Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = paralog/ortholog

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2505 KB  
Article
The Expression of Shmt Genes in Amphioxus Suggests a Role in Tissue Proliferation Rather than in Neurotransmission
by Matteo Bozzo, Emanuele Serafini, Giacomo Rosa, Virginia Bazzurro, Andrea Amaroli, Sara Ferrando, Michael Schubert and Simona Candiani
Cells 2025, 14(14), 1071; https://doi.org/10.3390/cells14141071 - 13 Jul 2025
Viewed by 556
Abstract
Serine hydroxymethyltransferases (SHMTs) are key enzymes in one-carbon metabolism, with vertebrates possessing two paralogs, cytosolic SHMT1 and mitochondrial SHMT2, implicated in nucleotide biosynthesis and glycine metabolism. In this study, we investigate the evolutionary history of animal Shmt genes and analyze the expression patterns [...] Read more.
Serine hydroxymethyltransferases (SHMTs) are key enzymes in one-carbon metabolism, with vertebrates possessing two paralogs, cytosolic SHMT1 and mitochondrial SHMT2, implicated in nucleotide biosynthesis and glycine metabolism. In this study, we investigate the evolutionary history of animal Shmt genes and analyze the expression patterns of Shmt genes in developing amphioxus (Branchiostoma lanceolatum). Phylogenetic analyses indicate the presence of Shmt1 and Shmt2 orthologs in deuterostomes, spiralians and placozoans, which is consistent with an ancient Shmt gene duplication event predating bilaterian diversification. Gene expression analyses in developing amphioxus show that Shmt2 expression is confined to the somites and absent from neural tissues. In contrast, Shmt1 is broadly expressed across germ layers, but its transcription is restricted to tissues characterized by strong cell proliferation. Notably, Shmt1 expression in the nervous system does not match the distribution of glycinergic neuron populations, implying a negligible role in glycine neurotransmitter synthesis. Instead, the spatial correlation of Shmt1 expression with mitotically active domains suggests a primary function in nucleotide biosynthesis via one-carbon metabolism. These findings indicate that SHMTs predominantly support cell proliferation rather than neurotransmission in amphioxus. Full article
(This article belongs to the Special Issue Mechanisms Underlying Cell Growth and Development)
Show Figures

Figure 1

24 pages, 4352 KB  
Article
Tissue-Specific Expression Analysis and Functional Validation of SiSCR Genes in Foxtail Millet (Setaria italica) Under Hormone and Drought Stresses, and Heterologous Expression in Arabidopsis
by Yingying Qin, Ruifu Wang, Shuwan Chen, Qian Gao, Yiru Zhao, Shuo Chang, Mao Li, Fangfang Ma and Xuemei Ren
Plants 2025, 14(14), 2151; https://doi.org/10.3390/plants14142151 - 11 Jul 2025
Viewed by 623
Abstract
The SCARECROW (SCR) transcription factor governs cell-type patterning in plant roots and Kranz anatomy of leaves, serving as a master regulator of root and shoot morphogenesis. Foxtail millet (Setaria italica), characterized by a compact genome, self-pollination, and a short growth cycle, [...] Read more.
The SCARECROW (SCR) transcription factor governs cell-type patterning in plant roots and Kranz anatomy of leaves, serving as a master regulator of root and shoot morphogenesis. Foxtail millet (Setaria italica), characterized by a compact genome, self-pollination, and a short growth cycle, has emerged as a C4 model plant. Here, we revealed two SCR paralogs in foxtail millet—SiSCR1 and SiSCR2—which exhibit high sequence conservation with ZmSCR1/1h (Zea mays), OsSCR1/2 (Oryza sativa), and AtSCR (Arabidopsis thaliana), particularly within the C-terminal GRAS domain. Both SiSCR genes exhibited nearly identical secondary structures and physicochemical profiles, with promoter analyses revealing five conserved cis-regulatory elements. Robust phylogenetic reconstruction resolved SCR orthologs into monocot- and dicot-specific clades, with SiSCR genes forming a sister branch to SvSCR from its progenitor species Setaria viridis. Spatiotemporal expression profiling demonstrated ubiquitous SiSCR gene transcription across developmental stages, with notable enrichment in germinated seeds, plants at the one-tip-two-leaf stage, leaf 1 (two days after heading), and roots during the seedling stage. Co-expression network analysis revealed that there is a correlation between SiSCR genes and other functional genes. Abscisic acid (ABA) treatment led to a significant downregulation of the expression level of SiSCR genes in Yugu1 roots, and the expression of the SiSCR genes in the roots of An04 is more sensitive to PEG6000 treatment. Drought treatment significantly upregulated SiSCR2 expression in leaves, demonstrating its pivotal role in plant adaptation to abiotic stress. Analysis of heterologous expression under the control of the 35S promoter revealed that SiSCR genes were expressed in root cortical/endodermal initial cells, endodermal cells, cortical cells, and leaf stomatal complexes. Strikingly, ectopic expression of SiSCR genes in Arabidopsis led to hypersensitivity to ABA, and ABA treatment resulted in a significant reduction in the length of the meristematic zone. These data delineate the functional divergence and evolutionary conservation of SiSCR genes, providing critical insights into their roles in root/shoot development and abiotic stress signaling in foxtail millet. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

