonomous Vehicle (UAV). Subsequently, data are collected from the sensor network and relayed to the UDT model. The optimal path is determined using Adaptive Pheromone Ant Colony Optimization (AP-ACO) to ensure efficient data transmission. Following this, data compression is achieved through the Sliding–Huffman Coding (SHC) algorithm. The Twisted Koblitz Curve Cryptography (TKCC) method is employed to enhance data security. Additionally, an Anomaly Detection System (ADS) is trained, which involves collecting and pre-processing sensor network data. A Radial Chart is then utilized for effective visualization. Anomalies are detected using the CosLU-Variational Shake-Long Short-Term Memory (CosLU-VS-LSTM) approach. For standard data, decision-making based on the UDT model is conducted using EHC-ANFIS, with a fuzzification duration of 21,045 milliseconds. Finally, alerts are dispatched to the Maritime Alert Command Centre (MACC). This approach enhances maritime communication and monitoring along coastal areas, with specific reference to the Coromandel Coast, thereby contributing to the protection of the coastal ecosystem. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

23 pages, 5225 KiB  
Article
Community Characteristics and Potential Risk of Nekton in Waters Adjacent to Ningde Nuclear Power Plant in Fujian, China
by Wen Huang, Biqi Zheng, Dong Wen, Feipeng Wang, Lijing Fan, Zefeng Yu, Wei Liu and Shuang Zhao
Biology 2025, 14(5), 481; https://doi.org/10.3390/biology14050481 - 27 Apr 2025
Viewed by 259
Abstract
The impact of bio-invasions and abnormal aggregations of marine life on the safety of cooling water systems in coastal nuclear power plants (NPPs) is significant and cannot be overlooked. In this study, we conducted 12 consecutive monthly surveys from September 2022 to August [...] Read more.
The impact of bio-invasions and abnormal aggregations of marine life on the safety of cooling water systems in coastal nuclear power plants (NPPs) is significant and cannot be overlooked. In this study, we conducted 12 consecutive monthly surveys from September 2022 to August 2023 in the waters near Ningde NPP in Fujian, China, focusing on nekton species composition, dominant species, abundance, biomass, and diversity indices. We conducted statistical analyses to examine potential correlations between the community structure of these organisms and environmental factors. We recorded 120 species of nekton that belonged to 20 orders, 57 families, and 92 genera, including 72 species of fish, 23 species of shrimp, 19 species of crabs, and 6 species of cephalopods. Pearson and redundancy analyses showed that pH, DIP, and inorganic nitrogen were the main environmental factors driving the observed temporal changes in the nekton community structure in the seawater intake area. We also found that May to October is the peak period for nekton abundance and biomass, and during this time, there is a high risk of nekton blocking the cooling water system of the NPP. These results are of practical significance for NPP managers to prevent and control the clogging of the cooling water system by marine organisms, and the diversity and abundance data provide a theoretical basis for bioecological restoration and management of the area around the Ningde NPP. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Figure 1

11 pages, 5386 KiB  
Communication
Detection of Trypanosoma cruzi DNA in Blood of the Lizard Microlophus atacamensis: Understanding the T. cruzi Cycle in a Coastal Island of the Atacama Desert
by Josefa Borcosque-Avendaño, Nicol Quiroga, Franco Cianferoni, Gabriel Díaz-Campusano, José Luis Marcos, Carezza Botto-Mahan, Fernando Torres-Pérez, Antonella Bacigalupo and Ricardo Campos-Soto
Animals 2025, 15(9), 1221; https://doi.org/10.3390/ani15091221 - 26 Apr 2025
Viewed by 511
Abstract
Trypanosoma cruzi, the protozoan causative of Chagas disease, is primarily transmitted through blood-sucking insects and infects mammalian and some reptilian hosts. In Chile, insects of the Mepraia genus are key vectors of T. cruzi in its wild transmission cycle. High prevalence and [...] Read more.
Trypanosoma cruzi, the protozoan causative of Chagas disease, is primarily transmitted through blood-sucking insects and infects mammalian and some reptilian hosts. In Chile, insects of the Mepraia genus are key vectors of T. cruzi in its wild transmission cycle. High prevalence and mixed infection of T. cruzi lineages have been reported in a Mepraia population on Santa María Island in the Atacama Desert. However, no small mammals have been reported. The island’s vertebrate community is dominated by the lizard Microlophus atacamensis and marine and scavenger birds. This study aimed to research blood samples of M. atacamensis for the presence of T. cruzi DNA (kDNA and satDNA) using conventional PCR (cPCR) and quantitative real-time PCR (qPCR) and estimate parasitemia. Our findings reveal that 39.4% of 33 individuals were positive with both cPCR and qPCR, while when assessing infection with either technique, it rises up to 81.8%. These findings confirm that M. atacamensis is a host of T. cruzi, suggesting its potential role as a key reservoir in the island’s transmission cycle. This study provides new insights into the life cycle of T. cruzi in the coastal Atacama Desert, highlighting the importance of reptiles in the epidemiology of this parasite. Full article
Show Figures

