Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = mottled leaf

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1391 KB  
Article
Differential Nutrient Contents and Free Amino Acid Levels in Asymptomatic and Symptomatic Leaves of Huanglongbing-Affected Grapefruit Trees
by Aditi Satpute, Catherine Simpson and Mamoudou Sétamou
Plants 2025, 14(17), 2756; https://doi.org/10.3390/plants14172756 - 3 Sep 2025
Viewed by 543
Abstract
Grapefruit (Citrus × paradisi Macfad.) is susceptible to Huanglongbing (HLB) disease, which prominently affects tree health and leads to a substantial loss of productivity. HLB-affected trees exhibit a nutritional imbalance expressed in either deficiencies or toxicities of the essential minerals required for [...] Read more.
Grapefruit (Citrus × paradisi Macfad.) is susceptible to Huanglongbing (HLB) disease, which prominently affects tree health and leads to a substantial loss of productivity. HLB-affected trees exhibit a nutritional imbalance expressed in either deficiencies or toxicities of the essential minerals required for plant growth, as well as changes in the production of plant metabolites. Hence, understanding foliar nutritional and metabolite fluctuations as HLB-elicited symptoms progress can assist growers in improving tree health management strategies. This study evaluated changes in foliar nutrient and phloem sap amino acid concentrations of HLB-affected grapefruit trees showing a mixed canopy of HLB-induced blotchy mottle and asymptomatic mature leaves. The trees used in our experiment were fruit-bearing seven-year-old grapefruit trees (cv ‘Rio Red’ on sour orange rootstock) grown in South Texas. Two types of foliage from HLB-affected trees were studied, (a) HLB-symptomatic and confirmed Candidatus Liberibacter asiaticus (CLas)-positive (IS) and (b) CLas-negative and HLB-asymptomatic (IA) mature leaves, which were compared to asymptomatic and CLas-free mature foliage from healthy trees (HY) in terms of their leaf nutrient and phloem sap amino acid contents. Hierarchical clustering based on leaf nutrient contents showed that 70% of IA samples clustered with HY samples, thus indicating that the levels of some nutrients were statistically similar in these two types of samples. The concentrations of the macronutrients N, Ca, Mg, and S and the micronutrients Mn and B were significantly reduced in HLB-symptomatic (IS) leaves, as compared to their IA and HY counterparts, which did not show statistically significant differences. Conversely, leaf Na concentration was approximately two-fold higher in leaves from HLB-affected trees (IA and IS) independent of symptom expression as compared to leaves from healthy trees. Significantly higher concentrations of glutamine and the S-containing amino acids taurine and cystathionine were observed in the IS leaves relative to the phloem sap of IA leaves from HLB-affected trees. In contrast, the phloem sap of IA (14%) and IS (41%) leaves from HLB-affected trees exhibited lower levels of γ-amino butyric acid (GABA) as compared to HY leaves. The results of this study highlight the changes in leaf nutrient and phloem sap amino acid profiles following CLas infection and HLB symptom development in grapefruit, and we discuss these results considering the strategies that growers can implement to correct the nutritional deficiencies and/or toxicities induced by this disease. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