19 pages, 3796 KB  
Article
Comparative Genomics Reveals Evidence of the Genome Reduction and Metabolic Potentials of Aliineobacillus hadale Isolated from Challenger Deep Sediment of the Mariana Trench
by Shaofeng Yang, Jie Liu, Yang Liu, Weichao Wu, Jiahua Wang and Yuli Wei
Microorganisms 2025, 13(1), 132; https://doi.org/10.3390/microorganisms13010132 - 10 Jan 2025
Viewed by 1327
Abstract
Hadal zones account for the deepest 45% of oceanic depth range and play an important role in ocean biogeochemical cycles. As the least-explored aquatic habitat on earth, further investigation is still required to fully elucidate the microbial taxonomy, ecological significance, metabolic diversity, and [...] Read more.
Hadal zones account for the deepest 45% of oceanic depth range and play an important role in ocean biogeochemical cycles. As the least-explored aquatic habitat on earth, further investigation is still required to fully elucidate the microbial taxonomy, ecological significance, metabolic diversity, and adaptation in hadal environments. In this study, a novel strain Lsc_1132T was isolated from sediment of the Mariana Trench at 10,954 m in depth. Strain Lsc_1132T contains heterogenous 16S rRNA genes, exhibiting the highest sequence similarities to the type strains of Neobacillus drentensis LMG 21831T, Neobacillus dielmonensis, Neobacillus drentensis NBRC 102427T, Neobacillus rhizosphaerae, and Neobacillus soli NBRC 102451T, with a range of 98.60–99.10% identity. The highest average nucleotide identity (ANI), the highest digital DNA-DNA hybridization (DDH) values, and the average amino acid identity (AAI) with Neobacillus sp. PS3-40 reached 73.5%, 21.4%, and 75.54%, respectively. The major cellular fatty acids of strain Lsc_1132T included iso-C15:0, Summed Feature 3 (C16:1ω6c and/or C16:1ω7c), iso-C17:0, anteiso-C15:0, and iso-C17:1ω5c. The respiratory quinone of strains Lsc_1132T was MK-7. The G + C content of the genomic DNA was 40.9%. Based on the GTDB taxonomy and phenotypic data, strain Lsc_1132T could represent a novel species of a novel genus, proposed as Aliineobacillus hadale gen. nov. sp. nov. (type strain Lsc_1132T = MCCC 1K09620T). Metabolically, strain Lsc_1132T demonstrates a robust carbohydrate metabolism with many strain-specific sugar transporters. It also has a remarkable capacity for metabolizing amino acids and carboxylic acids. Genomic analysis reveals a streamlined genome in the organism, characterized by a significant loss of orthologous genes, including those involved in cytochrome c synthesis, aromatic compound degradation, and polyhydroxybutyrate (PHB) synthesis, which suggests its adaptation to low oxygen levels and oligotrophic conditions through alternative metabolic pathways. In addition, the reduced number of paralogous genes in strain Lsc_1132T, together with its high protein-coding gene density, may further contribute to streamlining its genome and enhancing its genomic efficiency. This research expands our knowledge of hadal microorganisms and their metabolic strategies for surviving in extreme deep-sea environments. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

