Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = parallel synthetic aperture imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1157 KB  
Article
An Ultra-Lightweight and High-Precision Underwater Object Detection Algorithm for SAS Images
by Deyin Xu, Yisong He, Jiahui Su, Lu Qiu, Lixiong Lin, Jiachun Zheng and Zhiping Xu
Remote Sens. 2025, 17(17), 3027; https://doi.org/10.3390/rs17173027 - 1 Sep 2025
Viewed by 963
Abstract
Underwater Object Detection (UOD) based on Synthetic Aperture Sonar (SAS) images is one of the core tasks of underwater intelligent perception systems. However, the existing UOD methods suffer from excessive model redundancy, high computational demands, and severe image quality degradation due to noise. [...] Read more.
Underwater Object Detection (UOD) based on Synthetic Aperture Sonar (SAS) images is one of the core tasks of underwater intelligent perception systems. However, the existing UOD methods suffer from excessive model redundancy, high computational demands, and severe image quality degradation due to noise. To mitigate these issues, this paper proposes an ultra-lightweight and high-precision underwater object detection method for SAS images. Based on a single-stage detection framework, four efficient and representative lightweight modules are developed, focusing on three key stages: feature extraction, feature fusion, and feature enhancement. For feature extraction, the Dilated-Attention Aggregation Feature Module (DAAFM) is introduced, which leverages a multi-scale Dilated Attention mechanism for strengthening the model’s capability to perceive key information, thereby improving the expressiveness and spatial coverage of extracted features. For feature fusion, the Channel–Spatial Parallel Attention with Gated Enhancement (CSPA-Gate) module is proposed, which integrates channel–spatial parallel modeling and gated enhancement to achieve effective fusion of multi-level semantic features and dynamic response to salient regions. In terms of feature enhancement, the Spatial Gated Channel Attention Module (SGCAM) is introduced to strengthen the model’s ability to discriminate the importance of feature channels through spatial gating, thereby improving robustness to complex background interference. Furthermore, the Context-Aware Feature Enhancement Module (CAFEM) is designed to guide feature learning using contextual structural information, enhancing semantic consistency and feature stability from a global perspective. To alleviate the challenge of limited sample size of real sonar images, a diffusion generative model is employed to synthesize a set of pseudo-sonar images, which are then combined with the real sonar dataset to construct an augmented training set. A two-stage training strategy is proposed: the model is first trained on the real dataset and then fine-tuned on the synthetic dataset to enhance generalization and improve detection robustness. The SCTD dataset results confirm that the proposed technique achieves better precision than the baseline model with only 10% of its parameter size. Notably, on a hybrid dataset, the proposed method surpasses Faster R-CNN by 10.3% in mAP50 while using only 9% of its parameters. Full article
(This article belongs to the Special Issue Underwater Remote Sensing: Status, New Challenges and Opportunities)
Show Figures

Figure 1

19 pages, 2468 KB  
Article
A Dual-Branch Spatial-Frequency Domain Fusion Method with Cross Attention for SAR Image Target Recognition
by Chao Li, Jiacheng Ni, Ying Luo, Dan Wang and Qun Zhang
Remote Sens. 2025, 17(14), 2378; https://doi.org/10.3390/rs17142378 - 10 Jul 2025
Viewed by 1094
Abstract
Synthetic aperture radar (SAR) image target recognition has important application values in security reconnaissance and disaster monitoring. However, due to speckle noise and target orientation sensitivity in SAR images, traditional spatial domain recognition methods face challenges in accuracy and robustness. To effectively address [...] Read more.
Synthetic aperture radar (SAR) image target recognition has important application values in security reconnaissance and disaster monitoring. However, due to speckle noise and target orientation sensitivity in SAR images, traditional spatial domain recognition methods face challenges in accuracy and robustness. To effectively address these challenges, we propose a dual-branch spatial-frequency domain fusion recognition method with cross-attention, achieving deep fusion of spatial and frequency domain features. In the spatial domain, we propose an enhanced multi-scale feature extraction module (EMFE), which adopts a multi-branch parallel structure to effectively enhance the network’s multi-scale feature representation capability. Combining frequency domain guided attention, the model focuses on key regional features in the spatial domain. In the frequency domain, we design a hybrid frequency domain transformation module (HFDT) that extracts real and imaginary features through Fourier transform to capture the global structure of the image. Meanwhile, we introduce a spatially guided frequency domain attention to enhance the discriminative capability of frequency domain features. Finally, we propose a cross-domain feature fusion (CDFF) module, which achieves bidirectional interaction and optimal fusion of spatial-frequency domain features through cross attention and adaptive feature fusion. Experimental results demonstrate that our method achieves significantly superior recognition accuracy compared to existing methods on the MSTAR dataset. Full article
Show Figures