26 pages, 9987 KB  
Article
Detection of Citrus Huanglongbing in Natural Field Conditions Using an Enhanced YOLO11 Framework
by Liang Cao, Wei Xiao, Zeng Hu, Xiangli Li and Zhongzhen Wu
Mathematics 2025, 13(14), 2223; https://doi.org/10.3390/math13142223 - 8 Jul 2025
Viewed by 820
Abstract
Citrus Huanglongbing (HLB) is one of the most devastating diseases in the global citrus industry, but its early detection under complex field conditions remains a major challenge. Existing methods often suffer from insufficient dataset diversity and poor generalization, and struggle to accurately detect [...] Read more.
Citrus Huanglongbing (HLB) is one of the most devastating diseases in the global citrus industry, but its early detection under complex field conditions remains a major challenge. Existing methods often suffer from insufficient dataset diversity and poor generalization, and struggle to accurately detect subtle early-stage lesions and multiple HLB symptoms in natural backgrounds. To address these issues, we propose an enhanced YOLO11-based framework, DCH-YOLO11. We constructed a multi-symptom HLB leaf dataset (MS-HLBD) containing 9219 annotated images across five classes: Healthy (1862), HLB blotchy mottling (2040), HLB Zinc deficiency (1988), HLB yellowing (1768), and Canker (1561), collected under diverse field conditions. To improve detection performance, the DCH-YOLO11 framework incorporates three novel modules: the C3k2 Dynamic Feature Fusion (C3k2_DFF) module, which enhances early and subtle lesion detection through dynamic feature fusion; the C2PSA Context Anchor Attention (C2PSA_CAA) module, which leverages context anchor attention to strengthen feature extraction in complex vein regions; and the High-efficiency Dynamic Feature Pyramid Network (HDFPN) module, which optimizes multi-scale feature interaction to boost detection accuracy across different object sizes. On the MS-HLBD dataset, DCH-YOLO11 achieved a precision of 91.6%, recall of 87.1%, F1-score of 89.3, and mAP50 of 93.1%, surpassing Faster R-CNN, SSD, RT-DETR, YOLOv7-tiny, YOLOv8n, YOLOv9-tiny, YOLOv10n, YOLO11n, and YOLOv12n by 13.6%, 8.8%, 5.3%, 3.2%, 2.0%, 1.6%, 2.6%, 1.8%, and 1.6% in mAP50, respectively. On a publicly available citrus HLB dataset, DCH-YOLO11 achieved a precision of 82.7%, recall of 81.8%, F1-score of 82.2, and mAP50 of 89.4%, with mAP50 improvements of 8.9%, 4.0%, 3.8%, 3.2%, 4.7%, 3.2%, and 3.4% over RT-DETR, YOLOv7-tiny, YOLOv8n, YOLOv9-tiny, YOLOv10n, YOLO11n, and YOLOv12n, respectively. These results demonstrate that DCH-YOLO11 achieves both state-of-the-art accuracy and excellent generalization, highlighting its strong potential for robust and practical citrus HLB detection in real-world applications. Full article
(This article belongs to the Special Issue Deep Learning and Adaptive Control, 3rd Edition)
Show Figures

Figure 1

25 pages, 4098 KB  
Article
Exploring the Genetic Networks of HLB Tolerance in Citrus: Insights Across Species and Tissues
by Rodrigo Machado, Sebastián Moschen, Gabriela Conti, Sergio A. González, Máximo Rivarola, Claudio Gómez, Horacio Esteban Hopp and Paula Fernández
Plants 2025, 14(12), 1792; https://doi.org/10.3390/plants14121792 - 11 Jun 2025
Cited by 1 | Viewed by 1170
Abstract
Huanglongbing (HLB), caused mainly by Candidatus Liberibacter asiaticus (CLas), is a devastating disease threatening citrus production worldwide, leading to leaf mottling, fruit deformation, and significant yield losses. This study generated a comprehensive co-expression network analysis using RNA-seq data from 17 public datasets. Weighted [...] Read more.
Huanglongbing (HLB), caused mainly by Candidatus Liberibacter asiaticus (CLas), is a devastating disease threatening citrus production worldwide, leading to leaf mottling, fruit deformation, and significant yield losses. This study generated a comprehensive co-expression network analysis using RNA-seq data from 17 public datasets. Weighted gene co-expression network analysis (WGCNA) was applied to identify gene modules associated with citrus species, tissue types, and days post-infection (DPIs). These modules revealed significant enrichment in biological pathways related to stress responses, metabolic reprograming, ribosomal protein synthesis, chloroplast and plastid function, cellular architecture, and intracellular transport. The results offer a molecular framework for understanding HLB pathogenesis and host response. By elucidating module-specific functions and their correlation with species- and tissue-specific responses, this study provides a robust foundation for identifying key genetic targets. These insights facilitate breeding programs focused on developing HLB-tolerant citrus cultivars, contributing to the long-term sustainability and resilience of global citrus production. Full article
(This article belongs to the Special Issue Deciphering Plant Molecular Data Using Computational Methods)
Show Figures