Figure 1

17 pages, 1253 KiB  
Review
Metagenome-Assembled Genomes (MAGs): Advances, Challenges, and Ecological Insights
by Salvador Mirete, Mercedes Sánchez-Costa, Jorge Díaz-Rullo, Carolina González de Figueras, Pablo Martínez-Rodríguez and José Eduardo González-Pastor
Microorganisms 2025, 13(5), 985; https://doi.org/10.3390/microorganisms13050985 - 25 Apr 2025
Viewed by 314
Abstract
Metagenome-assembled genomes (MAGs) have revolutionized microbial ecology by enabling the genome-resolved study of uncultured microorganisms directly from environmental samples. By leveraging high-throughput sequencing, advanced assembly algorithms, and genome binning techniques, researchers can reconstruct microbial genomes without the need for cultivation. These methodological advances [...] Read more.
Metagenome-assembled genomes (MAGs) have revolutionized microbial ecology by enabling the genome-resolved study of uncultured microorganisms directly from environmental samples. By leveraging high-throughput sequencing, advanced assembly algorithms, and genome binning techniques, researchers can reconstruct microbial genomes without the need for cultivation. These methodological advances have expanded the known microbial diversity, revealing novel taxa and metabolic pathways involved in key biogeochemical cycles, including carbon, nitrogen, and sulfur transformations. MAG-based studies have identified microbial lineages form Archaea and Bacteria responsible for methane oxidation, carbon sequestration in marine sediments, ammonia oxidation, and sulfur metabolism, highlighting their critical roles in ecosystem stability. From a sustainability perspective, MAGs provide essential insights for climate change mitigation, sustainable agriculture, and bioremediation. The ability to characterize microbial communities in diverse environments, including soil, aquatic ecosystems, and extreme habitats, enhances biodiversity conservation and supports the development of microbial-based environmental management strategies. Despite these advancements, challenges such as assembly biases, incomplete metabolic reconstructions, and taxonomic uncertainties persist. Continued improvements in sequencing technologies, hybrid assembly approaches, and multi-omics integration will further refine MAG-based analyses. As methodologies advance, MAGs will remain a cornerstone for understanding microbial contributions to global biogeochemical processes and developing sustainable interventions for environmental resilience. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