Figure 1

19 pages, 11574 KB  
Article
Multiscale Eight Direction Descriptor-Based Improved SAR–SIFT Method for Along-Track and Cross-Track SAR Images
by Wei Wang, Jinyang Chen and Zhonghua Hong
Appl. Sci. 2025, 15(14), 7721; https://doi.org/10.3390/app15147721 - 10 Jul 2025
Cited by 1 | Viewed by 483
Abstract
Image matching between spaceborne synthetic aperture radar (SAR) images are frequently interfered with by speckle noise, resulting in low matching accuracy, and the vast coverage of SAR images renders the direct matching approach inefficient. To address this issue, the study puts forward a [...] Read more.
Image matching between spaceborne synthetic aperture radar (SAR) images are frequently interfered with by speckle noise, resulting in low matching accuracy, and the vast coverage of SAR images renders the direct matching approach inefficient. To address this issue, the study puts forward a multi-scale adaptive improved SAR image block matching method (called STSU–SAR–SIFT). To improve accuracy, this method addresses the issue of the number of feature points under different thresholds by using the SAR–Shi–Tomasi response function in a multi-scale space. Then, the SUSAN function is used to constrain the effect of coherent noise on the initial feature points, and the multi-scale and multi-directional GLOH descriptor construction approach is used to boost the robustness of descriptors. To improve efficiency, the method adopts the main and additional image overlapping area matching method to reduce the search range and uses multi-core CPU+GPU collaborative parallel computing to boost the efficiency of the SAR–SIFT algorithm by block processing the overlapping area. The experimental results demonstrate that the STSU–SAR–SIFT approach presented in this paper has better accuracy and distribution. After the algorithm acceleration, the efficiency is obviously improved. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

24 pages, 29179 KB  
Article
SAR 3D Reconstruction Based on Multi-Prior Collaboration
by Yangyang Wang, Zhenxiao Zhou, Zhiming He, Xu Zhan, Jiapan Yu, Xingcheng Han, Xiaoling Zhang, Zhiliang Yang and Jianping An
Remote Sens. 2025, 17(12), 2105; https://doi.org/10.3390/rs17122105 - 19 Jun 2025
Viewed by 758
Abstract
Array synthetic aperture radar (SAR) three-dimensional (3D) image reconstruction enables the extraction of target distribution information in 3D space, supporting scattering characteristic analysis and structural interpretation. SAR image reconstruction remains challenging due to issues such as noise contamination and incomplete echo data. By [...] Read more.
Array synthetic aperture radar (SAR) three-dimensional (3D) image reconstruction enables the extraction of target distribution information in 3D space, supporting scattering characteristic analysis and structural interpretation. SAR image reconstruction remains challenging due to issues such as noise contamination and incomplete echo data. By introducing sparse priors such as L1 regularization functions, image quality can be improved to a certain extent and the impact of noise can be reduced. However, in scenarios involving distributed targets, the aforementioned methods often fail to maintain continuous structural features such as edges and contours, thereby limiting their reconstruction performance and adaptability. Recent studies have introduced geometric regularization functions to preserve the structural continuity of targets, yet these lack multi-prior consensus, resulting in limited reconstruction quality and robustness in complex scenarios. To address the above issues, a novel array SAR 3D reconstruction method based on multi-prior collaboration (ASAR-MPC) is proposed in this article. In this method, firstly, each optimization module in 3D reconstruction based on multi-prior is treated as an independent function module, and these modules are reformulated as parallel operations rather than sequential utilization. During the reconstruction process, the solution is constrained within the solution space of the module, ensuring that the SAR image simultaneously satisfies multiple prior conditions and achieves a coordinated balance among different priors. Then, a collaborative equilibrium framework based on Mann iteration is presented to solve the optimization problem of 3D reconstruction, which can ensure convergence to an equilibrium point and achieve the joint optimization of all modules. Finally, a series of simulation and experimental tests are described to validate the proposed method. The experimental results show that under limited echo and noise conditions, the proposed method outperforms existing methods in reconstructing complex target structures. Full article
Show Figures