Figure 1

14 pages, 540 KB  
Article
Application of In Vitro Techniques for Elimination of Plum Pox Virus (PPV) and Apple Chlorotic Leaf Spot Virus (ACLSV) in Stone Fruits
by Balnur Kabylbekova, Toigul Nurseitova, Zarina Yussupova, Timur Turdiyev, Irina Kovalchuk, Svetlana Dolgikh, Sagi Soltanbekov, Aigerim Seisenova and Aigul Madenova
Horticulturae 2025, 11(6), 633; https://doi.org/10.3390/horticulturae11060633 - 5 Jun 2025
Viewed by 816
Abstract
Viral infections in stone fruit crops cause substantial economic losses across all sectors of production. Despite their significance, viruses affecting stone fruits remain under-investigated in Kazakhstan. Among these, plum pox virus (PPV, genus Potyvirus, family Potyviridae), commonly known as Sharka, is [...] Read more.
Viral infections in stone fruit crops cause substantial economic losses across all sectors of production. Despite their significance, viruses affecting stone fruits remain under-investigated in Kazakhstan. Among these, plum pox virus (PPV, genus Potyvirus, family Potyviridae), commonly known as Sharka, is the most critical viral pathogen worldwide, severely threatening the sustainable cultivation of stone fruits and posing risks to food security. This study aimed to evaluate virus management strategies in stone fruit crops to facilitate the production of healthy planting material from valuable genotypes. Field surveys were conducted in plum and apricot orchards located in the Almaty region (Southeast Kazakhstan) and the Saryagash region (Southern Kazakhstan). Plant samples were tested for the presence of the following viruses: apple chlorotic leaf spot virus (ACLSV), apple mosaic virus (ApMV), PPV, prune dwarf virus (PDV), prunus necrotic ringspot virus (PNRSV), cherry green ring mottle virus (CGRMV), and myrobalan latent ringspot virus (MLRSV). Real-time RT-PCR diagnostics confirmed the presence of PPV in the ‘Stanley’ and ‘Ansar’ cultivars and Prunus armeniaca genotypes, while both PPV and ACLSV were detected in the ‘Ayana’ variety. Chemotherapy (Ribavirin), thermotherapy, cryotherapy, and shoot apical meristem (SAM) culture, both individually and in combination, were used to eliminate viruses and regenerate virus-free plants. Successful virus eradication was achieved for PPV and ACLSV. However, the ‘Stanley’ and ‘Ansar’ cultivars did not survive the treatment process, likely due to high thermo- or cryo-sensitivity. As a result of this research, an in vitro collection of virus-free plants was established, comprising eight rootstocks, six plum cultivars, and three apricot genotypes. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

10 pages, 1423 KB  
Article
Viral and Viroid Communities in Peach Cultivars Grown in Bulgaria
by Mariyana Gozmanova, Vesselin Baev, Rumyana Valkova, Elena Apostolova-Kuzova, Stoyanka Jurac, Galina Yahubyan, Lilyana Nacheva and Snezhana Milusheva
Horticulturae 2025, 11(5), 503; https://doi.org/10.3390/horticulturae11050503 - 7 May 2025
Viewed by 708
Abstract
Peaches (Prunus persica L. Batsch) and nectarines (Prunus persica L. Batsch var. nectarina [Ait.] Maxim) are economically important stone fruits consumed worldwide, both fresh and processed. Viruses and viroids significantly constrain the cultivation and productivity of peach orchards. Climate change may [...] Read more.
Peaches (Prunus persica L. Batsch) and nectarines (Prunus persica L. Batsch var. nectarina [Ait.] Maxim) are economically important stone fruits consumed worldwide, both fresh and processed. Viruses and viroids significantly constrain the cultivation and productivity of peach orchards. Climate change may alter vector populations and lead to shifts in agricultural practices, influencing the spread of these viruses and viroids. Additionally, market globalization further intensifies the pressure on peach crops by facilitating the movement of pathogens, increasing the incidence of virus-induced diseases. In this study, we identified the viral and viroid communities in five peach cultivars from Bulgaria and assessed their impact on symptom development. RNA sequencing of symptomatic leaf samples revealed the presence of common peach viruses, such as plum pox virus and prunus necrotic ringspot virus. Notably, we identified peach latent mosaic viroid and cherry green ring mottle virus in Bulgarian peach orchards for the first time. Furthermore, bioassays of indicator plants, ELISA, and Sanger sequencing were performed for each peach tree to complement the RNA sequencing data. These findings provide valuable insights into the composition of viral and viroid pathogens affecting peaches in Bulgaria and will support the development of targeted strategies for monitoring and managing these pathogens, contributing to the sustainable production of peaches in the region. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