13 pages, 5830 KB  
Article
Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus esculentus, a Desiccation-Tolerant Tuber Plant
by Yongguo Zhao, Xiaowen Fu and Zhi Zou
Plants 2024, 13(20), 2933; https://doi.org/10.3390/plants13202933 - 19 Oct 2024
Cited by 5 | Viewed by 1479
Abstract
LEA_1 domain-containing proteins constitute a class of late-embryogenesis-abundant proteins that are highly hydrophilic and predominantly accumulate in mature seeds. Though LEA_1 proteins have been proven to be essential for seed desiccation tolerance and longevity, little information is available on their roles in non-seed [...] Read more.
LEA_1 domain-containing proteins constitute a class of late-embryogenesis-abundant proteins that are highly hydrophilic and predominantly accumulate in mature seeds. Though LEA_1 proteins have been proven to be essential for seed desiccation tolerance and longevity, little information is available on their roles in non-seed storage organs. In this study, a first genome-wide characterization of the LEA_1 gene family was conducted in tigernut (Cyperus esculentus L., Cyperaceae), whose underground tubers are desiccation tolerant with a moisture content of less than 6%. Five family members identified in tigernut are comparative to four to six found in seven other Cyperaceae plants, but relatively more than three reported in Arabidopsis. Further comparison of 125 members from 29 plant species supports early divergence of the LEA_1 family into two phylogenetic groups before angiosperm radiation, and gene expansion in tigernut was contributed by whole-genome duplications occurring after the split with the eudicot clade. These two phylogenetic groups could be further divided into six orthogroups in the momocot clade, five of which are present in tigernut and the remaining one is Poaceae specific. Frequent structural variation and expression divergence of paralogs were also observed. Significantly, in contrast to seed-preferential expression of LEA_1 genes in Arabidopsis, rice, and maize, transcriptional profiling and qRT-PCR analysis revealed that CeLEA1 genes have evolved to predominantly express in tubers, exhibiting a seed desiccation-like accumulation during tuber development. Moreover, CeLEA1 transcripts in tubers were shown to be considerably more than that of their orthologs in purple nutsedge, another Cyperaceae plant producing desiccation-sensitive tubers. These results imply species-specific activation and key roles of CeLEA1 genes in the acquisition of desiccation tolerance of tigernut tubers as observed in orthodox seeds. Our findings not only improve the understanding of lineage-specific evolution of the LEA_1 family, but also provide valuable information for further functional analysis and genetic improvement in tigernut. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

