Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = polymeric CO2 sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 31664 KB  
Article
Rheological Behavior of Poly(Styrene-Co-Acrylonitrile)/Carbon Nanotube Sponges for Fiber Electrospinning Applications
by Rubén Caro-Briones, Marco Antonio Pérez-Castillo, Hugo Martínez-Gutiérrez, Emilio Muñoz-Sandoval, Gabriela Martínez-Mejía, Lazaro Ruiz-Virgen and Mónica Corea
Nanomaterials 2025, 15(14), 1060; https://doi.org/10.3390/nano15141060 - 9 Jul 2025
Viewed by 465
Abstract
Polymeric composite solutions (PCSs) reinforced with carbon nanotubes sponges (CNT-sponges) have attracted interest in material science and engineering due to their physicochemical properties. Understanding the influence of CNT-sponges content (0.1 wt.%, 0.3 wt.% and 0.5 wt.%) on rheological behavior of poly(styrene-co-acrylonitrile) P(S:AN) (0:100, [...] Read more.
Polymeric composite solutions (PCSs) reinforced with carbon nanotubes sponges (CNT-sponges) have attracted interest in material science and engineering due to their physicochemical properties. Understanding the influence of CNT-sponges content (0.1 wt.%, 0.3 wt.% and 0.5 wt.%) on rheological behavior of poly(styrene-co-acrylonitrile) P(S:AN) (0:100, 20:80, 40:60 and 50:50, wt.%:wt.%) solutions synthesized by emulsion polymerization can predict the viscoelastic parameters for their possible application in electrospinning processes. The obtained nanofibers can be used as sensors, textiles, purifying agents or artificial muscles and tissues. For this, amplitude and frequency sweeps were performed to measure the viscosity (η), storage (G’) and loss (G”) moduli and loss factor (tan δ). Most PCSs showed a shear thinning behavior over the viscosity range of 0.8 < η/Pa·s < 20. At low CNT-sponges concentration in the polymer matrix, the obtained loss factor indicated a liquid-like behavior, while as CNT-sponges content increases, the solid-like behavior predominated. Then, the polymeric solutions were successfully electrospun; however, some agglomerations were formed in materials containing 0.5 wt.% of CNT-sponges attributed to the interaction forces generated within the structure. Finally, the rheological analysis indicates that the PCS with a low percentage of CNT-sponges are highly suitable to be electrospun. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Fibers and Textiles)
Show Figures

Graphical abstract

19 pages, 1898 KB  
Article
Synthesis, Characterization and Sensor Application of Novel PCL-Based Triblock Copolymers
by Murat Mısır
Polymers 2025, 17(7), 873; https://doi.org/10.3390/polym17070873 - 25 Mar 2025
Viewed by 685
Abstract
In this study, novel triblock copolymers, including poly(N-isopropylacrylamide)-block-poly(ε-caprolactone)-block-poly(N-isopropylacrylamide) (PNIPAM-b-PCL-b-PNIPAM), poly(N-vinyl-pyrrolidone)-block-poly(ε-caprolactone)-block-poly(N-vinyl-pyrrolidone) (PNVP-b-PCL-b-PNVP), poly(N-isopropylacrylamide-co-N,N [...] Read more.
In this study, novel triblock copolymers, including poly(N-isopropylacrylamide)-block-poly(ε-caprolactone)-block-poly(N-isopropylacrylamide) (PNIPAM-b-PCL-b-PNIPAM), poly(N-vinyl-pyrrolidone)-block-poly(ε-caprolactone)-block-poly(N-vinyl-pyrrolidone) (PNVP-b-PCL-b-PNVP), poly(N-isopropylacrylamide-co-N,N-dimethylaminoethyl methacrylate)-block-poly(ε-caprolactone)-block-poly(N-isopropylacrylamide-co-N,N-dimethylaminoethyl methacrylate) (P(DMAEMA-co-NIPAM)-b-PCL-b-P(NIPAM-co-DMAEMA)), and poly(N,N-dimethylacrylamide)-block-poly(ε-caprolactone)-block-poly(N,N-dimethylacrylamide) (PDMA-b-PCL-b-PDMA), were synthesized via a combination of ring-opening polymerization (ROP) and reversible addition–fragmentation chain transfer (RAFT) polymerization. The synthesis was performed using novel bifunctional PCL-based RAFT macro chain transfer agents (macroCTAs; MXTPCL-X1 and MXTPCL-X2) with a m-xylene-bis(2-mercaptoethyloxy) core. Initially, m-xylene-bis(1-hydroxy-3-thia-propane) (MXTOH), which has not previously been used in lactone polymerization, was synthesized via the reaction of α,α′-dibromo-m-xylene with 2-mercaptoethanol in the presence of sodium in ethanol. Subsequently, Sn(Oct)2-catalyzed ROP of ε-caprolactone (ε-CL) using MXTOH as an initiator yielded PCL-diol (MXTPCLOH). The resulting PCL-diol underwent further functionalization through esterification and substitution reactions, leading to the formation of PCL-based RAFT macroCTAs. Triblock copolymers were synthesized using these macroCTAs with AIBN as an initiator. The synthesized products, along with their intermediates, were characterized using FTIR and 1H NMR spectroscopy. The number average molecular weight (Mn) and polydispersity index (Ð) of PCL-based macroCTAs were determined by using GPC analysis. The sensor capabilities of the synthesized novel triblock copolymers were investigated on the determination of syringic acid and it was determined that the most sensitive polymer was PNVP-b-PCL-b-PNVP (MXTP2). The working range was between 1.5 µg/mL and 15 µg/mL and the limit of detection (LOD) was found to be 0.44 µg/mL using DPV on MXTP2 polymer sensor. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