Figure 1

15 pages, 2611 KB  
Article
GPU-Optimized Implementation for Accelerating CSAR Imaging
by Mengting Cui, Ping Li, Zhaohui Bu, Meng Xun and Li Ding
Electronics 2025, 14(10), 2073; https://doi.org/10.3390/electronics14102073 - 20 May 2025
Cited by 1 | Viewed by 528
Abstract
The direct porting of the Range Migration Algorithm to GPUs for three-dimensional (3D) cylindrical synthetic aperture radar (CSAR) imaging faces difficulties in achieving real-time performance while the architecture and programming models of GPUs significantly differ from CPUs. This paper proposes a GPU-optimized implementation [...] Read more.
The direct porting of the Range Migration Algorithm to GPUs for three-dimensional (3D) cylindrical synthetic aperture radar (CSAR) imaging faces difficulties in achieving real-time performance while the architecture and programming models of GPUs significantly differ from CPUs. This paper proposes a GPU-optimized implementation for accelerating CSAR imaging. The proposed method first exploits the concentric-square-grid (CSG) interpolation to reduce the computational complexity for reconstructing a uniform 2D wave-number domain. Although the CSG method transforms the 2D traversal interpolation into two independent 1D interpolations, the interval search to determine the position intervals for interpolation results in a substantial computational burden. Therefore, binary search is applied to avoid traditional point-to-point matching for efficiency improvement. Additionally, leveraging the partition independence of the grid distribution of CSG, the 360° data are divided into four streams along the diagonal for parallel processing. Furthermore, high-speed shared memory is utilized instead of high-latency global memory in the Hadamard product for the phase compensation stage. The experimental results demonstrate that the proposed method achieves CSAR imaging on a 1440×100×128 dataset in 0.794 s, with an acceleration ratio of 35.09 compared to the CPU implementation and 5.97 compared to the conventional GPU implementation. Full article
Show Figures

Figure 1

23 pages, 8298 KB  
Article
Light-Weight Synthetic Aperture Radar Image Saliency Enhancement Method Based on Sea–Land Segmentation Preference
by Hang Yu, Ke Yan, Chenyang Li, Lei Wang and Teng Li
Remote Sens. 2025, 17(5), 795; https://doi.org/10.3390/rs17050795 - 25 Feb 2025
Viewed by 1213
Abstract
With the advantages of wide range, constant observation ability, and an active imaging mechanism, synthetic aperture radar (SAR) has been a preferrable choice for ship detection in complicated scenarios. However, existing algorithms, especially for the convolutional neural network (CNN), cannot achieve satisfactory accuracy [...] Read more.
With the advantages of wide range, constant observation ability, and an active imaging mechanism, synthetic aperture radar (SAR) has been a preferrable choice for ship detection in complicated scenarios. However, existing algorithms, especially for the convolutional neural network (CNN), cannot achieve satisfactory accuracy and generalization ability. Moreover, the complex architectures limit their real-time performances on the embedding or edge computing platforms. To handle these issues, this article proposes a light-weight image saliency enhancement method (ISEM) based on sea–land segmentation preference for ship detection. First, the interfering land regions are recognized adaptively based on the binary histogram of the denoised image. To distinguish ships from redundant backgrounds, a spectral residual method is next introduced to generate the saliency map in the frequency domain. Both the saliency map and the previous denoised image are fused to improve the final result further. Finally, by integrating parallel computing and hardware acceleration, the proposed method can be deployed on edge computing platforms with limited resources. Experimental results reveal that the proposed method with less parameters reaches higher detection accuracy and runs three times faster compared with CNNs. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