18 pages, 6578 KB  
Article
Genome-Wide Analysis and Characterization of the SDR Gene Superfamily in Cinnamomum camphora and Identification of Synthase for Eugenol Biosynthesis
by Yueting Zhang, Chao Fu, Shifang Wen, Ting Zhang and Xindong Wang
Int. J. Mol. Sci. 2024, 25(18), 10084; https://doi.org/10.3390/ijms251810084 - 19 Sep 2024
Cited by 1 | Viewed by 1700
Abstract
Short-chain dehydrogenase/reductases (SDRs) are the largest NAD(H)-dependent oxidoreductase superfamilies and are involved in diverse metabolisms. This study presents a comprehensive genomic analysis of the SDR superfamily in Cinnamomum camphora, a species that is one of the most significant woody essential oil plants in [...] Read more.
Short-chain dehydrogenase/reductases (SDRs) are the largest NAD(H)-dependent oxidoreductase superfamilies and are involved in diverse metabolisms. This study presents a comprehensive genomic analysis of the SDR superfamily in Cinnamomum camphora, a species that is one of the most significant woody essential oil plants in southern China. We identify a total of 222 CcSDR proteins and classify them into five types based on their cofactor-binding and active sites: ‘atypical’, ‘classic’, ‘divergent’, ‘extended’, and ‘unknown’. Phylogenetic analysis reveals three evolutionary branches within the CcSDR proteins, and further categorization using the SDR-initiative Hidden Markov model resulted in 46 families, with the CcSDR110C, CcSDR108E, and CcSDR460A families being the most populous. Collinearity analysis identified 34 pairs of CcSDR paralogs in C. camphora, 141 pairs of SDR orthologs between C. camphora and Populus trichocarpa, and 59 pairs between C. camphora and Oryza sativa. Expression profile analysis indicates a preference for the expression of 77 CcSDR genes in specific organs such as flowers, bark, twigs, roots, leaves, or fruits. Moreover, 77 genes exhibit differential expression patterns during the four developmental stages of leaves, while 130 genes show variance across the five developmental stages of fruits. Additionally, to explore the biosynthetic mechanism of methyl eugenol, a key component of the leaf essential oil in the methyl eugenol chemotype, this study also identifies eugenol synthase (EGS) within the CcSDR460A family through an integrated strategy. Real-time quantitative PCR analysis demonstrates that the expression of CcEGS in the leaves of the methyl eugenol chemotype is more than fourfold higher compared to other chemotypes. When heterologously expressed in Escherichia coli, it catalyzes the conversion of coniferyl acetate into a mixture predominantly composed of eugenol (71.44%) and isoeugenol (21.35%). These insights pave the way for future research into the functional diversity of CcSDR genes, with a focus on secondary metabolism. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2419 KB  
Article
Aquaporin-3a Dysfunction Impairs Osmoadaptation in Post-Activated Marine Fish Spermatozoa
by François Chauvigné, Júlia Castro-Arnau, Noelia López-Fortún, Alejandro Sánchez-Chardi, Michael Rützler, Giuseppe Calamita, Roderick Nigel Finn and Joan Cerdà
Int. J. Mol. Sci. 2024, 25(17), 9604; https://doi.org/10.3390/ijms25179604 - 4 Sep 2024
Cited by 1 | Viewed by 1701
Abstract
Spermatozoon volume regulation is an essential determinant of male fertility competence in mammals and oviparous fishes. In mammals, aquaporin water channels (AQP3, -7 and -8) have been suggested to play a role in spermatozoon cell volume regulatory responses in the hypotonic female oviduct. [...] Read more.
Spermatozoon volume regulation is an essential determinant of male fertility competence in mammals and oviparous fishes. In mammals, aquaporin water channels (AQP3, -7 and -8) have been suggested to play a role in spermatozoon cell volume regulatory responses in the hypotonic female oviduct. In contrast, the ejaculated spermatozoa of marine teleosts, such as the gilthead seabream (Sparus aurata), experience a high hypertonic shock in seawater, initially resulting in an Aqp1aa-mediated water efflux, cell shrinkage and the activation of motility. Further regulatory recovery of cell volume in post-activated spermatozoa is mediated by Aqp4a in cooperation with the Trpv4 Ca2+ channel and other ion channels and transporters. Using a paralog-specific antibody, here, we show that seabream spermatozoa also express the aquaglyceroporin AQP3 ortholog Aqp3a, which is highly accumulated in the mid posterior region of the spermatozoon flagella, in a similar pattern to that described in mouse and human sperm. To investigate the role of Aqp3a in seabream sperm motility, we used a recently developed AQP3 antagonist (DFP00173), as well as the seabream Aqp3a-specific antibody (α-SaAqp3a), both of which specifically inhibit Aqp3a-mediated water conductance when the channel was heterologously expressed in Xenopus laevis oocytes. Inhibition with either DFP00173 or α-SaAqp3a did not affect sperm motility activation but did impair the spermatozoon motion kinetics at 30 s post activation in a dose-dependent manner. Interestingly, in close resemblance to the phenotypes of AQP3-deficient murine sperm, electron microscopy image analysis revealed that both Aqp3a inhibitors induce abnormal sperm tail morphologies, including swelling and angulation of the tail, with complete coiling of the flagella in some cases. These findings suggest a conserved role of Aqp3a as an osmosensor that regulates cell volume in fish spermatozoa under a high hypertonic stress, thereby controlling the efflux of water and/or solutes in the post-activated spermatozoon. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 64166 KB  
Article
Genome-Wide Identification and Interaction Analysis of Turbot Heat Shock Protein 40 and 70 Families Suggest the Mechanism of Chaperone Proteins Involved in Immune Response after Bacterial Infection
by Yuanwei Geng, Yuxuan Gai, Yanping Zhang, Shengwei Zhao, Anlan Jiang, Xueqing Li, Kaiqing Deng, Fuxuan Zhang, Lingling Tan and Lin Song
Int. J. Mol. Sci. 2024, 25(14), 7963; https://doi.org/10.3390/ijms25147963 - 21 Jul 2024
Cited by 2 | Viewed by 1502
Abstract
Hsp40–Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis [...] Read more.
Hsp40–Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis of these proteins. Herein, 62 Hsp40 genes and 16 Hsp70 genes were identified in the turbot at a genome-wide level and were unevenly distributed on 22 chromosomes through chromosomal distribution analysis. Phylogenetic and syntenic analysis provided strong evidence in supporting the orthologies and paralogies of these HSPs. Protein–protein interaction and expression analysis was conducted to predict the expression profile after challenging with Aeromonas salmonicida. dnajb1b and hspa1a were found to have a co-expression trend under infection stresses. Molecular docking was performed using Auto-Dock Tool and PyMOL for this pair of chaperone proteins. It was discovered that in addition to the interaction sites in the J domain, the carboxyl-terminal domain of Hsp40 also plays a crucial role in its interaction with Hsp70. This is important for the mechanistic understanding of the Hsp40–Hsp70 chaperone system, providing a theoretical basis for turbot disease resistance breeding, and effective value for the prevention of certain diseases in turbot. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

