Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,714)

Search Parameters:
Keywords = normal breast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 276 KiB  
Article
Effects of Reduced Amino Acids and Apparent Metabolizable Energy on Meat Processing, Internal Organ Development, and Economic Returns of Cobb 700 and Ross 708 Broilers
by Bo Zhang, Shengyu Zhou, Wei Zhai and Yang Zhao
Animals 2025, 15(7), 1064; https://doi.org/10.3390/ani15071064 (registering DOI) - 6 Apr 2025
Viewed by 45
Abstract
The rapid growth and high nutrient density in modern broiler production have led to issues like woody breast myopathy (WBM), footpad dermatitis, and fat accumulation, affecting welfare and profitability. This study evaluated the effects of amino acid (AA) and apparent metabolizable energy (AME) [...] Read more.
The rapid growth and high nutrient density in modern broiler production have led to issues like woody breast myopathy (WBM), footpad dermatitis, and fat accumulation, affecting welfare and profitability. This study evaluated the effects of amino acid (AA) and apparent metabolizable energy (AME) reductions on organ development, carcass yield, WBM incidence, and economic returns in Cobb 700 and Ross 708 broilers. Two trials were conducted, one per strain, using a factorial design with 12 treatments (four AA × three AME). Each trial included 864 broilers, randomly assigned to six replicate blocks, with 12 pens per block (six males and six females per pen). Diets contained 70%, 80%, 90%, or 100% of digestible AA and 84%, 92%, or 100% AME based on breeder recommendations. A 30% AA reduction increased fat pad weight, promoted proventriculus and jejunum development (day 58), reduced carcass and tenderloin weights, lowered moderate/severe WBM incidence (day 47), and shortened footpad dermatitis. A 16% AME reduction decreased fat pad weight, improved muscle production and returns, but reduced normal breast percentage (days 40 and 47). The recommended protein–energy ratio (g/MJ) for optimal economic returns was as follows: 19.78 (0–10 d), 17.51 (11–24 d), 16.03 (25–39 d), and 15.25 (40–63 d). Full article
(This article belongs to the Special Issue Amino Acid Nutrition in Poultry: 2nd Edition)
24 pages, 2991 KiB  
Article
Automatic Blob Detection Method for Cancerous Lesions in Unsupervised Breast Histology Images
by Vincent Majanga, Ernest Mnkandla, Zenghui Wang and Donatien Koulla Moulla
Bioengineering 2025, 12(4), 364; https://doi.org/10.3390/bioengineering12040364 - 31 Mar 2025
Viewed by 65
Abstract
The early detection of cancerous lesions is a challenging task given the cancer biology and the variability in tissue characteristics, thus rendering medical image analysis tedious and time-inefficient. In the past, conventional computer-aided diagnosis (CAD) and detection methods have heavily relied on the [...] Read more.
The early detection of cancerous lesions is a challenging task given the cancer biology and the variability in tissue characteristics, thus rendering medical image analysis tedious and time-inefficient. In the past, conventional computer-aided diagnosis (CAD) and detection methods have heavily relied on the visual inspection of medical images, which is ineffective, particularly for large and visible cancerous lesions in such images. Additionally, conventional methods face challenges in analyzing objects in large images due to overlapping/intersecting objects and the inability to resolve their image boundaries/edges. Nevertheless, the early detection of breast cancer lesions is a key determinant for diagnosis and treatment. In this study, we present a deep learning-based technique for breast cancer lesion detection, namely blob detection, which automatically detects hidden and inaccessible cancerous lesions in unsupervised human breast histology images. Initially, this approach prepares and pre-processes data through various augmentation methods to increase the dataset size. Secondly, a stain normalization technique is applied to the augmented images to separate nucleus features from tissue structures. Thirdly, morphology operation techniques, namely erosion, dilation, opening, and a distance transform, are used to enhance the images by highlighting foreground and background pixels while removing overlapping regions from the highlighted nucleus objects in the image. Subsequently, image segmentation is handled via the connected components method, which groups highlighted pixel components with similar intensity values and assigns them to their relevant labeled components (binary masks). These binary masks are then used in the active contours method for further segmentation by highlighting the boundaries/edges of ROIs. Finally, a deep learning recurrent neural network (RNN) model automatically detects and extracts cancerous lesions and their edges from the histology images via the blob detection method. This proposed approach utilizes the capabilities of both the connected components method and the active contours method to resolve the limitations of blob detection. This detection method is evaluated on 27,249 unsupervised, augmented human breast cancer histology dataset images, and it shows a significant evaluation result in the form of a 98.82% F1 accuracy score. Full article
Show Figures