13 pages, 2045 KB  
Article
A Hardware Accelerator for Real-Time Processing Platforms Used in Synthetic Aperture Radar Target Detection Tasks
by Yue Zhang, Yunshan Tang, Yue Cao and Zhongjun Yu
Micromachines 2025, 16(2), 193; https://doi.org/10.3390/mi16020193 - 7 Feb 2025
Viewed by 1164
Abstract
The deep learning object detection algorithm has been widely applied in the field of synthetic aperture radar (SAR). By utilizing deep convolutional neural networks (CNNs) and other techniques, these algorithms can effectively identify and locate targets in SAR images, thereby improving the accuracy [...] Read more.
The deep learning object detection algorithm has been widely applied in the field of synthetic aperture radar (SAR). By utilizing deep convolutional neural networks (CNNs) and other techniques, these algorithms can effectively identify and locate targets in SAR images, thereby improving the accuracy and efficiency of detection. In recent years, achieving real-time monitoring of regions has become a pressing need, leading to the direct completion of real-time SAR image target detection on airborne or satellite-borne real-time processing platforms. However, current GPU-based real-time processing platforms struggle to meet the power consumption requirements of airborne or satellite applications. To address this issue, a low-power, low-latency deep learning SAR object detection algorithm accelerator was designed in this study to enable real-time target detection on airborne and satellite SAR platforms. This accelerator proposes a Process Engine (PE) suitable for multidimensional convolution parallel computing, making full use of Field-Programmable Gate Array (FPGA) computing resources to reduce convolution computing time. Furthermore, a unique memory arrangement design based on this PE aims to enhance memory read/write efficiency while applying dataflow patterns suitable for FPGA computing to the accelerator to reduce computation latency. Our experimental results demonstrate that deploying the SAR object detection algorithm based on Yolov5s on this accelerator design, mounted on a Virtex 7 690t chip, consumes only 7 watts of dynamic power, achieving the capability to detect 52.19 512 × 512-sized SAR images per second. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

23 pages, 3642 KB  
Article
A Novel Chirp-Z Transform Algorithm for Multi-Receiver Synthetic Aperture Sonar Based on Range Frequency Division
by Mingqiang Ning, Heping Zhong, Jinsong Tang, Haoran Wu, Jiafeng Zhang, Peng Zhang and Mengbo Ma
Remote Sens. 2024, 16(17), 3265; https://doi.org/10.3390/rs16173265 - 3 Sep 2024
Cited by 2 | Viewed by 1665
Abstract
When a synthetic aperture sonar (SAS) system operates under low-frequency broadband conditions, the azimuth range coupling of the point target reference spectrum (PTRS) is severe, and the high-resolution imaging range is limited. To solve the above issue, we first convert multi-receivers’ signal into [...] Read more.
When a synthetic aperture sonar (SAS) system operates under low-frequency broadband conditions, the azimuth range coupling of the point target reference spectrum (PTRS) is severe, and the high-resolution imaging range is limited. To solve the above issue, we first convert multi-receivers’ signal into the equivalent monostatic signal and then divide the equivalent monostatic signal into range subblocks and the range frequency subbands within each range subblock in order. The azimuth range coupling terms are converted into linear terms based on piece-wise linear approximation (PLA), and the phase error of the PTRS within each subband is less than π/4. Then, we use the chirp-z transform (CZT) to correct range cell migration (RCM) to obtain low-resolution results for different subbands. After RCM correction, the subbands’ signals are coherently summed in the range frequency domain to obtain a high-resolution image. Finally, different subblocks are concatenated in the range time domain to obtain the final result of the whole swath. The processing of different subblocks and different subbands can be implemented in parallel. Computer simulation experiments and field data have verified the superiority of the proposed method over existing methods. Full article
(This article belongs to the Special Issue Ocean Remote Sensing Based on Radar, Sonar and Optical Techniques)
Show Figures