18 pages, 5352 KB  
Article
Facile Synthesis of Bioactive Silver Nanocomposite Hydrogels with Electro-Conductive and Wound-Healing Properties
by Solaiman, Tahmina Foyez, Syed Abdul Monim, Aminur Rahman and Abu Bin Imran
Gels 2025, 11(2), 84; https://doi.org/10.3390/gels11020084 - 22 Jan 2025
Cited by 4 | Viewed by 2084
Abstract
Bioactive metal and metal oxide-based nanocomposite hydrogels exhibit significant antibacterial properties by interacting with microbial DNA and preventing bacterial replication. They offer potential applications as coating materials for human or animal skin injuries to prevent microbial growth and promote healing. In this study, [...] Read more.
Bioactive metal and metal oxide-based nanocomposite hydrogels exhibit significant antibacterial properties by interacting with microbial DNA and preventing bacterial replication. They offer potential applications as coating materials for human or animal skin injuries to prevent microbial growth and promote healing. In this study, silver nanoparticles (AgNPs) were synthesized using a chemical reduction method and incorporated into a polymer network to fabricate silver nanocomposite hydrogels (AgNCHGs) through a simple free radical polymerization method. N-isopropylacrylamide (NIPA), which has lower critical solution temperature (LCST) at about body temperature, or acrylamide (AAm) was used as the main monomer, while one or more ionic co-monomers, such as acrylic acid (AAc) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), were incorporated to obtain AgNCHGs. AgNPs were introduced into the hydrogel network via three different approaches. In the first method, the synthesized hydrogel was immersed in a silver nitrate (AgNO3) solution and reduced in situ using sodium borohydride (NaBH4) as a reducing agent. The second method involved mixing AgNO3 with gel precursors before reduction with NaBH4 to form AgNPs within the hydrogel. The final approach synthesized the AgNCHGs directly in a dispersion of pre-fabricated AgNPs. The incorporation of AgNPs in different AgNCHGs was confirmed through various characterization techniques. Varying temperature and pH conditions can trigger the release of bioactive AgNPs from the hydrogels. Furthermore, the antimicrobial and wound-healing properties of the AgNCHGs were evaluated against bacteria and fungi, demonstrating their potential in biomedical applications. In addition, AgNCHGs exhibit excellent electrical conductivity. The electrical conductivity of the hydrogels can be finely tuned by adjusting the concentration of AgNPs, making these materials promising candidates for energy, sensor, and stretchable electronics applications. This study presents facile synthesis methods of AgNCHGs, which integrate bioactivity, wound healing, and electrical conductivity in the same matrix, addressing a significant challenge in designing multifunctional hydrogels for next-generation technologies. Full article
(This article belongs to the Special Issue Conductive Gels: Preparation, Properties and Applications)
Show Figures