18 pages, 4313 KB  
Article
The First High-Throughput Sequencing-Based Study of Viruses Infecting Solanaceous Crops in Kosovo Reveals Multiple Infections in Peppers by Six Plant Viruses
by Burim Ismajli, Zsuzsanna N. Galbács, András Péter Takács and Éva Várallyay
Plants 2025, 14(9), 1273; https://doi.org/10.3390/plants14091273 - 22 Apr 2025
Cited by 1 | Viewed by 1132
Abstract
High-throughput sequencing (HTS) was employed for the first time to investigate plant viruses infecting solanaceous crops, including potato (Solanum tuberosum), tomato (Solanum lycopersicum), and pepper (Capsicum annuum), in Kosovo. Leaf samples showing virus-like symptoms were collected from [...] Read more.
High-throughput sequencing (HTS) was employed for the first time to investigate plant viruses infecting solanaceous crops, including potato (Solanum tuberosum), tomato (Solanum lycopersicum), and pepper (Capsicum annuum), in Kosovo. Leaf samples showing virus-like symptoms were collected from various regions during the summer of 2023. Based on ribodepleted RNA sequencing and bioinformatics analysis, six viruses were identified: cucumber mosaic virus, broad bean wilt virus 2 (BBWV2), potato virus Y, pepper cryptic virus 2 (PCV2), bell pepper endornavirus (BPEV), and ranunculus white mottle virus. BBWV2, PCV2, and BPEV are reported for the first time in the Balkan region. Virus presence was validated using RT-PCR. Phylogenetic analyses revealed that the identified viral strains did not cluster according to their hosts and geographical origins. CMV and BBWV2 variants exhibited reassortment events, indicating possible local evolution or novel virus introductions. This research highlights the widespread occurrence of mixed infections in pepper plants and highlights the need for additional research into the virus transmission dynamics and potential reservoir hosts. These findings emphasize the need for continuous surveillance and integrated plant protection strategies to mitigate the impacts of viral infections on pepper and other economically important crops in Kosovo. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Graphical abstract

23 pages, 1719 KB  
Article
Combining Linkage and Association Mapping Approaches to Study the Genetic Architecture of Verticillium Wilt Resistance in Sunflower
by Juan F. Montecchia, Mónica I. Fass, Matías Domínguez, Sergio A. González, Martín N. García, Carla V. Filippi, Emiliano Ben Guerrero, Carla Maringolo, Carolina Troglia, Facundo J. Quiroz, Julio H. González, Daniel Alvarez, Ruth A. Heinz, Verónica V. Lia and Norma B. Paniego
Plants 2025, 14(8), 1187; https://doi.org/10.3390/plants14081187 - 11 Apr 2025
Cited by 1 | Viewed by 928
Abstract
Sunflower Verticillium Wilt and Leaf Mottle (SVW), caused by Verticillium dahliae Kleb., is a globally prevalent disease affecting sunflower production. In this study, we identified a major quantitative trait locus (QTL) on chromosome 10 and other genomic regions associated with SVW resistance by [...] Read more.
Sunflower Verticillium Wilt and Leaf Mottle (SVW), caused by Verticillium dahliae Kleb., is a globally prevalent disease affecting sunflower production. In this study, we identified a major quantitative trait locus (QTL) on chromosome 10 and other genomic regions associated with SVW resistance by integrating biparental and association mapping in sunflower populations from the National Institute of Agricultural Technology. Nine replicated field trials were conducted in highly infested V. dahliae reservoirs to assess disease incidence and severity. Both mapping populations were genotyped using double-digest restriction-site-associated DNA sequencing (ddRADseq). Association mapping with 18,161 SNPs and biparental QTL mapping with 1769 SNPs identified a major QTL on chromosome 10 explaining up to 30% of phenotypic variation for disease incidence at flowering and for the area under the disease progress curve for disease incidence, and which contributes to a lesser extent to disease severity reduction. Additional QTLs on chromosomes 17, 8, 9, 14, 13, and 11 were associated with reduced disease incidence, severity, or both. Candidate genes were identified within these associated regions, 39 of which are in the major QTL on Chromosome 10. These findings demonstrate the value of integrating complementary QTL mapping strategies for validating resistance loci and advancing sunflower breeding for SVW resistance. Full article
(This article belongs to the Special Issue Genetic Approaches to Enhancing Disease Resistance in Crops)
Show Figures