16 pages, 2028 KiB  
Article
Microbial Contamination in Urban Marine Sediments: Source Identification Using Microbial Community Analysis and Fecal Indicator Bacteria
by Ellinor M. Frank, Carolina Suarez, Isabel K. Erb, Therese Jephson, Elisabet Lindberg and Catherine J. Paul
Microorganisms 2025, 13(5), 983; https://doi.org/10.3390/microorganisms13050983 - 25 Apr 2025
Viewed by 271
Abstract
We investigated the presence of the fecal indicator bacteria Escherichia coli, and other taxa associated with sewage communities in coastal sediments, near beaches with reported poor bathing water quality, focusing on the influence of effluent from a local wastewater treatment plant (WWTP) [...] Read more.
We investigated the presence of the fecal indicator bacteria Escherichia coli, and other taxa associated with sewage communities in coastal sediments, near beaches with reported poor bathing water quality, focusing on the influence of effluent from a local wastewater treatment plant (WWTP) and combined sewer overflows (CSO). Using a three-year dataset, we found that treated wastewater effluent is a significant source of sewage-associated taxa and viable E. coli in the sediments and that no seasonal differences were observed between spring and summer samples. CSO events have a local and temporary effect on the microbial community of sediments, distinct from that of treated wastewater effluent. Sediments affected by CSO had higher abundances of families Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae. Sewage releases may also impact the natural community of the sediments, as higher abundances of marine sulfur-cycling bacteria were noticed in locations where sewage taxa were also abundant. Microbial contamination at locations distant from known CSO and treatment plant outlets suggests additional sources, such as stormwater. This study highlights that while coastal sediments can be a reservoir of E. coli and contain sewage-associated taxa, their distribution and potential origins are complex and are likely not linked to a single source. Full article
(This article belongs to the Special Issue Microbial Communities in Aquatic Environments)
Show Figures

Figure 1

18 pages, 5557 KiB  
Article
The Phytoplankton Community Exhibited Restored Species Diversity but Fragile Network Stability Under Potential Sustainable Aquaculture Approach of Marine Ranching
by Dongqun Wei, Zeping Xie, Jialin Li, Diansheng Ji, Lin Qu, Baoquan Li, Xiao Wei and Song Qin
J. Mar. Sci. Eng. 2025, 13(5), 835; https://doi.org/10.3390/jmse13050835 - 23 Apr 2025
Viewed by 204
Abstract
Mariculture is currently experiencing rapid growth in response to the rising global food demand, while simultaneously posing significant challenges to environmental issues, such as pollution stress and ecological degradation. To achieve a balance between ecosystem maintenance and seafood supply, marine ranching has flourished [...] Read more.
Mariculture is currently experiencing rapid growth in response to the rising global food demand, while simultaneously posing significant challenges to environmental issues, such as pollution stress and ecological degradation. To achieve a balance between ecosystem maintenance and seafood supply, marine ranching has flourished as a sustainable approach through the implementation of artificial reef construction, stock enhancement, and strategic releasing. However, few studies have evaluated the ecological impacts through a comparison of in situ survey data across geographical areas. Phytoplankton are vital organisms in marine ecosystems that function as essential indicators of seawater quality and biological diversity, reflecting environmental health and ecological sustainability. In this study, we investigated the species diversity, community structure, and co-occurrence network of phytoplankton based on 175 samples collected from 75 sites encompassing all 26 marine ranching seawater areas, along with their corresponding surrounding areas in Yantai’s coastal sea. A total of 112 species were identified across three phyla of diatoms, dinoflagellates, and chrysophytes; among them, diatoms dominated the community with a notably high proportion of 98.83%. Their diversity and structure exhibited significant variations across different seasons and geographic locations. Moreover, no preference was observed between the marine ranching seawater and the surrounding areas. Nevertheless, a co-occurrence network analysis demonstrated that lower values for average degree, clustering coefficient, and average path length were exhibited in marine ranching, indicating that aquaculture activities have reduced connectivity among potential interactions. Additionally, it showed reduced stability as indicated by the remaining nodes and the natural connectivity indices, regardless of the proportion of nodes removed. These findings illustrate that while marine ranching processes can mitigate species losses with maintaining phytoplankton community structure, they still alter association among species and reduce overall stability. This research recommends that scientifically informed expansion of marine ranching necessitates robust environmental monitoring datasets and systematic validation to ensure holistic sustainability. Full article
Show Figures