23 pages, 4160 KB  
Article
Intermolecular Gene Conversion for the Equalization of Genome Copies in the Polyploid Haloarchaeon Haloferax volcanii: Identification of Important Proteins
by Hanna Özer, Daniel Wasser, Lara Sandner and Jörg Soppa
Genes 2024, 15(7), 861; https://doi.org/10.3390/genes15070861 - 1 Jul 2024
Cited by 2 | Viewed by 1929
Abstract
The model haloarchaeon Haloferax volcanii is polyploid with about 20 copies of its major chromosome. Recently it has been described that highly efficient intermolecular gene conversion operates in H. volcanii to equalize the chromosomal copies. In the current study, 24 genes were selected [...] Read more.
The model haloarchaeon Haloferax volcanii is polyploid with about 20 copies of its major chromosome. Recently it has been described that highly efficient intermolecular gene conversion operates in H. volcanii to equalize the chromosomal copies. In the current study, 24 genes were selected that encode proteins with orthologs involved in gene conversion or homologous recombination in archaea, bacteria, or eukaryotes. Single gene deletion strains of 22 genes and a control gene were constructed in two parent strains for a gene conversion assay; only radA and radB were shown to be essential. Protoplast fusions were used to generate strains that were heterozygous for the gene HVO_2528, encoding an enzyme for carotinoid biosynthesis. It was revealed that a lack of six of the proteins did not influence the efficiency of gene conversion, while sixteen mutants had severe gene conversion defects. Notably, lack of paralogous proteins of gene families had very different effects, e.g., mutant Δrad25b had no phenotype, while mutants Δrad25a, Δrad25c, and Δrad25d were highly compromised. Generation of a quadruple rad25 and a triple sph deletion strain also indicated that the paralogs have different functions, in contrast to sph2 and sph4, which cannot be deleted simultaneously. There was no correlation between the severity of the phenotypes and the respective transcript levels under non-stressed conditions, indicating that gene expression has to be induced at the onset of gene conversion. Phylogenetic trees of the protein families Rad3/25, MutL/S, and Sph/SMC/Rad50 were generated to unravel the history of the paralogous proteins of H. volcanii. Taken together, unselected intermolecular gene conversion in H. volcanii involves at least 16 different proteins, the molecular roles of which can be studied in detail in future projects. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

19 pages, 6255 KB  
Article
Transcriptomic Analysis Reveals Adaptive Evolution and Conservation Implications for the Endangered Magnolia lotungensis
by Chenyu Shi, Yanjun Xie, Delong Guan and Guole Qin
Genes 2024, 15(6), 787; https://doi.org/10.3390/genes15060787 - 14 Jun 2024
Cited by 5 | Viewed by 1328
Abstract
Magnolia lotungensis is an extremely endangered endemic tree in China. To elucidate the genetic basis of M. lotungensis, we performed a comprehensive transcriptome analysis using a sample integrating the plant’s bark, leaves, and flowers. De novo transcriptome assembly yielded 177,046 transcripts and [...] Read more.
Magnolia lotungensis is an extremely endangered endemic tree in China. To elucidate the genetic basis of M. lotungensis, we performed a comprehensive transcriptome analysis using a sample integrating the plant’s bark, leaves, and flowers. De novo transcriptome assembly yielded 177,046 transcripts and 42,518 coding sequences. Notably, we identified 796 species-specific genes enriched in organelle gene regulation and defense responses. A codon usage bias analysis revealed that mutation bias appears to be the primary driver of selection in shaping the species’ genetic architecture. An evolutionary analysis based on dN/dS values of paralogous and orthologous gene pairs indicated a predominance of purifying selection, suggesting strong evolutionary constraints on most genes. A comparative transcriptomic analysis with Magnolia sinica identified approximately 1000 ultra-conserved genes, enriched in essential cellular processes such as transcriptional regulation, protein synthesis, and genome stability. Interestingly, only a limited number of 511 rapidly evolving genes under positive selection were detected compared to M. sinica and Magnolia kuangsiensis. These genes were enriched in metabolic processes associated with adaptation to specific environments, potentially limiting the species’ ability to expand its range. Our findings contribute to understanding the genetic architecture of M. lotungensis and suggest that an insufficient number of adaptive genes contribute to its endangered status. Full article
(This article belongs to the Special Issue Advances in Genetics and Genomics of Plants)
Show Figures