Figure 1

16 pages, 1464 KB  
Article
SARDIMM: High-Speed Near-Memory Processing Architecture for Synthetic Aperture Radar Imaging
by Haechan Kim, Jinmoo Heo, Seongjoo Lee and Yunho Jung
Appl. Sci. 2024, 14(17), 7601; https://doi.org/10.3390/app14177601 - 28 Aug 2024
Viewed by 1234
Abstract
The range-Doppler algorithm (RDA), a key technique for generating synthetic aperture radar (SAR) images, offers high-resolution images but requires significant memory resources and involves complex signal processing. Moreover, the multitude of fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) operations in [...] Read more.
The range-Doppler algorithm (RDA), a key technique for generating synthetic aperture radar (SAR) images, offers high-resolution images but requires significant memory resources and involves complex signal processing. Moreover, the multitude of fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) operations in RDA necessitates high bandwidth and lacks data reuse, leading to bottlenecks. This paper introduces a synthetic aperture radar dual in-line memory module (SARDIMM), which executes RDA operations near memory via near-memory processing (NMP), thereby effectively reducing memory accesses, execution time, and energy consumption. The embedded NMP module in SARDIMM optionally supports a combination of FFT, IFFT, and matched filter operations of the RDA for range and azimuth compression. The operator within the NMP module accelerates the FFT by performing two radix-2 single butterfly operations in parallel. The NMP module was implemented and validated on a Xilinx UltraScale+ field-programmable gate array (FPGA) using Verilog-HDL. The acceleration performance of RDA for images of various sizes was evaluated through a simulator modified with gem5 and DRAMSim3 and achieved a 6.34–6.93× speedup and 41.9–48.2% energy savings. Full article
Show Figures

Figure 1

19 pages, 48324 KB  
Article
An Efficient and Accurate Ground-Based Synthetic Aperture Radar (GB-SAR) Real-Time Imaging Scheme Based on Parallel Processing Mode and Architecture
by Yunxin Tan, Guangju Li, Chun Zhang and Weiming Gan
Electronics 2024, 13(16), 3138; https://doi.org/10.3390/electronics13163138 - 8 Aug 2024
Viewed by 2127
Abstract
When performing high-resolution imaging with ground-based synthetic aperture radar (GB-SAR) systems, the data collected and processed are vast and complex, imposing higher demands on the real-time performance and processing efficiency of the imaging system. Yet a very limited number of studies have been [...] Read more.
When performing high-resolution imaging with ground-based synthetic aperture radar (GB-SAR) systems, the data collected and processed are vast and complex, imposing higher demands on the real-time performance and processing efficiency of the imaging system. Yet a very limited number of studies have been conducted on the real-time processing method of GB-SAR monitoring data. This paper proposes a real-time imaging scheme based on parallel processing models, optimizing each step of the traditional ωK imaging algorithm in parallel. Several parallel optimization schemes are proposed for the computationally intensive and complex interpolation part, including dynamic parallelism, the Group-Nstream processing model, and the Fthread-Group-Nstream processing model. The Fthread-Group-Nstream processing model utilizes FthreadGroup, and Nstream for the finer-grained processing of monitoring data, reducing the impact of the nested depth on the algorithm’s performance in dynamic parallelism and alleviating the issue of serial execution within the Group-Nstream processing model. This scheme has been successfully applied in a synthetic aperture radar imaging system, achieving excellent imaging results and accuracy. The speedup ratio can reach 52.14, and the relative errors in amplitude and phase are close to 0, validating the effectiveness and practicality of the proposed schemes. This paper addresses the lack of research on the real-time processing of GB-SAR monitoring data, providing a reliable monitoring method for GB-SAR deformation monitoring. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