Figure 1

20 pages, 6144 KiB  
Article
Remote Co-Loading of Doxorubicin and Hydralazine into PEGylated Liposomes: In Vitro Anti-Proliferative Effect Against Breast Cancer
by Walhan Alshaer, Zainab Lafi, Hamdi Nsairat, Baidaa AlQuaissi, Dana A. Alqudah, Hadil Zureigat and Islam Hamad
Molecules 2025, 30(7), 1549; https://doi.org/10.3390/molecules30071549 - 31 Mar 2025
Viewed by 133
Abstract
Doxorubicin (DOX), an anthracycline chemotherapeutic agent, demonstrates efficacy against various types of cancer. Combining DOX with the antihypertensive drug hydralazine (HDZ) has been proposed as cardioprotective combination therapy, allowing for the use of a reduced DOX dose. The current study describes the remote [...] Read more.
Doxorubicin (DOX), an anthracycline chemotherapeutic agent, demonstrates efficacy against various types of cancer. Combining DOX with the antihypertensive drug hydralazine (HDZ) has been proposed as cardioprotective combination therapy, allowing for the use of a reduced DOX dose. The current study describes the remote co-loading of DOX and HDZ into PEGylated liposomes using, for the first time, a simultaneous pH gradient technique. First, PEGylated liposomes were prepared using an ethanol injection method and remotely loaded with DOX and HDZ. Then, DOX- and HDZ-loaded liposomes (Lip-DOX-HDZ) were characterized using DLS, TEM, FTIR, thermal analysis, drug leakage, and stability. Furthermore, the cellular uptake and cytotoxicity were evaluated in two human breast cancer cell lines (MCF7 and MDA-MB-231) and two normal cell lines (human dermal fibroblasts (HDFs) and rat cardiac cells (H9C2)). The results revealed that Lip-DOX-HDZ had a particle size of 158 ± 18 nm, PDI of 0.22 ± 0.08, and zeta potential of −22 ± 5 mV. The encapsulation efficiency of DOX and HDZ was 90% and 30%, respectively. Moreover, the IC50 values of Lip-DOX-HDZ showed higher cytotoxicity against the MDA-MB-231 (5.5 ± 0.4 µM) and MCF7 (6.25 ± 0.9 µM) breast cancer cell lines compared to normal cells: HDF cells (20 ± 3.0 µM) and H9C2 cardiac cells (19.37 ± 2.0 µM). Our study found that remotely loaded Lip-DOX-HDZ showed a ~4-fold lower toxicity and selectivity for normal cells (HDFs and H9C2), compared to breast cancer cells. This suggests that Lip-DOX-HDZ is a promising nanocarrier for both DOX and HDZ, clinically potent molecules. Full article
Show Figures

Figure 1

35 pages, 13491 KiB  
Article
Investigating the Prognostic Role of Telomerase-Related Cellular Senescence Gene Signatures in Breast Cancer Using Machine Learning
by Qiong Li and Hongde Liu
Biomedicines 2025, 13(4), 826; https://doi.org/10.3390/biomedicines13040826 - 30 Mar 2025
Viewed by 92
Abstract
Background: Telomeres and cellular senescence are critical biological processes implicated in cancer development and progression, including breast cancer, through their influence on genomic stability and modulation of the tumor microenvironment. Methods: This study integrated bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) [...] Read more.
Background: Telomeres and cellular senescence are critical biological processes implicated in cancer development and progression, including breast cancer, through their influence on genomic stability and modulation of the tumor microenvironment. Methods: This study integrated bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) data to establish a gene signature associated with telomere maintenance and cellular senescence for prognostic prediction in breast cancer. Telomere-related genes (TEGs) and senescence-associated genes were curated from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A comprehensive machine learning framework incorporating 101 algorithmic combinations across 10 survival modeling approaches, including random survival forests and ridge regression, was employed to develop a robust prognostic model. Results: A set of 19 key telomere- and senescence-related genes was identified as the optimal prognostic signature. The model demonstrated strong predictive accuracy and was successfully validated in multiple independent cohorts. Functional enrichment analyses indicated significant associations with immune responses and aging-related pathways. Single-cell transcriptomic analysis revealed marked cellular heterogeneity, identifying distinct subpopulations (fibroblasts and immune cells) with divergent risk scores and biological pathway activity. Additionally, pseudo-time trajectory analysis and intercellular communication mapping provided insights into the dynamic evolution of the tumor microenvironment. Immunohistochemical (IHC) validation using data from the Human Protein Atlas confirmed differential protein expression between normal and tumor tissues for several of the selected genes, reinforcing their biological relevance and clinical utility. Conclusions: This study presents a novel 19-gene telomere- and senescence-associated signature with strong prognostic value in breast cancer. These findings enhance our understanding of tumor heterogeneity and may inform precision oncology approaches and future therapeutic strategies. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