Figure 1

15 pages, 2114 KB  
Article
Laser-Induced Graphene Electrodes for Flexible pH Sensors
by Giulia Massaglia, Giacomo Spisni, Tommaso Serra and Marzia Quaglio
Nanomaterials 2024, 14(24), 2008; https://doi.org/10.3390/nano14242008 - 14 Dec 2024
Cited by 3 | Viewed by 1753
Abstract
In the growing field of personalized medicine, non-invasive wearable devices and sensors are valuable diagnostic tools for the real-time monitoring of physiological and biokinetic signals. Among all the possible multiple (bio)-entities, pH is important in defining health-related biological information, since its variations or [...] Read more.
In the growing field of personalized medicine, non-invasive wearable devices and sensors are valuable diagnostic tools for the real-time monitoring of physiological and biokinetic signals. Among all the possible multiple (bio)-entities, pH is important in defining health-related biological information, since its variations or alterations can be considered the cause or the effect of disease and disfunction within a biological system. In this work, an innovative (bio)-electrochemical flexible pH sensor was proposed by realizing three electrodes (working, reference, and counter) directly on a polyimide (Kapton) sheet through the implementation of CO2 laser writing, which locally converts the polymeric sheet into a laser-induced graphene material (LIG electrodes), preserving inherent mechanical flexibility of Kapton. A uniform distribution of nanostructured PEDOT:PSS was deposited via ultrasonic spray coating onto an LIG working electrode as the active material for pH sensing. With a pH-sensitive PEDOT coating, this flexible sensor showed good sensitivity defined through a linear Nernstian slope of (75.6 ± 9.1) mV/pH, across a pH range from 1 to 7. We demonstrated the capability to use this flexible pH sensor during dynamic experiments, and thus concluded that this device was suitable to guarantee an immediate response and good repeatability by measuring the same OCP values in correspondence with the same pH applied. Full article
Show Figures

Figure 1

10 pages, 2830 KB  
Article
High-Stretchable and Transparent Ultraviolet-Curable Elastomer
by Lei Chen, Yongchang He, Lu Dai, Wang Zhang, Hao Wang and Peng Liu
Polymers 2024, 16(24), 3464; https://doi.org/10.3390/polym16243464 - 11 Dec 2024
Viewed by 1925
Abstract
This work introduces an ultraviolet (UV)-curable elastomer through the co-polymerization of aliphatic polyurethane acrylate and hydroxypropyl acrylate via UV irradiation. The UV-curable elastomer presents superior mechanical properties (elongation at a break of 2992%) and high transparency (94.8% at 550 nm in the visible [...] Read more.
This work introduces an ultraviolet (UV)-curable elastomer through the co-polymerization of aliphatic polyurethane acrylate and hydroxypropyl acrylate via UV irradiation. The UV-curable elastomer presents superior mechanical properties (elongation at a break of 2992%) and high transparency (94.8% at 550 nm in the visible light region). A robust hydrogel–elastomer stretchable sensor is fabricated by coating an ionic hydrogel on the surface of an elastomer, which enables real-time monitoring of human motion. In addition, the UV-curable elastomer can be used for 3D printing, as demonstrated by complex lattice structures using a digital light processing 3D printer. Full article
(This article belongs to the Special Issue 3D Printing of Polymer Composites)
Show Figures

Figure 1

27 pages, 9493 KB  
Article
The Use of Polyurethane Composites with Sensing Polymers as New Coating Materials for Surface Acoustic Wave-Based Chemical Sensors—Part II: Polyurethane Composites with Polylaurylmetacrylate, Polyisobutene, and Poly(chlorotrifluoroethylene-co-vinylidene Fluoride): Coating Results, Relative Sensor Responses and Adhesion Analysis
by Mauro dos Santos de Carvalho, Michael Rapp, Achim Voigt and Marian Dirschka
Coatings 2024, 14(7), 778; https://doi.org/10.3390/coatings14070778 - 21 Jun 2024
Cited by 2 | Viewed by 1491
Abstract
This work presents the application of the methodology for the sensitization of surface acoustic wave-based sensors (SAW), developed in the first part of this work. The strategy of the method is the obtention of sensing layers with tailored chemical environments by taking advantage [...] Read more.
This work presents the application of the methodology for the sensitization of surface acoustic wave-based sensors (SAW), developed in the first part of this work. The strategy of the method is the obtention of sensing layers with tailored chemical environments by taking advantage of the wide variety of chemical composition of the organic polymers, which have been used as sensing polymers, and combining them with polyurethane (PU) to form polymeric composites that show enhanced properties as sensing materials for the SAW sensor technology. In the first part of this work, the ultrasonic and adhesion characterization was correlated to the sensor responses of PU-polybutylmethacrylate (PBMA) composites of different relative concentrations of the sensing polymer (PBMA) and PU. The resulting coating layers obtained with the PU polymer composites improved the chemical and mechanical properties of the sensing layer without interfering with the quality of their sensor responses in comparison to those with the pristine polymer as the sensing material. In this second part of this work, three new polyurethane polymeric composites were analyzed. The new sensing materials were produced using polylaurylmetacrylate (PLMA), polyisobutene (PIB), and poly(chlorotrifluoroethylene-co-vinylidene fluoride) (PCTFE) as the sensing polymers combined with PU. The results of the new PU polymer composites showed consequently different properties depending on the type of sensing polymer used, reproducing, however, the previous features achieved with PU and polybutylmetacrylate (PBMA) composites, like the improvements in the adhesion and the resistance against an organic solvent and preserving, in each case, the sensor response characteristic of each sensing polymer used, as was also observed for the PU-PBMA polymeric composites. The results obtained with the new sensing materials validated the strategy and confirmed its generalization as a very suitable methodology for the sensitization of SAW sensors, strongly indicating the applicability and reliability of the method, which makes possible the choice of virtually any chemical environments for the sensitization of SAW sensor systems. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