24 pages, 8434 KB  
Article
A Fast Inverse Synthetic Aperture Radar Imaging Scheme Combining GPU-Accelerated Shooting and Bouncing Ray and Back Projection Algorithm under Wide Bandwidths and Angles
by Jiongming Chen, Pengju Yang, Rong Zhang and Rui Wu
Electronics 2024, 13(15), 3062; https://doi.org/10.3390/electronics13153062 - 2 Aug 2024
Cited by 2 | Viewed by 1970
Abstract
Inverse synthetic aperture radar (ISAR) imaging techniques are frequently used in target classification and recognition applications, due to its capability to produce high-resolution images for moving targets. In order to meet the demand of ISAR imaging for electromagnetic calculation with high efficiency and [...] Read more.
Inverse synthetic aperture radar (ISAR) imaging techniques are frequently used in target classification and recognition applications, due to its capability to produce high-resolution images for moving targets. In order to meet the demand of ISAR imaging for electromagnetic calculation with high efficiency and accuracy, a novel accelerated shooting and bouncing ray (SBR) method is presented by combining a Graphics Processing Unit (GPU) and Bounding Volume Hierarchies (BVH) tree structure. To overcome the problem of unfocused images by a Fourier-based ISAR procedure under wide-angle and wide-bandwidth conditions, an efficient parallel back projection (BP) imaging algorithm is developed by utilizing the GPU acceleration technique. The presented GPU-accelerated SBR is validated by comparison with the RL-GO method in commercial software FEKO v2020. For ISAR images, it is clearly indicated that strong scattering centers as well as target profiles can be observed under large observation azimuth angles, Δφ=90°, and wide bandwidths, 3 GHz. It is also indicated that ISAR imaging is heavily sensitive to observation angles. In addition, obvious sidelobes can be observed, due to the phase history of the electromagnetic wave being distorted resulting from multipole scattering. Simulation results confirm the feasibility and efficiency of our scheme by combining GPU-accelerated SBR with the BP algorithm for fast ISAR imaging simulation under wide-angle and wide-bandwidth conditions. Full article
(This article belongs to the Special Issue Microwave Imaging and Applications)
Show Figures

Figure 1

16 pages, 19634 KB  
Article
An Improved Method of Mitigating Orbital Errors in Multiple Synthetic-Aperture-Radar Interferometric Pair Analysis for Interseismic Deformation Measurement: Application to the Tuosuo Lake Segment of the Kunlun Fault
by Qian Xu, Yinghui Yang, Qiang Chen, Dechao Wang, Su Liu, Yucong He, Lang Xu and Chengdai Zi
Remote Sens. 2024, 16(14), 2564; https://doi.org/10.3390/rs16142564 - 12 Jul 2024
Viewed by 1258
Abstract
It is challenging to precisely measure the slow interseismic crustal-deformation rate from Synthetic Aperture Radar (SAR) data. The long-wavelength orbital errors, owing to the uncertainties in satellite orbit vectors, commonly exist in SAR interferograms, which degrade the precision of the Interferometric SAR (InSAR) [...] Read more.
It is challenging to precisely measure the slow interseismic crustal-deformation rate from Synthetic Aperture Radar (SAR) data. The long-wavelength orbital errors, owing to the uncertainties in satellite orbit vectors, commonly exist in SAR interferograms, which degrade the precision of the Interferometric SAR (InSAR) products and become the main barrier to extracting interseismic tectonic deformation. In this study, we propose a novel temporal-network orbital correction method that is able to isolate the far-fault tectonic deformation from the mixed long-wavelength signals based on its spatio–temporal characteristic. The proposed approach is straightforward in methodology but could effectively separate the subtle tectonic deformation from glaring orbital errors without ancillary data. Both synthetic data and real Sentinel-1 SAR images are used to validate the reliability and effectiveness of this method. The derived InSAR velocity fields clearly present the predominant left-lateral strike-slip motions of the Tuosuo Lake segment of the Kunlun fault in western China. The fault-parallel velocity differences of 5–6 mm/yr across the fault between areas ~50 km away from the fault trace are addressed. The proposed method presents a significantly different performance from the traditional quadratic approximate method in the far field. Through the implementation of the proposed method, the root mean square error (RMSE) between the LOSGPS and our derived descending InSAR LOS (line of sight) measurements is reduced to less than one-third of the previous study, suggesting its potential to enhance the availability of InSAR technology for interseismic crustal-deformation measurement. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