15 pages, 9293 KiB  
Article
The Interconnection Between UbcH10, p53, and EGFR in Lung Cancer Cells and Their Involvement in Treatment Response
by Cristina Quintavalle, Umberto Malapelle, Marco De Martino, Danilo Rocco, Alfredo Fusco, Francesco Pepe, Claudio Bellevicine, Francesco Esposito and Pierlorenzo Pallante
Genes 2025, 16(4), 404; https://doi.org/10.3390/genes16040404 - 30 Mar 2025
Viewed by 96
Abstract
Background/Objectives: The UbcH10 protein plays an important role in a variety of human malignancies, including thyroid, breast, ovarian, and colorectal carcinomas. It has been previously reported that UbcH10 is overexpressed in non-small cell lung cancer (NSCLC) compared to normal lungs and that [...] Read more.
Background/Objectives: The UbcH10 protein plays an important role in a variety of human malignancies, including thyroid, breast, ovarian, and colorectal carcinomas. It has been previously reported that UbcH10 is overexpressed in non-small cell lung cancer (NSCLC) compared to normal lungs and that its expression is directly and inversely correlated with the mutational status of p53 and EGFR, respectively. Methods: We transfected lung cancer cells with wild-type and mutant forms of EGFR, modulated the expression of UbcH10 and p53, and treated these cells with tyrosine kinase inhibitor (TKI) erlotinib. Using Western blotting, we evaluated the expression of UbcH10 induced by EGFR and p53. Finally, we employed immunohistochemistry to assess the levels of UbcH10 expression in a subset of NSCLC patients receiving TKI therapy. Results: We reported a possible modulation of UbcH10 expression by the overexpression of wild-type and mutant EGFR in H460 lung cancer cells, potentially through p53. The enforced expression of UbcH10 in cells transfected with mutant EGFR suggested a potential increase in resistance to erlotinib treatment. Finally, immunohistochemical analysis of samples from NSCLC patients with mutant EGFR indicated a possible connection between UbcH10 expression levels and progression-free survival. Conclusions: In NSCLC, UbcH10 may play a role in the regulation of TKI response via a molecular pathway potentially involving p53 and EGFR. However, further research is needed to fully understand this mechanism. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

21 pages, 9023 KiB  
Article
Antitumor Assessment of Liposomal Beta-Carotene with Tamoxifen Against Breast Carcinoma Cell Line: An In Vitro Study
by Marim H. Elsayed, Medhat W. Shafaa, Mohga S. Abdalla, Manal F. El-Khadragy, Ahmed E. Abdel Moneim and Shimaa S. Ramadan
Biomolecules 2025, 15(4), 486; https://doi.org/10.3390/biom15040486 - 26 Mar 2025
Viewed by 179
Abstract
The present study was designed to characterize the interactions between lecithin liposomes, a model membrane, and either β-carotene or tamoxifen. In addition, the cytotoxicity of liposomal beta-carotene with tamoxifen was screened in vitro in human breast cancer cell lines MCF-7 and MDA-MB-231 in [...] Read more.
The present study was designed to characterize the interactions between lecithin liposomes, a model membrane, and either β-carotene or tamoxifen. In addition, the cytotoxicity of liposomal beta-carotene with tamoxifen was screened in vitro in human breast cancer cell lines MCF-7 and MDA-MB-231 in addition to the normal WI38 cell line. All liposomes were nearly spherical and evenly distributed and had fewer aggregates for encapsulated and empty vesicles. Measurements using dynamic light scattering verified that each sample was monodisperse. When tamoxifen is incorporated into liposomal membranes, the zeta potential values tend to decrease. In the test for cytotoxicity using MCF-7 treated cells, the liposomal β-carotene IC50 value was at least 0.45 μg/mL, whereas the IC50 of free β-carotene treated cells was 7.8 μg/mL. For MCF-7 treated cells treated with free tamoxifen, the IC50 was 9.92 μg/mL, but for its liposomal form, it was 20.88 μg/mL. According to the cytotoxicity test using MDA-MB-231 treated cells, the IC50 values for free tamoxifen, free β-carotene, liposomal β-carotene, liposomal tamoxifen, and liposomal tamoxifen β-carotene were 15.5 μg/mL, 38.1 μg/mL, 12.1 μg/mL, 21.2 μg/mL, and 11.4 μg/mL, respectively. This investigation demonstrated that free β-carotene has a more potent cytotoxic impact than tamoxifen. The findings showed that each comet assay variable for the liposomal β-carotene was significantly (p < 0.05) elevated in comparison with tamoxifen and control values. Analysis using flow cytometry revealed that the MCF-7 cells displayed a greater degree of cell apoptosis than the control cells following a 48 h exposure to liposomal β-carotene. Based on available data, a novel treatment plan that includes liposomal β-carotene may boost antitumor activity toward the MCF-7 cancer cell line. The current findings demonstrated that preparations of natural products might be a good substitute for pharmaceutical interventions in the treatment of breast cancer. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