Graphical abstract

21 pages, 3671 KiB  
Article
Polychaetes Associated with Calcareous Red Algae Corallina officinalis in the Northern Adriatic Sea
by Valentina Pitacco, Moira Buršić, Ante Žunec, Petra Burić, Neven Iveša, Ines Kovačić, Emina Pustijanac, Ljiljana Iveša, Tanja Vojvoda Zeljko and Borut Mavrič
Diversity 2025, 17(5), 302; https://doi.org/10.3390/d17050302 - 22 Apr 2025
Viewed by 269
Abstract
Polychaetes are important marine invertebrates that contribute to sediment bioturbation, nutrient recycling, and food web dynamics. This study examines the diversity and structure of the polychaete assemblages associated with the red algae Corallina officinalis in areas with different levels of anthropogenic pressures of [...] Read more.
Polychaetes are important marine invertebrates that contribute to sediment bioturbation, nutrient recycling, and food web dynamics. This study examines the diversity and structure of the polychaete assemblages associated with the red algae Corallina officinalis in areas with different levels of anthropogenic pressures of the Northeastern Adriatic Sea. Sampling was performed in the intertidal zones. Altogether, 54 species from 13 families were found, with Syllidae being the most abundant. Polychaete richness, relative abundance and diversity at sampling locations with and without anthropogenic pressures showed no significant difference. Multivariate analyses revealed significant differences in species composition between sites under anthropogenic pressures and those without, with key species such as Sphaerosyllis pirifera, Syllis rosea, Syllis prolifera, Syllis gerundensis, and Platynereis dumerilii playing significant roles. Syllis rosea was the most abundant in locations without anthropogenic pressures, while S. pirifera was the most abundant in locations under anthropogenic pressures. These results suggest that while polychaete communities are resilient, anthropogenic pressures are causing shifts in species composition. This pattern is consistent with the results of related studies, indicating a broader ecological trend. The shifts observed here should raise concern among conservation ecologists, underscoring the importance of long-term monitoring to understand and mitigate the impacts of human activities on coastal ecosystems. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

32 pages, 17827 KiB  
Article
Trends in Coral Reef Habitats over Two Decades: Lessons Learned from Nha Trang Bay Marine Protected Area, Vietnam
by Nguyen Trinh Duc Hieu, Nguyen Hao Quang, Tran Duc Dien, Vo Thi Ha, Nguyen Dang Huyen Tran, Tong Phuoc Hoang Son, Tri Nguyen-Quang, Tran Thi Thuy Hang and Ha Nam Thang
Water 2025, 17(8), 1224; https://doi.org/10.3390/w17081224 - 19 Apr 2025
Viewed by 428
Abstract
Coral reefs are well known for their diversity and value, providing habitats for a third of marine species within just 0.2% of the ocean. However, these natural habitats face significant threats and degradation, leading to unresolved issues related to coral loss inventory, coral [...] Read more.
Coral reefs are well known for their diversity and value, providing habitats for a third of marine species within just 0.2% of the ocean. However, these natural habitats face significant threats and degradation, leading to unresolved issues related to coral loss inventory, coral protection, and the implementation of long-term conservation policies. In this study, we examined two decades of changes in coral spatial distribution within the Nha Trang Bay Marine Protected Area (MPA) using remote sensing and machine learning (ML) approaches. We identified various factors contributing to coral reef loss and analyzed the effectiveness of management policies over the past 20 years. By employing the Light Gradient Boosting Machine (LGBM) and Deep Forest (DF) models on Landsat (2002, κ = 0.83, F1 = 0.85) and Planet (2016, κ = 0.89, F1 = 0.82; 2024, κ = 0.92, F1 = 0.86) images, we achieved high confidence in our inventory of coral changes. Our findings revealed that 191.38 hectares of coral disappeared from Nha Trang Bay MPA between 2002 and 2024. The 8-year period from 2016 to 2024 saw a loss of 66.32 hectares, which is in linear approximation to the 125.06 hectares lost during the 14-year period from 2002 to 2016. It is concluded that the key factors contributing to coral loss include land-use dynamics, global warming, and the impact of starfish. To address these challenges, we propose next a modern community-based management paradigm to enhance the conservation of existing coral reefs and protect potential habitats within Nha Trang Bay MPA. Full article
Show Figures