Figure 1

17 pages, 1221 KB  
Article
Key Sweet Potato Viruses in Fujian Province and Their Distribution, Harmfulness, and Implications in China
by Weikun Zou, Shi-Peng Chen, Zhijian Yang and Xuanyang Chen
Curr. Issues Mol. Biol. 2025, 47(4), 242; https://doi.org/10.3390/cimb47040242 - 1 Apr 2025
Viewed by 1020
Abstract
China, the largest global producer of sweet potatoes, faces significant threats from viral diseases, particularly in Fujian Province, where sweet potatoes are the second most important food crop after rice. This study identified 11 viruses, including sweet potato feathery mottle virus (SPFMV) and [...] Read more.
China, the largest global producer of sweet potatoes, faces significant threats from viral diseases, particularly in Fujian Province, where sweet potatoes are the second most important food crop after rice. This study identified 11 viruses, including sweet potato feathery mottle virus (SPFMV) and sweet potato chlorotic stunt virus (SPCSV), infecting sweet potatoes in Fujian. Sequence comparisons revealed diverse strains from various sources. Virus prevalence varied across regions, with Quanzhou, Fuzhou, and Putian severely affected, detecting 10, 9, and 7 viruses, respectively, compared to only 3 in Sanming and Longyan. In particular, sweet potato virus disease (SPVD) caused the most severe damage during the seeding stages, resulting in dwarfing and leaf deformation, while the damage was lighter during the growth period, manifesting as the yellowing and brittleness of the leaves, ultimately reducing the yield. Compound infestations predominated, with between 0 and 6 viruses infecting different sweet potato varieties. Single-virus infections were observed for sweet potato virus 2 (SPV2), sweet potato symptomless virus 1 (SPSMV-1), and sweet potato pakakuy virus (SPPV), while others, particularly SPCSV, were frequently co-infected with SPFMV, leading to SPVD development. Further analysis showed that the RNase3 expression of SPCSV was correlated with the SPVD severity in sweet potato. These findings provide insights into the epidemiology of sweet potato viruses and serve as a reference for developing targeted disease management strategies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 2108 KB  
Article
Genomic, Evolutionary, and Pathogenic Characterization of a New Polerovirus in Traditional Chinese Medicine Viola philippica
by Yuanling Chen, Gaoxiang Chen, Jiaping Yu, Yali Zhou, Shifang Fei, Haorong Chen, Jianxiang Wu and Shuai Fu
Viruses 2025, 17(1), 114; https://doi.org/10.3390/v17010114 - 15 Jan 2025
Viewed by 1225
Abstract
Viola philippica, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of V. philippica remains limited. In this study, V. philippica plants [...] Read more.
Viola philippica, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of V. philippica remains limited. In this study, V. philippica plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens. A novel polerovirus, named Viola Philippica Polerovirus (VPPV), was identified in V. philippica. VPPV possesses a linear, positive-sense, single-stranded RNA genome consisting of 5535 nucleotides (nt) and encodes seven highly overlapping open reading frames (ORFs). Two potential recombination events were identified within ORF2, ORF3a, and ORF3, providing insights into the genetic diversity and evolution history of this novel polerovirus. An infectious cDNA clone of VPPV was successfully constructed and shown to infect Nicotiana benthamiana. Using a PVX-based heterologous expression system, the VPPV P0 protein was shown to trigger a systemic hypersensitive response (HR)-like reaction in N. benthamiana, indicating that P0 functions as the main pathogenicity determinant. These findings contributed to the detection and understanding of pathogenic mechanisms and control strategies for VPPV in V. philippica. Full article
(This article belongs to the Special Issue Emerging and Reemerging Plant Viruses in a Changing World)
Show Figures