Figure 1

17 pages, 6302 KB  
Article
Photoreactivation Activities of Rad5, Rad16A and Rad16B Help Beauveria bassiana to Recover from Solar Ultraviolet Damage
by Xin-Cheng Luo, Lei Yu, Si-Yuan Xu, Sheng-Hua Ying and Ming-Guang Feng
J. Fungi 2024, 10(6), 420; https://doi.org/10.3390/jof10060420 - 13 Jun 2024
Cited by 1 | Viewed by 1546
Abstract
In budding yeast, Rad5 and Rad7-Rad16 play respective roles in the error-free post-replication repair and nucleotide excision repair of ultraviolet-induced DNA damage; however, their homologs have not yet been studied in non-yeast fungi. In the fungus Beauveria bassiana, a deficiency in the [...] Read more.
In budding yeast, Rad5 and Rad7-Rad16 play respective roles in the error-free post-replication repair and nucleotide excision repair of ultraviolet-induced DNA damage; however, their homologs have not yet been studied in non-yeast fungi. In the fungus Beauveria bassiana, a deficiency in the Rad7 homolog, Rad5 ortholog and two Rad16 paralogs (Rad16A/B) instituted an ability to help the insect-pathogenic fungus to recover from solar UVB damage through photoreactivation. The fungal lifecycle-related phenotypes were not altered in the absence of rad5, rad16A or rad16B, while severe defects in growth and conidiation were caused by the double deletion of rad16A and rad16B. Compared with the wild-type and complemented strains, the mutants showed differentially reduced activities regarding the resilience of UVB-impaired conidia at 25 °C through a 12-h incubation in a regime of visible light plus dark (L/D 3:9 h or 5:7 h for photoreactivation) or of full darkness (dark reactivation) mimicking a natural nighttime. The estimates of the median lethal UVB dose LD50 from the dark and L/D treatments revealed greater activities of Rad5 and Rad16B than of Rad16A and additive activities of Rad16A and Rad16B in either NER-dependent dark reactivation or photorepair-dependent photoreactivation. However, their dark reactivation activities were limited to recovering low UVB dose-impaired conidia but were unable to recover conidia impaired by sublethal and lethal UVB doses as did their photoreactivation activities at L/D 3:9 or 5:7, unless the night/dark time was doubled or further prolonged. Therefore, the anti-UV effects of Rad5, Rad16A and Rad16B in B. bassiana depend primarily on photoreactivation and are mechanistically distinct from those for their yeast homologs. Full article
Show Figures

Figure 1

16 pages, 8001 KB  
Article
Cla4A, a Novel Regulator of Gene Expression Networks Required for Asexual and Insect-Pathogenic Lifecycles of Beauveria bassiana
by Si-Yuan Xu, Rehab Abdelmonem Mohamed, Lei Yu, Sheng-Hua Ying and Ming-Guang Feng
Int. J. Mol. Sci. 2024, 25(12), 6410; https://doi.org/10.3390/ijms25126410 - 10 Jun 2024
Cited by 2 | Viewed by 1355
Abstract
Cla4, an orthologous p21-activated kinase crucial for non-entomopathogenic fungal lifestyles, has two paralogs (Cla4A/B) functionally unknown in hypocrealean entomopathogens. Here, we report a regulatory role of Cla4A in gene expression networks of Beauveria bassiana required for asexual and entomopathogenic lifecycles while Cla4B is [...] Read more.
Cla4, an orthologous p21-activated kinase crucial for non-entomopathogenic fungal lifestyles, has two paralogs (Cla4A/B) functionally unknown in hypocrealean entomopathogens. Here, we report a regulatory role of Cla4A in gene expression networks of Beauveria bassiana required for asexual and entomopathogenic lifecycles while Cla4B is functionally redundant. The deletion of cla4A resulted in severe growth defects, reduced stress tolerance, delayed conidiation, altered conidiation mode, impaired conidial quality, and abolished pathogenicity through cuticular penetration, contrasting with no phenotype affected by cla4B deletion. In ∆cla4A, 5288 dysregulated genes were associated with phenotypic defects, which were restored by targeted gene complementation. Among those, 3699 genes were downregulated, including more than 1300 abolished at the transcriptomic level. Hundreds of those downregulated genes were involved in the regulation of transcription, translation, and post-translational modifications and the organization and function of the nuclear chromosome, chromatin, and protein–DNA complex. DNA-binding elements in promoter regions of 130 dysregulated genes were predicted to be targeted by Cla4A domains. Samples of purified Cla4A extract were proven to bind promoter DNAs of 12 predicted genes involved in multiple stress-responsive pathways. Therefore, Cla4A acts as a novel regulator of genomic expression and stability and mediates gene expression networks required for insect-pathogenic fungal adaptations to the host and environment. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 5.0)
Show Figures