Graphical abstract

38 pages, 2926 KiB  
Review
Bioaccumulation and Trophic Transfer of Heavy Metals in Marine Fish: Ecological and Ecosystem-Level Impacts
by Andra Oros
J. Xenobiot. 2025, 15(2), 59; https://doi.org/10.3390/jox15020059 - 18 Apr 2025
Viewed by 817
Abstract
Heavy metal contamination in marine ecosystems poses a critical environmental challenge, with significant implications for biodiversity, trophic dynamics, and human health. Marine fish are key bioindicators of heavy metal pollution because of their role in food webs and their capacity for bioaccumulation and [...] Read more.
Heavy metal contamination in marine ecosystems poses a critical environmental challenge, with significant implications for biodiversity, trophic dynamics, and human health. Marine fish are key bioindicators of heavy metal pollution because of their role in food webs and their capacity for bioaccumulation and trophic transfer. This review synthesizes current knowledge on the pathways and mechanisms of heavy metal accumulation in marine fish, focusing on factors that influence the uptake, retention, and tissue distribution. We explore the processes governing trophic transfer and biomagnification, highlighting species-specific accumulation patterns and the risks posed to apex predators, including humans. Additionally, we assess the ecological consequences of heavy metal contamination at population, community, and ecosystem levels, emphasizing its effects on fish reproduction, community structure, and trophic interactions. By integrating recent findings, this review highlights key knowledge gaps and suggests future research directions to improve environmental monitoring and risk assessment. Given the persistence and bioavailability of heavy metals in marine environments, effective pollution control strategies and sustainable fisheries management are imperative to mitigate long-term ecological and public health risks. Full article
Show Figures

Figure 1

11 pages, 732 KiB  
Article
Exploring Microplastics’ Presence in Free-Living Marine Nematodes from Natural Ecosystems Using µ-Raman Spectroscopy
by Gabriella Pantó, Oliver Jacob, Ann Vanreusel, Natalia P. Ivleva and Carl Van Colen
Microplastics 2025, 4(2), 20; https://doi.org/10.3390/microplastics4020020 - 16 Apr 2025
Viewed by 207
Abstract
Detecting microplastics (MPs) in marine organisms is vital for understanding the ecological impact of MP pollution. Free-living marine nematodes, key players in benthic ecosystems, are often employed as bioindicators because of their sensitivity to environmental changes and thus hold promise as bioindicators for [...] Read more.
Detecting microplastics (MPs) in marine organisms is vital for understanding the ecological impact of MP pollution. Free-living marine nematodes, key players in benthic ecosystems, are often employed as bioindicators because of their sensitivity to environmental changes and thus hold promise as bioindicators for MP pollution too. This study investigated the detection of MPs in nematodes using µ-Raman spectroscopy combined with a tailored digestion protocol, targeting MPs in size ranges between 1 and 15 µm. While this is the first documented attempt to detect MPs in field-collected nematodes, significant challenges were identified. Contamination, particularly from airborne MPs and plastic-based laboratory materials, posed a major obstacle. We found higher numbers of <5 µm particles of polypropylene (PP), polyethylene terephthalate (PET), polylactic acid (PLA), polymethyl methacrylate (PMMA), and polystyrene (PS) in a natural community of nematodes compared to blank controls, suggesting the potential ingestion of small-sized MPs by nematodes in the real world. However, small MPs exhibited greater contamination challenges, underscoring the need for improved contamination control measures, such as open-air filters and plastic-free workflows. Despite these challenges, this study highlights the potential of µ-Raman spectroscopy as a valuable tool for detecting small-sized MPs in field-collected marine invertebrates, provided contamination risks are minimized. The likelihood of nematodes encountering MPs in marine sediments is high, but whether this translates to significant ingestion remains uncertain pending on the analysis of more field samples and the application of efficient measures of contamination reduction. Full article
Show Figures