19 pages, 2560 KiB  
Article
Effectiveness of FLASH vs. Conventional Dose Rate Radiotherapy in a Model of Orthotopic, Murine Breast Cancer
by Stavros Melemenidis, Vignesh Viswanathan, Suparna Dutt, Naviya Kapadia, Brianna Lau, Luis A. Soto, M. Ramish Ashraf, Banita Thakur, Adel Z. I. Mutahar, Lawrie B. Skinner, Amy S. Yu, Murat Surucu, Kerriann M. Casey, Erinn B. Rankin, Kathleen C. Horst, Edward E. Graves, Billy W. Loo and Frederick M. Dirbas
Cancers 2025, 17(7), 1095; https://doi.org/10.3390/cancers17071095 - 25 Mar 2025
Viewed by 704
Abstract
Introduction: Radiotherapy is effective for breast cancer treatment but often causes undesirable side effects that impair quality of life. Ultra-high dose rate radiotherapy (FLASH) has shown reduced normal tissue toxicity while achieving comparable tumor growth delay compared to conventional dose rate radiotherapy [...] Read more.
Introduction: Radiotherapy is effective for breast cancer treatment but often causes undesirable side effects that impair quality of life. Ultra-high dose rate radiotherapy (FLASH) has shown reduced normal tissue toxicity while achieving comparable tumor growth delay compared to conventional dose rate radiotherapy (CONV). This study evaluated whether FLASH could achieve similar tumor control as CONV with tumor eradication as the primary endpoint, in an orthotopic breast cancer model. Methods: Non-metastatic, orthotopic tumors were generated in the left fourth mammary fat pad using the Py117 mammary tumor cell line in syngeneic C57BL/6J mice. Two sequential irradiation studies were performed using FLASH (93–200 Gy/s) and CONV (0.08 Gy/s) electron beams. Single fractions of 20, 25, or 30 Gy were applied to tumors with varying abdominal wall treatment fields (~3.75 or 2.5 mm treatment margin to tumor). Results: Both FLASH and CONV demonstrated comparable efficacy. Small tumors treated with 30 Gy and larger abdominal wall treatment fields appeared to have complete eradication at 30 days but also exhibited the highest skin toxicity, limiting follow-up and preventing confirmation of eradication. Smaller abdominal wall treatment fields reduced skin toxicity and allowed for extended follow-up, which resulted in 75% tumor-free survival at 48 days. Larger tumors showed growth delay but no eradication. Conclusions: In this preclinical, non-metastatic orthotopic breast cancer model, FLASH and CONV demonstrated equivalent tumor control with single-fraction doses of 20, 25, or 30 Gy. Overall, 30 Gy achieved the highest eradication rate but also resulted in the most pronounced skin toxicity. Full article
Show Figures