Figure 1

17 pages, 25111 KB  
Article
Identification of Laccase Genes in Grapevine and Their Roles in Response to Botrytis cinerea
by Ran Wan, Zhenfeng Yang, Jun Liu, Mengxi Zhang, Jian Jiao, Miaomiao Wang, Kunxi Zhang, Pengbo Hao, Yu Liu, Tuanhui Bai, Chunhui Song, Shangwei Song, Jiangli Shi and Xianbo Zheng
Horticulturae 2024, 10(4), 376; https://doi.org/10.3390/horticulturae10040376 - 9 Apr 2024
Viewed by 2198
Abstract
Laccases are the key enzymes responsible for plant lignin biosynthesis and responses to environment stress. However, the roles of LAC genes in plant disease resistance are still largely unknown, especially in grapevine, one of the most important horticultural crops in the world. Its [...] Read more.
Laccases are the key enzymes responsible for plant lignin biosynthesis and responses to environment stress. However, the roles of LAC genes in plant disease resistance are still largely unknown, especially in grapevine, one of the most important horticultural crops in the world. Its quality and yield are very vulnerable to gray mold disease caused by Botrytis cinerea. In total, 30 VvLAC genes were identified and found to be unevenly distributed on seven chromosomes; they were classified into seven groups based on phylogenetic analysis according to the criteria applied in Arabidopsis thaliana. Collinearity and synteny analyses identified some orthologous gene pairs in Vitis vinifera and a few paralogous gene pairs among grape and peach. The VvLAC gene family has diverse gene structures and a highly conserved motif composition. The prominent presence of the MYB cis-elements in each VvLAC promoter highlighted MYB transcriptional factors as the main regulators of VvLAC genes. Furthermore, twenty-five VvLAC genes with functional redundancy are probably implicated in grape lignin biosynthesis. The expression patterns of the LAC genes in grape leaves of Chinese wild V. amurensis ‘Shuangyou’ (SY), a germplasm highly resistant to B. cinerea, were investigated through transcriptomic data and qRT-PCR verification. Combined with the phylogenetic analysis, with AtLACs participating in lignin metabolism, and the cis-element analysis, VaLAC14, VaLAC19, VaLAC24 and VaLAC30 were identified as key candidate genes for lignin biosynthesis in the grape response to B. cinerea. This study supplies a comprehensive understanding of the classification, evolution, structure and responses of the grape LAC genes against B. cinerea. It also provides valuable genetic resources for functional characterization towards enhancing grapevine disease resistance. Full article
(This article belongs to the Special Issue Advances in Developmental Biology in Tree Fruit and Nut Crops)
Show Figures

Figure 1

13 pages, 1133 KB  
Article
Analysis of the Mycotoxin Levels and Expression Pattern of SWN Genes at Different Time Points in the Fungus Slafractonia leguminicola
by Sumanjari Das, Dale R. Gardner, Daniel Cook and Rebecca Creamer
Microorganisms 2024, 12(4), 670; https://doi.org/10.3390/microorganisms12040670 - 27 Mar 2024
Viewed by 1895
Abstract
The fungal plant pathogen Slafractonia leguminicola produces two mycotoxins that affect animals: slaframine, which causes slobbers, and swainsonine, which causes locoism. Slafractonia leguminicola contains the swainsonine-associated orthologous gene clusters, “SWN”, which include a multifunctional swnK gene (NRPS-PKS hybrid), swnH1 and swnH2 (nonheme iron [...] Read more.
The fungal plant pathogen Slafractonia leguminicola produces two mycotoxins that affect animals: slaframine, which causes slobbers, and swainsonine, which causes locoism. Slafractonia leguminicola contains the swainsonine-associated orthologous gene clusters, “SWN”, which include a multifunctional swnK gene (NRPS-PKS hybrid), swnH1 and swnH2 (nonheme iron dioxygenase genes), swnN and swnR (reductase genes), and swnT (transmembrane transporter). In addition to these genes, two paralogs of swnK, swnK1 (paralog1) and swnk2 (paralog2), are found in S. leguminicola. cDNAs from total mRNA were isolated from the S. leguminicola mycelia grown in the culture plates as well as from leaves inoculated with the fungal mycelia at different time points, and expression pattern of the SWN genes were analyzed using RT-qPCR. The concentrations of swainsonine and slaframine production from this fungus at different time points were also examined using liquid chromatography–mass spectrometry. The timing of gene expression was similar in cultured fungus and inoculated leaves and agreed with our proposed biosynthetic pathway. Substantially more swainsonine was produced than slaframine during time course studies. Full article
(This article belongs to the Special Issue Fungal Biology and Interactions, 2nd Edition)
Show Figures