Graphical abstract

15 pages, 9278 KiB  
Article
Effects of Seawater from Different Sea Areas on Abalone Gastrointestinal Microorganisms and Metabolites
by Zhaolong Li, Ling Ke, Chenyu Huang, Song Peng, Mengshi Zhao, Huini Wu and Fengqiang Lin
Microorganisms 2025, 13(4), 915; https://doi.org/10.3390/microorganisms13040915 - 16 Apr 2025
Viewed by 257
Abstract
Significant regional variations in seawater characteristics (temperature, salinity, pH, nutrients) exist across marine environments, yet their impacts on abalone gastrointestinal microbiota and metabolites remain underexplored. This study investigated seawater nutrient and pH interactions on abalone gut ecosystems through comparative analysis of three marine [...] Read more.
Significant regional variations in seawater characteristics (temperature, salinity, pH, nutrients) exist across marine environments, yet their impacts on abalone gastrointestinal microbiota and metabolites remain underexplored. This study investigated seawater nutrient and pH interactions on abalone gut ecosystems through comparative analysis of three marine regions (Pingtan (PT), Xiapu (XP), Lianjiang (LJ)). Seawater characteristics revealed distinct patterns: LJ exhibited the lowest total phosphorus (TP: 0.12 mg/L), total nitrogen (TN: 2.8 mg/L), NH3-N (0.05 mg/L) but the highest salinity (32.1‰) and lowest pH (7.82), while PT/XP showed elevated nutrients (TP: 0.24–0.28 mg/L; TN: 4.2–4.5 mg/L). Microbial diversity peaked in LJ samples (Shannon index: 5.8) with dominant genera Psychrilyobacter (12.4%) and Bradyrhizobium (9.1%), contrasting with PT’s Mycoplasma-enriched communities (18.7%) and XP’s Vibrio-dominant profiles (14.3%). Metabolomic analysis identified 127 differential metabolites (VIP > 1.5, p < 0.05), predominantly lipids (38%) and organic acids (27%), with pathway enrichment in sulfur relay (q = 4.2 × 10−5) and tryptophan metabolism (q = 1.8 × 10−4). Stomach-specific metabolites correlated with fatty acid degradation (e.g., inosine diphosphate, r = −0.82 with vibrionimonas) and glutathione metabolism (methionine vs. mycoplasma, r = −0.79). Critically, pH showed negative correlations with beneficial Psychrilyobacter (oleamide: r = −0.68) and positive associations with pathogenic Vibrio (trigonelline: r = 0.72). Elevated NH3-N (>0.15 mg/L) and TP (>0.25 mg/L) promoted Mycoplasma proliferation (R2 = 0.89) alongside cytotoxic metabolite accumulation. These findings demonstrate that higher pH (>8.0) and nutrient overload disrupt microbial symbiosis, favoring pathogens over beneficial taxa. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

15 pages, 4909 KiB  
Article
Macrozoobenthic Communities in the Upwelling Area off Chile (36° S) with Special Consideration of the Oxygen Minimum Zone
by Anna S. Krug and Michael L. Zettler
Diversity 2025, 17(4), 278; https://doi.org/10.3390/d17040278 - 16 Apr 2025
Viewed by 241
Abstract
The Humboldt Current System (HCS) off southwest America is known for its strong upwelling and the resulting high primary production and associated oxygen minimum zones (OMZs). Macrozoobenthic species represent a group of organisms that are affected by the low oxygen concentrations in the [...] Read more.
The Humboldt Current System (HCS) off southwest America is known for its strong upwelling and the resulting high primary production and associated oxygen minimum zones (OMZs). Macrozoobenthic species represent a group of organisms that are affected by the low oxygen concentrations in the OMZ. In January 2023, benthic diversity was investigated at 8 stations on a transect off Concepción, central Chile (in the centre of the OMZ) in a water depth range from 56 to 912 m. The measured oxygen values ranged from 0 µmol/L in the OMZ to 144.64 µmol/L outside the OMZ. At each station, 3 van Veen grabs were taken, the species identified, counted and weighed. The mean abundance, biomass and diversity were calculated for each station. This analysis provided an overview of the changes in the species communities at different oxygen concentrations. The species communities at the stations with low oxygen levels differed greatly from those with higher oxygen levels. Species diversity at the stations increased during the transition from low (<2 µmol/L) to higher oxygen levels (>100 µmol/L). In contrast, species abundance and, to a lesser extent, biomass tended to be higher at low oxygen concentrations. The species composition at the various stations showed a high occurrence of polychaetes. The spionid polychaete Paraprionospio pinnata played an important role as a central key species within the OMZ. In addition to Paraprionospio, Ampelisca araucana, Magelona phyllisae, Nephtys ferruginea and Cossura chilensis were found in high abundance in the oxygen minimum zone (50–200 m water depth). At the edge and presumably below the oxygen minimum zone (300–912 m), where the oxygen concentration rises again, the dominance of individual species decreased, and the total number of species increased. In addition, the species composition changed and the abundance of other polychaete families (Cirratulidae, Amphinomidae, Oweniidae and Capitellidae) amplified. The proportion of polychaetes in the total abundance decreased from almost 100% at the low-oxygen stations to around 60% at the stations below the oxygen minimum zone. Bivalvia of the families Thyasiridae, Nuculidae and Yoldiidae were of particular importance at the deeper stations with a share of up to 20% of the total abundance. The study of benthic communities is of central importance to better understand the future changes in the structure and function of marine ecosystems in hypoxic waters. Full article
(This article belongs to the Special Issue Ecology and Biogeography of Marine Benthos—2nd Edition)
Show Figures