20 pages, 4947 KB  
Article
FPGA-Based Acceleration of Polar-Format Algorithm for Video Synthetic-Aperture Radar Imaging
by Dongmin Jeong, Myeongjin Lee, Wookyung Lee and Yunho Jung
Electronics 2024, 13(12), 2401; https://doi.org/10.3390/electronics13122401 - 19 Jun 2024
Cited by 3 | Viewed by 1931
Abstract
This paper presents a polar-format algorithm (PFA)-based synthetic-aperture radar (SAR) processor that can be mounted on a small drone to support video SAR (ViSAR) imaging. For drone mounting, it requires miniaturization, low power consumption, and high-speed performance. Therefore, to meet these requirements, the [...] Read more.
This paper presents a polar-format algorithm (PFA)-based synthetic-aperture radar (SAR) processor that can be mounted on a small drone to support video SAR (ViSAR) imaging. For drone mounting, it requires miniaturization, low power consumption, and high-speed performance. Therefore, to meet these requirements, the processor design was based on a field-programmable gate array (FPGA), and the implementation results are presented. The proposed PFA-based SAR processor consists of both an interpolation unit and a fast Fourier transform (FFT) unit. The interpolation unit uses linear interpolation for high speed while occupying a small space. In addition, the memory transfer is minimized through optimized operations using SAR system parameters. The FFT unit uses a base-4 systolic array architecture, chosen from among various fast parallel structures, to maximize the processing speed. Each unit is designed as a reusable block (IP core) to support reconfigurability and is interconnected using the advanced extensible interface (AXI) bus. The proposed PFA-based SAR processor was designed using Verilog-HDL and implemented on a Xilinx UltraScale+ MPSoC FPGA platform. It generates an image 2048 × 2048 pixels in size within 0.766 s, which is 44.862 times faster than that achieved by the ARM Cortex-A53 microprocessor. The speed-to-area ratio normalized by the number of resources shows that it achieves a higher speed at lower power consumption than previous studies. Full article
(This article belongs to the Special Issue System-on-Chip (SoC) and Field-Programmable Gate Array (FPGA) Design)
Show Figures