Figure 1

15 pages, 2264 KB  
Review
Hippo Signaling at the Hallmarks of Cancer and Drug Resistance
by Ramesh Kumar and Wanjin Hong
Cells 2024, 13(7), 564; https://doi.org/10.3390/cells13070564 - 22 Mar 2024
Cited by 19 | Viewed by 4952
Abstract
Originally identified in Drosophila melanogaster in 1995, the Hippo signaling pathway plays a pivotal role in organ size control and tumor suppression by inhibiting proliferation and promoting apoptosis. Large tumor suppressors 1 and 2 (LATS1/2) directly phosphorylate the Yki orthologs YAP (yes-associated protein) [...] Read more.
Originally identified in Drosophila melanogaster in 1995, the Hippo signaling pathway plays a pivotal role in organ size control and tumor suppression by inhibiting proliferation and promoting apoptosis. Large tumor suppressors 1 and 2 (LATS1/2) directly phosphorylate the Yki orthologs YAP (yes-associated protein) and its paralog TAZ (also known as WW domain-containing transcription regulator 1 [WWTR1]), thereby inhibiting their nuclear localization and pairing with transcriptional coactivators TEAD1-4. Earnest efforts from many research laboratories have established the role of mis-regulated Hippo signaling in tumorigenesis, epithelial mesenchymal transition (EMT), oncogenic stemness, and, more recently, development of drug resistances. Hippo signaling components at the heart of oncogenic adaptations fuel the development of drug resistance in many cancers for targeted therapies including KRAS and EGFR mutants. The first U.S. food and drug administration (US FDA) approval of the imatinib tyrosine kinase inhibitor in 2001 paved the way for nearly 100 small-molecule anti-cancer drugs approved by the US FDA and the national medical products administration (NMPA). However, the low response rate and development of drug resistance have posed a major hurdle to improving the progression-free survival (PFS) and overall survival (OS) of cancer patients. Accumulating evidence has enabled scientists and clinicians to strategize the therapeutic approaches of targeting cancer cells and to navigate the development of drug resistance through the continuous monitoring of tumor evolution and oncogenic adaptations. In this review, we highlight the emerging aspects of Hippo signaling in cross-talk with other oncogenic drivers and how this information can be translated into combination therapy to target a broad range of aggressive tumors and the development of drug resistance. Full article
Show Figures

Figure 1

23 pages, 18479 KB  
Article
Do DEEPER ROOTING 1 Homologs Regulate the Lateral Root Slope Angle in Cucumber (Cucumis sativus)?
by Alexey S. Kiryushkin, Elena L. Ilina, Tatyana Y. Kiikova, Katharina Pawlowski and Kirill N. Demchenko
Int. J. Mol. Sci. 2024, 25(4), 1975; https://doi.org/10.3390/ijms25041975 - 6 Feb 2024
Cited by 5 | Viewed by 2509
Abstract
The architecture of the root system is fundamental to plant productivity. The rate of root growth, the density of lateral roots, and the spatial structure of lateral and adventitious roots determine the developmental plasticity of the root system in response to changes in [...] Read more.
The architecture of the root system is fundamental to plant productivity. The rate of root growth, the density of lateral roots, and the spatial structure of lateral and adventitious roots determine the developmental plasticity of the root system in response to changes in environmental conditions. One of the genes involved in the regulation of the slope angle of lateral roots is DEEPER ROOTING 1 (DRO1). Its orthologs and paralogs have been identified in rice, Arabidopsis, and several other species. However, nothing is known about the formation of the slope angle of lateral roots in species with the initiation of lateral root primordia within the parental root meristem. To address this knowledge gap, we identified orthologs and paralogs of the DRO1 gene in cucumber (Cucumis sativus) using a phylogenetic analysis of IGT protein family members. Differences in the transcriptional response of CsDRO1, CsDRO1-LIKE1 (CsDRO1L1), and CsDRO1-LIKE2 (CsDRO1L2) to exogenous auxin were analyzed. The results showed that only CsDRO1L1 is auxin-responsive. An analysis of promoter–reporter fusions demonstrated that the CsDRO1, CsDRO1L1, and CsDRO1L2 genes were expressed in the meristem in cell files of the central cylinder, endodermis, and cortex; the three genes displayed different expression patterns in cucumber roots with only partial overlap. A knockout of individual CsDRO1, CsDRO1L1, and CsDRO1L2 genes was performed via CRISPR/Cas9 gene editing. Our study suggests that the knockout of individual genes does not affect the slope angle formation during lateral root primordia development in the cucumber parental root. Full article
Show Figures

Figure 1

Back to TopTop