Figure 1

16 pages, 2989 KiB  
Article
Unraveling Zooplankton Trophic Dynamics: Insights from Stable Isotope Analysis in the Eastern Mediterranean (Aegean, Cretan and Ionian Seas)
by Maria Protopapa and Soultana Zervoudaki
Water 2025, 17(8), 1187; https://doi.org/10.3390/w17081187 - 15 Apr 2025
Viewed by 172
Abstract
Understanding the trophic interactions and community structure of zooplankton is essential for assessing energy transfer in marine ecosystems. This study investigates the spatial and seasonal variations in stable carbon (δ13C) and nitrogen (δ15N) isotopes of dominant mesozooplankton groups across [...] Read more.
Understanding the trophic interactions and community structure of zooplankton is essential for assessing energy transfer in marine ecosystems. This study investigates the spatial and seasonal variations in stable carbon (δ13C) and nitrogen (δ15N) isotopes of dominant mesozooplankton groups across three sub-basins of the Eastern Mediterranean (North Aegean, Cretan, and South Ionian Seas) during two seasonal surveys (October 2014 and May 2015). Zooplankton samples were collected using a WP-2 net and analyzed for taxonomic composition, abundance, biomass, and stable isotopic signatures to assess trophic positioning. The results indicate that copepods dominated the zooplankton community at all stations, with Clausocalanus and Oithona juveniles being the most abundant taxa. Salps contributed significantly at certain stations, reflecting regional variations in the planktonic food web structure. Zooplankton δ15N values exhibited pronounced spatial and seasonal differences, with higher enrichment observed in 2014 compared to 2015. The calculated trophic positions highlight the variability in feeding strategies among copepod species, with Calanus helgolandicus occupying the highest trophic position (TP = 3.34) and Lucicutia spp. the lowest (TP = 1.22). Isotopic niche analysis identified two distinct feeding guilds: a group relying on phytoplankton and microzooplankton and another exhibiting broader trophic plasticity, including omnivorous and carnivorous taxa. These findings underscore the complexity of zooplankton trophic interactions in the Eastern Mediterranean and the role of regional hydrographic conditions in shaping the food web structure. This study provides essential baseline data for future research on the impacts of climate change and nutrient variability on Mediterranean marine ecosystems. Full article
(This article belongs to the Special Issue The Study of Plankton in the Mediterranean Sea)
Show Figures