Figure 1

25 pages, 15276 KB  
Article
PP-ISEA: An Efficient Algorithm for High-Resolution Three-Dimensional Geometry Reconstruction of Space Targets Using Limited Inverse Synthetic Aperture Radar Images
by Rundong Wang, Weigang Zhu, Chenxuan Li, Bakun Zhu and Hongfeng Pang
Sensors 2024, 24(11), 3550; https://doi.org/10.3390/s24113550 - 31 May 2024
Viewed by 1213
Abstract
As the variety of space targets expands, two-dimensional (2D) ISAR images prove insufficient for target recognition, necessitating the extraction of three-dimensional (3D) information. The 3D geometry reconstruction method utilizing energy accumulation of ISAR image sequence (ISEA) facilitates superior reconstruction while circumventing the laborious [...] Read more.
As the variety of space targets expands, two-dimensional (2D) ISAR images prove insufficient for target recognition, necessitating the extraction of three-dimensional (3D) information. The 3D geometry reconstruction method utilizing energy accumulation of ISAR image sequence (ISEA) facilitates superior reconstruction while circumventing the laborious steps associated with factorization methods. Nevertheless, ISEA’s neglect of valid information necessitates a high quantity of images and elongated operation times. This paper introduces a partitioned parallel 3D reconstruction method utilizing sorted-energy semi-accumulation with ISAR image sequences (PP-ISEA) to address these limitations. The PP-ISEA innovatively incorporates a two-step search pattern—coarse and fine—that enhances search efficiency and conserves computational resources. It introduces a novel objective function ‘sorted-energy semi-accumulation’ to discern genuine scatterers from spurious ones and establishes a redundant point exclusion module. Experiments on the scatterer model and simulated electromagnetic model demonstrate that the PP-ISEA reduces the minimum image requirement from ten to four for high-quality scatterer model reconstruction, thereby offering superior reconstruction quality in less time. Full article
Show Figures

Figure 1

24 pages, 14008 KB  
Article
WDFA-YOLOX: A Wavelet-Driven and Feature-Enhanced Attention YOLOX Network for Ship Detection in SAR Images
by Falin Wu, Tianyang Hu, Yu Xia, Boyi Ma, Saddam Sarwar and Chunxiao Zhang
Remote Sens. 2024, 16(10), 1760; https://doi.org/10.3390/rs16101760 - 15 May 2024
Cited by 10 | Viewed by 2677
Abstract
Ships are important targets for modern naval warfare detection and reconnaissance. The accurate detection of ships contributes to the maintenance of maritime rights and interests and the realisation of naval strategy. Synthetic Aperture Radar (SAR) image detection tasks play a vital role in [...] Read more.
Ships are important targets for modern naval warfare detection and reconnaissance. The accurate detection of ships contributes to the maintenance of maritime rights and interests and the realisation of naval strategy. Synthetic Aperture Radar (SAR) image detection tasks play a vital role in ship detection, which has consistently been a research hotspot in the field of SAR processing. Although significant progress has been achieved in SAR ship detection techniques using deep learning methods, some challenges still persist. Natural images and SAR images significantly diverge in imaging mechanisms and scattering characteristics. In complex background environments, ships exhibit multiscale variations and dense arrangements, and numerous small-sized ships may be present, culminating in false or missed detections. To address these issues, we propose a novel SAR ship detection network, namely, a Wavelet-Driven Feature-Enhanced Attention–You Only Look Once X (WDFA-YOLOX) network. Firstly, we propose a Wavelet Cascade Residual (WCR) module based on the traditional image processing technique wavelet transform, which is embedded within an improved Spatial Pyramid Pooling (SPP) module, culminating in the formation of the effective wavelet transform-based SPP module (WSPP). The WSPP compensates for the loss of fine-grained feature information during pooling, enhancing the capability of the network to detect ships amidst complex background interference. Secondly, a Global and Local Feature Attention Enhancement (GLFAE) module is proposed, leveraging a parallel structure that combines convolutional modules with transformer modules to reduce the effect of irrelevant information and effectively strengthens valid features associated with small-sized ships, resulting in a reduction in false negatives in small-sized ship detection. Finally, a novel loss function, the Chebyshev distance-generalised IoU loss function, is proposed to significantly enhance both the precision of the detection box and the network convergence speed. To support our approach, we performed thorough experiments on the SSDD and HRSID, achieving an average precision (AP) of 99.11% and 96.20%, respectively, in ship detection. The experimental results demonstrate that WDFA-YOLOX has significant advantages in terms of detection accuracy, generalisation capability, and detection speed and can effectively realise more accurate detection in SAR images, consistently exhibiting superior performance and application value in SAR ship detection. Full article
Show Figures

Figure 1

Back to TopTop