Figure 1

24 pages, 5282 KiB  
Article
Human Milk Microbiome from Polish Women Giving Birth via Vaginal Delivery—Pilot Study
by Agnieszka Chrustek, Agnieszka Dombrowska-Pali, Dorota Olszewska-Słonina, Natalia Wiktorczyk-Kapischke, Maciej W. Socha, Anna Budzyńska and Iwona Sadowska-Krawczenko
Biology 2025, 14(4), 332; https://doi.org/10.3390/biology14040332 - 25 Mar 2025
Viewed by 255
Abstract
The human milk (HM) microbiome is variable and depends on maternal, perinatal, and cultural–environmental factors. The diversity of the HM microbiome is crucial in the development of the child. The aim of the study was to assess the prevalence of bacteria (using culture-based [...] Read more.
The human milk (HM) microbiome is variable and depends on maternal, perinatal, and cultural–environmental factors. The diversity of the HM microbiome is crucial in the development of the child. The aim of the study was to assess the prevalence of bacteria (using culture-based methods) of Polish women with normal BMI, giving birth on time through vaginal delivery. Methods: The research material consisted of human milk and swabs from the areola and nipple, before and after breastfeeding, derived from Polish women (n = 86). Classic culture methods were used to obtain multiple bacteria. Species identification of the grown colonies was performed using MALDI TOF MS (Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry). Results: 120 species of bacteria were isolated, mainly from the genus Streptococcus and Staphylococcus. Species specific only to human milk were identified (belonging to the following genera: Microbacterium, Shewanella, Psychrobacter, Aeromonas, Serratia, Buttiauxella, Lactobacillus, Bifidobacterium) as well as species specific only to areola and nipple swabs after breastfeeding (Acinetobacter lactucae, Moraxella catarrhalis, Corynebacterium pseudodiphtheriticum, Corynebacterium propinquim). It was confirmed that most species were present in all tested materials collected from one patient. Conclusions: The analysis carried out showed the presence of bacteria in the human milk of Polish women, including strains of lactic acid bacteria. The human milk microbiota may significantly influence the formation of the infant’s intestinal microbiota, including some key genera, i.e., Lactobacillus, Bifidobacterium, and Limosilactobacillus, which were also isolated from the tested samples. The data presented here provide new data on culturable bacterial species isolated from breast milk from Polish women giving birth via vaginal delivery and potential routes of transmission from the neonate’s oral cavity. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

25 pages, 2534 KiB  
Article
Biological Activities and Phytochemical Profile of Hawm Gra Dang Ngah Rice: Water and Ethanolic Extracts
by Suchanat Chaithong, Pinwadee Sukkarn, Chakkapat Aenglong, Wanwipha Woonnoi, Wanwimol Klaypradit, Wiwit Suttithumsatid, Narainrit Chinfak, Jirawat Seatan, Supita Tanasawet and Wanida Sukketsiri
Foods 2025, 14(7), 1119; https://doi.org/10.3390/foods14071119 - 24 Mar 2025
Viewed by 257
Abstract
Hawm Gra Dang Ngah rice (HDNR) is a red rice variety cultivated in Thailand’s southern border region, yet its biological properties have not been extensively studied. This study investigates the effects of HDNR extracts on bioactive constituents, spectral fingerprints, and antioxidant capacities. We [...] Read more.
Hawm Gra Dang Ngah rice (HDNR) is a red rice variety cultivated in Thailand’s southern border region, yet its biological properties have not been extensively studied. This study investigates the effects of HDNR extracts on bioactive constituents, spectral fingerprints, and antioxidant capacities. We evaluated the inhibitory effects of aqueous (HDNR-W) and ethanolic (HDNR-E) extracts on monoamine oxidase (MAO), α-glucosidase, and HMG-CoA reductase activities, as well as their cytotoxicity in normal and cancer cells. The results demonstrated that HDNR-E contained significantly higher concentrations of phenolic compounds, flavonoids, and anthocyanins compared to HDNR-W. In contrast, HDNR-W exhibited greater amino acid content than HDNR-E. FT-IR analysis revealed solvent-specific interactions that influenced compound solubility, highlighting distinct extraction efficiencies. Antioxidant assays showed HDNR-E to be markedly more potent, with superior performance in DPPH, ABTS, metal chelation, and FRAP assays, as evidenced by its lower IC50 values relative to HDNR-W. Furthermore, HDNR-E displayed significantly stronger inhibitory activity against both MAO and α-glucosidase compared to HDNR-W. Conversely, HDNR-W demonstrated greater inhibitory efficacy toward HMG-CoA reductase than HDNR-E. Furthermore, HDNR-E exhibited significant antiproliferative effects against A549 lung cancer and MCF-7 breast cancer cells without affecting normal cells. These results highlight the potential of HDNR-E as a valuable source of bioactive compounds and underscore the importance of solvent selection in enhancing the health benefits of rice extracts. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