Figure 1

12 pages, 4171 KB  
Article
Editing eIF4E in the Watermelon Genome Using CRISPR/Cas9 Technology Confers Resistance to ZYMV
by Maoying Li, Yanhong Qiu, Dongyang Zhu, Xiulan Xu, Shouwei Tian, Jinfang Wang, Yongtao Yu, Yi Ren, Guoyi Gong, Haiying Zhang, Yong Xu and Jie Zhang
Int. J. Mol. Sci. 2024, 25(21), 11468; https://doi.org/10.3390/ijms252111468 - 25 Oct 2024
Cited by 1 | Viewed by 2672
Abstract
Watermelon is one of the most important cucurbit crops, but its production is seriously affected by viral infections. Although eIF4E proteins have emerged as the major mediators of the resistance to viral infections, the mechanism underlying the contributions of eIF4E to watermelon disease [...] Read more.
Watermelon is one of the most important cucurbit crops, but its production is seriously affected by viral infections. Although eIF4E proteins have emerged as the major mediators of the resistance to viral infections, the mechanism underlying the contributions of eIF4E to watermelon disease resistance remains unclear. In this study, three CleIF4E genes and one CleIF(iso)4E gene were identified in the watermelon genome. Among these genes, CleIF4E1 was most similar to other known eIF4E genes. To investigate the role of CleIF4E1, CRISPR/Cas9 technology was used to knock out CleIF4E1 in watermelon. One selected mutant line had an 86 bp deletion that resulted in a frame-shift and the expression of a truncated protein. The homozygous mutant exhibits developmental defects in plant growth, leaf morphology and reduced yield. Furthermore, the mutant was protected against the zucchini yellow mosaic virus, but not the cucumber green mottled mosaic virus. In summary, this study preliminarily clarified the functions of eIF4E proteins in watermelon. The generated data will be useful for elucidating eIF4E-related disease resistance mechanisms in watermelon. The tissue-specific editing of CleIF4E1 in future studies may help to prevent adverse changes to watermelon fertility. Full article
(This article belongs to the Special Issue Genetics and Molecular Breeding of Cucurbitaceous Crops)
Show Figures

Figure 1

21 pages, 1301 KB  
Review
Interactions between Common Bean Viruses and Their Whitefly Vector
by Amanda L. Ferreira, Murad Ghanim, Yi Xu and Patricia V. Pinheiro
Viruses 2024, 16(10), 1567; https://doi.org/10.3390/v16101567 - 2 Oct 2024
Cited by 4 | Viewed by 2484
Abstract
Common bean (Phaseolus vulgaris L.) is a widely cultivated crop, representing an important protein source in the human diet in developing countries. The production of this crop faces serious challenges, such as virus diseases transmitted by the whitefly Bemisia tabaci. Although [...] Read more.
Common bean (Phaseolus vulgaris L.) is a widely cultivated crop, representing an important protein source in the human diet in developing countries. The production of this crop faces serious challenges, such as virus diseases transmitted by the whitefly Bemisia tabaci. Although there is a lot of information about some of these viruses, most of what we know has been developed using model systems, such as tomato plants and tomato yellow leaf curl virus (TYLCV). There is still very little information on the most relevant common bean viruses, such as bean golden mosaic virus (BGMV), bean golden yellow mosaic virus (BGYMV), bean dwarf mosaic virus (BDMV), cowpea mild mottle virus (CPMMV), and bean yellow disorder virus (BnYDV). In this review, we discuss the available data in the most up-to-date literature and suggest future research avenues to contribute to the development of management tools for preventing or reducing the damage caused by viruses in this important crop. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