Figure 1

29 pages, 5063 KiB  
Article
Beyond the Bloom: Invasive Seaweed Sargassum spp. as a Catalyst for Sustainable Agriculture and Blue Economy—A Multifaceted Approach to Biodegradable Films, Biostimulants, and Carbon Mitigation
by Elena Martínez-Martínez, Alexander H. Slocum, María Laura Ceballos, Paula Aponte and Andrés Guillermo Bisonó-León
Sustainability 2025, 17(8), 3498; https://doi.org/10.3390/su17083498 - 14 Apr 2025
Viewed by 524
Abstract
The Anthropocene has ushered in unprecedented environmental challenges, with invasive seaweed blooms emerging as a critical yet understudied facet of climate change. These blooms, driven by nutrient runoff and oceanic alterations, disrupt ecosystems, threaten biodiversity, and impose economic and public health burdens on [...] Read more.
The Anthropocene has ushered in unprecedented environmental challenges, with invasive seaweed blooms emerging as a critical yet understudied facet of climate change. These blooms, driven by nutrient runoff and oceanic alterations, disrupt ecosystems, threaten biodiversity, and impose economic and public health burdens on coastal communities. However, invasive seaweeds also present an opportunity as a sustainable resource. This study explores the valorization of Sargassum spp. for agricultural applications, focusing on the development of biodegradable bioplastics and biostimulants. Field trials demonstrated the effectiveness of Marine Symbiotic® Sargassum-derived biostimulant in distinct agricultural contexts. In the Dominican Republic, trials on pepper crops showed significant improvements, including a 33.26% increase in fruit weight, a 21.94% rise in fruit set percentage, a 45% higher yield under high-stress conditions, and a 48.42% reduction in fruit rejection compared to control. In Colombia, trials across four leafy green varieties revealed biomass increases of up to 360%, a 50% reduction in synthetic input dependency, and enhanced crop coloration, improving marketability. Additionally, Sargassum-based biofilms exhibited favorable mechanical properties and biodegradability, offering a sustainable alternative to conventional agricultural plastics. Carbon credit quantification revealed that valorizing Sargassum could prevent up to 89,670 tons of CO2-equivalent emissions annually using just one Littoral Collection Module® harvesting system, while biostimulant application enhanced carbon sequestration in crops. These findings underscore the potential of invasive seaweed valorization to address multiple climate challenges, from reducing plastic pollution and GHG emissions to enhancing agricultural resilience, thereby contributing to a sustainable Blue Economy and aligning with global sustainability goals. Full article
Show Figures

Figure 1

24 pages, 4894 KiB  
Article
Design and Implementation of a Position-Based Coordinated Formation System for Underwater Multiple Small Spherical Robots
by Xihuan Hou, Shuxiang Guo, Zan Li, Huimin Shi, Na Yuan and Huiming Xing
Oceans 2025, 6(2), 21; https://doi.org/10.3390/oceans6020021 - 14 Apr 2025
Viewed by 257
Abstract
Due to the excellent concealment and high mobility, multiple small spherical underwater robots are essential for near coast defending missions. The formation of multiple small spherical underwater robots is particularly effective for tasks such as patrolling, reconnaissance, surveillance, and capturing sensitive targets. Moreover, [...] Read more.
Due to the excellent concealment and high mobility, multiple small spherical underwater robots are essential for near coast defending missions. The formation of multiple small spherical underwater robots is particularly effective for tasks such as patrolling, reconnaissance, surveillance, and capturing sensitive targets. Moreover, some tasks need higher flexibility and mobility, such as reconnaissance, surveillance, or target encirclement at fixed locations. For this purpose, this paper proposes a position-based formation mechanism which is easily deployed for multiple spherical robots. A position planning method during the formation process is designed. This method creatively integrates the virtual linkage strategy with an improved consensus algorithm and the artificial potential field (APF) method. The virtual linkage strategy is in charge of computing the global formation desired target positions for robots according to the predefined position of the virtual leader joint. The improved consensus algorithm and APF are responsible for planning the local desired positions between two formation desired target positions, which is able to prevent collisions and excessive communication distance between robots. In order to verify the effectiveness of the proposed formation mechanism, adequate simulations and experiments are conducted. Thereby, the proposed formation frame offers great potential for future practical marine operations of the underwater multi-small robot systems. Full article
Show Figures

Figure 1

Back to TopTop