20 pages, 3477 KiB  
Article
Development of 3D Cell-Based Fluorescent Reporter Assay for Screening of Drugs Downregulating Telomerase Reverse Transcriptase
by You Li, Fengli Zhang, Zhen Qin and Shang-Tian Yang
Bioengineering 2025, 12(4), 335; https://doi.org/10.3390/bioengineering12040335 - 23 Mar 2025
Viewed by 233
Abstract
A fluorescent cell-based assay was developed for the screening of chemicals repressing the expression of human telomerase reverse transcriptase (hTERT). hTERT is reactivated during carcinogenesis and is overexpressed in more than 90% of cancers but is almost silent in normal tissue cells. Because [...] Read more.
A fluorescent cell-based assay was developed for the screening of chemicals repressing the expression of human telomerase reverse transcriptase (hTERT). hTERT is reactivated during carcinogenesis and is overexpressed in more than 90% of cancers but is almost silent in normal tissue cells. Because of its critical role in cancer, hTERT is a target in various therapeutic strategies for cancer treatment. In this study, the hTERT promoter was cloned in MCF7 breast cancer cells and used to control the expression of enhanced green fluorescent protein (EGFP). The fluorescence of EGFP indicated the activity of the hTERT promoter, and, in the presence of an hTERT repressor, the EGFP fluorescence signal was reduced as compared to the EGFP fluorescence controlled by the human cytomegalovirus (CMV) promoter, which was not affected by changes in culture conditions and worked as a control. The EGFP reporter cells were cultivated in three-dimensional (3D) microbioreactors to resemble the in vivo tumor physiology and provide in vivo-like responses. The assay’s predictability was demonstrated with three known hTERT inhibitors, pristimerin, epigallocatechin gallate, and n-butylidenephthalide, and further evaluated with five widely used anticancer compounds, doxorubicin, cisplatin, paclitaxel, blasticidin, and tamoxifen. The results showed overall accuracy of over 83.3%, demonstrating the feasibility of using the hTERT promoter with EGFP as a reporter for the screening of potential cancer drugs targeting hTERT. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

31 pages, 3415 KiB  
Article
Extraction, Purification and Characterization of Exopolysaccharide from Lactiplantibacillus plantarum B7 with Potential Antioxidant, Antitumor and Anti-Inflammatory Activities
by Abeer A. Ageeli and Sahera F. Mohamed
Processes 2025, 13(4), 935; https://doi.org/10.3390/pr13040935 - 21 Mar 2025
Viewed by 295
Abstract
In recent years, exopolysaccharides (EPSs) have emerged as significant substances due to their impressive biological properties. This research intends to analyze the EPS extracted from probiotic bacteria and assess its various biological activities. The promising probiotic bacteria isolated from human breast milk was [...] Read more.
In recent years, exopolysaccharides (EPSs) have emerged as significant substances due to their impressive biological properties. This research intends to analyze the EPS extracted from probiotic bacteria and assess its various biological activities. The promising probiotic bacteria isolated from human breast milk was isolated and identified as Lactiplantibacillus plantarum B7 by 16S rRNA sequencing. The EPS yield of this strain was quantified as 5.2 g/L. The crude extract (EPSc) was subjected to purification by chromatography on DEAE-cellulose and Sephadex G-100 columns, giving two main fractions named EPSF1 and EPSF2. Structural features were investigated by HPLC, FTIR, GPC and 1HNMR. Chromatographic analysis indicated that EPSF1 and EPSF2 were composed of mannuronic acid, mannose and glucose in a molar ratio of 2.6:2.15:1.00 and 3.92:2.65:1.00 with a molecular weight of 4.36 × 104 and 5.27 × 105, respectively. Multiple in vitro assays of EPSc, EPSF1 and EPSF2 showed potent radical scavenging activity on DPPH, ABTS, hydroxyl radical scavenging activity (HRS) and superoxide scavenging activity. Also, they showed reducing power of 0.69, 0.61 and 0.58, respectively, at 1000 μg/mL. EPSc, EPSF1 and EPSF2 displayed negligible toxicity against WI-38 human normal lung cells but had cytotoxic effects against human colon cancer (Caco-2), (IC50 = 122.13 ± 0.01, 72.5 ± 0.12 and 81.6 ± 0.1 μg/mL), HepG2 liver cancer (IC50 = 112.5 ± 0.01, 60.3 ± 0.1 and 62.0 ± 0.03 μg/mL) and human prostate cancer (PC3) (IC50 = 109.6 ± 0.03, 65.7 ± 0.01 and 70.3 ± 0.04 μg/mL). While anti-inflammatory as hemolysis inhibition was 79.3 ± 0.05, 93.5 ± 0.05 and 87.9 0.03% at 500 µg/mL, respectively. The results indicate that EPSF1 showed promising antioxidant, antitumor and anti-inflammatory activities. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