25 pages, 4373 KB  
Article
Next Generation Sequencing and Genetic Analyses Reveal Factors Driving Evolution of Sweetpotato Viruses in Uganda
by Joanne Adero, Godfrey Wokorach, Francesca Stomeo, Nasser Yao, Eunice Machuka, Joyce Njuguna, Denis K. Byarugaba, Jan Kreuze, G. Craig Yencho, Milton A. Otema, Benard Yada and Mercy Kitavi
Pathogens 2024, 13(10), 833; https://doi.org/10.3390/pathogens13100833 - 26 Sep 2024
Cited by 3 | Viewed by 3304
Abstract
Sweetpotato (Ipomoea batatas L.) is an essential food crop globally, especially for farmers facing resource limitations. Like other crops, sweetpotato cultivation faces significant production challenges due to viral infections. This study aimed to identify and characterize viruses affecting sweetpotato crops in Uganda, [...] Read more.
Sweetpotato (Ipomoea batatas L.) is an essential food crop globally, especially for farmers facing resource limitations. Like other crops, sweetpotato cultivation faces significant production challenges due to viral infections. This study aimed to identify and characterize viruses affecting sweetpotato crops in Uganda, mostly those associated with sweetpotato virus disease (SPVD). Infected leaf samples were collected from farmers’ fields in multiple districts spanning three regions in Uganda. MiSeq, a next-generation sequencing platform, was used to generate reads from the viral nucleic acid. The results revealed nine viruses infecting sweetpotato crops in Uganda, with most plants infected by multiple viral species. Sweet potato pakakuy and sweet potato symptomless virus_1 are reported in Uganda for the first time. Phylogenetic analyses demonstrated that some viruses have evolved to form new phylogroups, likely due to high mutations and recombination, particularly in the coat protein, P1 protein, cylindrical inclusion, and helper component proteinase regions of the potyvirus. The sweet potato virus C carried more codons under positive diversifying selection than the closely related sweet potato feathery mottle virus, particularly in the P1 gene. This study provides valuable insights into the viral species infecting sweetpotato crops, infection severity, and the evolution of sweet potato viruses in Uganda. Full article
Show Figures

Figure 1

12 pages, 1034 KB  
Article
Olive Leaf Mottling Virus: A New Member of the Genus Olivavirus
by Ana Belén Ruiz-García, Thierry Candresse, José Malagón, Manuel Ruiz-Torres, Sergio Paz, Ana Pérez-Sierra and Antonio Olmos
Plants 2024, 13(16), 2290; https://doi.org/10.3390/plants13162290 - 17 Aug 2024
Viewed by 2201
Abstract
Studies of the virome of olive trees with symptoms of leaf mottling by high-throughput sequencing (HTS) revealed the presence of a new virus. Full coding genome sequences of two isolates were determined and consisted of a single RNA segment of 16,516 nt and [...] Read more.
Studies of the virome of olive trees with symptoms of leaf mottling by high-throughput sequencing (HTS) revealed the presence of a new virus. Full coding genome sequences of two isolates were determined and consisted of a single RNA segment of 16,516 nt and 16,489, respectively. The genomic organization contained 10 open reading frames (ORFs) from 5′ to 3′: ORF1a, ORF1b (RdRp), ORF2 (p22), ORF3 (p7), ORF4 (HSP70h), ORF5 (HSP90h), ORF6 (CP), ORF7 (p19), ORF8 (p12), ORF9 (p23) and ORF10 (p9). Phylogenetic analyses clustered this virus in the genus Olivavirus, family Closteroviridae, with the closest species being Olivavirus flaviolae, commonly named olive leaf yellowing-associated virus (OLYaV). However, amino acid sequences of all taxonomically relevant proteins showed, in all cases, a divergence higher than 25% between OLYaV and the new virus, indicating that it represents a new species in the genus Olivavirus for which the common name of olive leaf mottling virus (OLMV) is proposed. This study represents an advance in the genus Olivavirus and provides new insights into the olive virome. Full article
(This article belongs to the Special Issue Different Aspects of Plant Viral Metagenomics)
Show Figures