34 pages, 1842 KiB  
Review
Cell Progression and Survival Functions of Enzymes Secreted in Extracellular Vesicles Associated with Breast and Prostate Cancers
by Cosmos Ifeanyi Onyiba, Niwasini Krishna Kumar, Christopher J. Scarlett and Judith Weidenhofer
Cells 2025, 14(7), 468; https://doi.org/10.3390/cells14070468 - 21 Mar 2025
Viewed by 1041
Abstract
Extracellular vesicles (EVs) are membrane-bound cargoes secreted by normal and pathological cells. Through their protein, nucleic acid, and lipid cargoes, EVs mediate several cellular processes, such as cell–cell communication, cell development, immune response, and tissue repair. Most importantly, through their enzyme cargo, EVs [...] Read more.
Extracellular vesicles (EVs) are membrane-bound cargoes secreted by normal and pathological cells. Through their protein, nucleic acid, and lipid cargoes, EVs mediate several cellular processes, such as cell–cell communication, cell development, immune response, and tissue repair. Most importantly, through their enzyme cargo, EVs mediate pathophysiological processes, including the pathogenesis of cancer. In this review, we enumerate several enzymes secreted in EVs (EV enzyme cargo) from cells and patient clinical samples of breast and prostate cancers and detail their contributions to the progression and survival of both cancers. Findings in this review reveal that the EV enzyme cargo could exert cell progression functions via adhesion, proliferation, migration, invasion, and metastasis. The EV enzyme cargo might also influence cell survival functions of chemoresistance, radioresistance, angiogenesis, cell death inhibition, cell colony formation, and immune evasion. While the current literature provides evidence of the possible contributions of the EV enzyme cargo to the progression and survival mechanisms of breast and prostate cancers, future studies are required to validate that these effects are modified by EVs and provide insights into the clinical applications of the EV enzyme cargo in breast and prostate cancer. Full article
Show Figures

Figure 1

18 pages, 2635 KiB  
Article
Dark Sweet Cherry (Prunus avium L.) Juice Phenolics Rich in Anthocyanins Exhibit Potential to Inhibit Drug Resistance Mechanisms in 4T1 Breast Cancer Cells via the Drug Metabolism Pathway
by Ana Nava-Ochoa, Susanne U. Mertens-Talcott, Stephen T. Talcott and Giuliana D. Noratto
Curr. Issues Mol. Biol. 2025, 47(3), 213; https://doi.org/10.3390/cimb47030213 - 20 Mar 2025
Viewed by 268
Abstract
Anthocyanins (ACNs) from dark sweet cherries (DSCs) have shown efficacy against breast cancer (BC) cells, particularly triple-negative breast cancer (TNBC) cells, without affecting normal breast cells. This study investigated the impact of ACNs on TNBC cells, focusing on drug resistance mechanisms involving drug [...] Read more.
Anthocyanins (ACNs) from dark sweet cherries (DSCs) have shown efficacy against breast cancer (BC) cells, particularly triple-negative breast cancer (TNBC) cells, without affecting normal breast cells. This study investigated the impact of ACNs on TNBC cells, focusing on drug resistance mechanisms involving drug metabolism and transport enzymes. Specifically, it was examined whether ACNs influenced Doxorubicin (DOX) metabolism by targeting drug metabolism enzymes (phase I metabolism) and drug transport enzymes (phase III metabolism) in TNBC cells. 4T1 TNBC cells were treated with ACNs, DOX, and the combination of both (ACN-DOX). Results showed a synergistic inhibition of cell viability by ACNs and DOX. In addition, the modulation of phase I drug-metabolizing enzymes was exerted by ACNs, reducing the activity of cytochrome P450 (CYP) enzymes induced by DOX. A reduction of drug efflux by ACNs was shown by decreasing P-glycoprotein (P-gp) activity, leading to a higher intracellular accumulation of DOX. These effects were confirmed using CYP and P-gp inducers and inhibitors, showing their impact on cell viability. In conclusion, the combination of ACNs with DOX has the potential to lower DOX doses, enhance its efficacy, and possibly reduce side effects, offering a promising approach for TNBC treatment. Full article
(This article belongs to the Special Issue Phytochemicals in Cancer Chemoprevention and Treatment: 2nd Edition)
Show Figures

Figure 1

21 pages, 5487 KiB  
Review
Targeting the CXCR4/CXCL12 Axis in Cancer Therapy: Analysis of Recent Advances in the Development of Potential Anticancer Agents
by Gerardina Smaldone, Francesca Di Matteo, Roberta Castelluccio, Valeria Napolitano, Maria Rosaria Miranda, Michele Manfra, Pietro Campiglia and Vincenzo Vestuto
Molecules 2025, 30(6), 1380; https://doi.org/10.3390/molecules30061380 - 20 Mar 2025
Viewed by 378
Abstract
Cancer, a leading cause of premature death, arises from genetic and epigenetic mutations that transform normal cells into tumor cells, enabling them to proliferate, evade cell death, and stimulate angiogenesis. Recent evidence indicates that chemokines are essential in tumor development, activating receptors that [...] Read more.
Cancer, a leading cause of premature death, arises from genetic and epigenetic mutations that transform normal cells into tumor cells, enabling them to proliferate, evade cell death, and stimulate angiogenesis. Recent evidence indicates that chemokines are essential in tumor development, activating receptors that promote proliferation, invasion, and metastasis. The CXCR4/CXCL12 signaling pathway is gaining attention as a promising target for cancer therapy. CXCR4, a chemokine receptor, is often overexpressed in various types of cancer, including kidney, lung, brain, prostate, breast, pancreas, ovarian, and melanomas. When it binds to its endogenous ligand, CXCL12, it promotes cell survival, proliferation, and migration, crucial mechanisms for the retention of hematopoietic stem cells in the bone marrow and the movement of lymphocytes. The extensive expression of CXCR4 in cancer, coupled with the constant presence of CXCL12 in various organs, drives the activation of this axis, which in turn facilitates angiogenesis, tumor progression, and metastasis. Given the detrimental role of the CXCR4/CXCL12 axis, the search for drugs acting selectively against this protein represents an open challenge. This review aims to summarize the recent advancements in the design and development of CXCR4 antagonists as potential anticancer agents. Full article
(This article belongs to the Special Issue Design, Synthesis and Biological Activity of Novel Antitumor Drugs)
Show Figures

Graphical abstract

16 pages, 2440 KiB  
Article
Maximum Potential Age of Pondcypress Hydrologic Indicators Using Diameter at Breast Height
by Cortney R. Cameron and Thomas J. Venning
Limnol. Rev. 2025, 25(1), 9; https://doi.org/10.3390/limnolrev25010009 - 20 Mar 2025
Viewed by 149
Abstract
In the absence of long-term hydrologic records, field-measured hydrologic indicators are useful for inferring past wetland hydrologic conditions, which can support research, regulation, and restoration. Inflection points on the buttresses of pondcypress trees (Taxodium ascendens) are frequently used in west-central Florida [...] Read more.
In the absence of long-term hydrologic records, field-measured hydrologic indicators are useful for inferring past wetland hydrologic conditions, which can support research, regulation, and restoration. Inflection points on the buttresses of pondcypress trees (Taxodium ascendens) are frequently used in west-central Florida to estimate cypress wetland high water levels, known as normal pool. However, little is known about how this indicator develops. A method to estimate tree age using diameter at breast height was developed for Florida pondcypress, which can be used by forested wetland managers to constrain the maximum potential age of hydrologic indicators in groups of cypress trees. This model was applied to a waterbody with a complex history of hydrologic alterations. The waterbody had two distinct populations of buttress inflection elevations, corresponding to historic versus current water level regimes. This represents one of the first documented instances in the literature where a waterbody showed multiple buttress inflection populations in the absence of soil subsidence. This work underscores the need to consider the development timelines when interpreting the hydrologic meaning of indicator elevations. Full article
Show Figures

Figure 1

Back to TopTop