Figure 1

14 pages, 2242 KB  
Article
Alfalfa Mosaic Virus and White Clover Mosaic Virus Combined Infection Leads to Chloroplast Destruction and Alterations in Photosynthetic Characteristics of Nicotiana benthamiana
by Yinge Chen, Qiaolan Liang, Liexin Wei and Xin Zhou
Viruses 2024, 16(8), 1255; https://doi.org/10.3390/v16081255 - 5 Aug 2024
Cited by 5 | Viewed by 1859
Abstract
Alfalfa mosaic virus (AMV) is one of the most widely distributed viruses; it often exhibits combined infection with white clover mosaic virus (WCMV). Even so, little is known about the effects of co-infection with AMV and WCMV on plants. To determine whether there [...] Read more.
Alfalfa mosaic virus (AMV) is one of the most widely distributed viruses; it often exhibits combined infection with white clover mosaic virus (WCMV). Even so, little is known about the effects of co-infection with AMV and WCMV on plants. To determine whether there is a synergistic effect of AMV and WCMV co-infection, virus co-infection was studied by electron microscopy, the double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), and real-time fluorescence quantitative PCR (RT-qPCR) of AMV and WCMV co-infection in Nicotiana benthamiana. Meanwhile, measurements were carried out on the photosynthetic pigments, photosynthetic gas exchange parameters, and chlorophyll fluorescence parameters. The results showed that the most severe disease development was induced by AMV and WCMV co-infection, and the disease grade was scale 7. N. benthamiana leaves induced mottled yellow-green alternating patterns, leaf wrinkling, and chlorosis, and chloroplasts were observed to be on the verge of disintegration. The relative accumulation of AMV CP and WCMV CP was significantly increased by 15.44-fold and 10.04-fold upon co-infection compared to that with AMV and WCMV single infection at 21 dpi. In addition, chlorophyll a, chlorophyll b, total chlorophyll, the net photosynthetic rate, the water use efficiency, the apparent electron transport rate, the PSII maximum photochemical efficiency, the actual photochemical quantum yield, and photochemical quenching were significantly reduced in leaves co-infected with AMV and WCMV compared to AMV- or WCMV-infected leaves and CK. On the contrary, the carotenoid content, transpiration rate, stomatal conductance, intercellular CO2 concentration, minimal fluorescence value, and non-photochemical quenching were significantly increased. These findings suggest that there was a synergistic effect between AMV and WCMV, and AMV and WCMV co-infection severely impacted the normal function of photosynthesis in N. benthamiana. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

11 pages, 7581 KB  
Article
Biological and Molecular Characterization of the Cucumber Mosaic Virus Infecting Purple Coneflowers in China
by Bin Zhang, Liping Chen, Pingping Sun, Zhengnan Li and Lei Zhang
Agronomy 2024, 14(8), 1709; https://doi.org/10.3390/agronomy14081709 - 3 Aug 2024
Viewed by 1675
Abstract
Purple coneflower (Echinacea purpurea L.), which is a perennial herbaceous plant belonging to the Asteraceae family, is extensively cultivated because of its medicinal applications. However, in Hohhot, Inner Mongolia, China, purple coneflowers in the field exhibited symptoms such as mottle, mosaic, and [...] Read more.
Purple coneflower (Echinacea purpurea L.), which is a perennial herbaceous plant belonging to the Asteraceae family, is extensively cultivated because of its medicinal applications. However, in Hohhot, Inner Mongolia, China, purple coneflowers in the field exhibited symptoms such as mottle, mosaic, and crinkle. This study aimed to explore the biological and molecular characteristics of the cucumber mosaic virus (CMV) infecting the purple coneflowers in China. We observed isometric particles approximately 30 nm in diameter in the symptomatic leaf specimens. Infection with the CMV was confirmed via high-throughput sequencing and RT-PCR validation. Mechanical inoculation assays demonstrated that the CMV-SGJ isolate could infect both Nicotiana benthamiana and Nicotiana tabacum. Three viral genomic components were identified: RNA1 with 3321 nucleotides, RNA2 with 3048 nucleotides, and RNA3 with 2209 nucleotides. Phylogenetic analysis revealed that the CMV-SGJ isolate clustered into phylogenetic subgroup IA, exhibiting a nucleotide identity of 92.2–95% with subgroup IA CMV isolates in GenBank. This report is the first documentation of the complete genome of the CMV infecting purple flowers in China. Full article
Show Figures

Figure 1

Back to TopTop