15 pages, 13354 KB  
Article
Designing Multifunctional Multiferroic Composites for Advanced Electronic Applications
by Lilian Nunes Pereira, Julio Cesar Agreira Pastoril, Gustavo Sanguino Dias, Ivair Aparecido dos Santos, Ruyan Guo, Amar S. Bhalla and Luiz Fernando Cotica
Electronics 2024, 13(12), 2266; https://doi.org/10.3390/electronics13122266 - 9 Jun 2024
Cited by 5 | Viewed by 1305
Abstract
This paper presents a novel approach for the fabrication of magnetoelectric composites aimed at enhancing cross-coupling between electrical and magnetic phases for potential applications in intelligent sensors and electronic components. Unlike previous methodologies known for their complexity and expense, our method offers a [...] Read more.
This paper presents a novel approach for the fabrication of magnetoelectric composites aimed at enhancing cross-coupling between electrical and magnetic phases for potential applications in intelligent sensors and electronic components. Unlike previous methodologies known for their complexity and expense, our method offers a simple and cost-effective assembly process conducted at room temperature, preserving the original properties of the components and avoiding undesired phases. The composites, composed of PZT fibers, cobalt (CoFe2O4), and a polymeric resin, demonstrate the uniform distribution of PZT-5A fibers within the cobalt matrix, as demonstrated by scanning electron microscopy. Detailed morphological analyses reveal the interface characteristics crucial for determining overall performance. Dielectric measurements indicate stable behaviors, particularly when PZT-5A fibers are properly poled, showcasing potential applications in sensors or medical devices. Furthermore, H-dependence studies illustrate strong magnetoelectric interactions, suggesting promising avenues for enhancing coupling efficiency. Overall, this study lays the basic work for future optimization of composite composition and exploration of its long-term stability, offering valuable insights into the potential applications of magnetoelectric composites in various technological domains. Full article
(This article belongs to the Special Issue Advanced Materials for Intelligent Electronics)
Show Figures

Figure 1

16 pages, 3156 KB  
Article
Carbon Dioxide Capture under Low-Pressure Low-Temperature Conditions Using Shaped Recycled Fly Ash Particles
by Sherif Fakher, Abdelaziz Khlaifat and Abdullah Hassanien
Gases 2024, 4(2), 117-132; https://doi.org/10.3390/gases4020007 - 23 May 2024
Cited by 7 | Viewed by 2868
Abstract
Carbon-capture technologies are extremely abundant, yet they have not been applied extensively worldwide due to their high cost and technological complexities. This research studies the ability of polymerized fly ash to capture carbon dioxide (CO2) under low-pressure and low-temperature conditions via [...] Read more.
Carbon-capture technologies are extremely abundant, yet they have not been applied extensively worldwide due to their high cost and technological complexities. This research studies the ability of polymerized fly ash to capture carbon dioxide (CO2) under low-pressure and low-temperature conditions via physical adsorption. The research also studies the ability to desorb CO2 due to the high demand for CO2 in different industries. The adsorption–desorption hysteresis was measured using infrared-sensor detection apparatus. The impact of the CO2 injection rate for adsorption, helium injection rate for desorption, temperature, and fly ash contact surface area on the adsorption–desorption hysteresis was investigated. The results showed that change in the CO2 injection rate had little impact on the variation in the adsorption capacity; for all CO2 rate experiments, the adsorption reached more than 90% of the total available adsorption sites. Increasing the temperature caused the polymerized fly ash to expand, thus increasing the available adsorption sites, thus increasing the overall adsorption volume. At low helium rates, desorption was extremely lengthy which resulted in a delayed hysteresis response. This is not favorable since it has a negative impact on the adsorption–desorption cyclic rate. Based on the results, the polymerized fly ash proved to have a high CO2 capture capability and thus can be applied for carbon-capture applications. Full article
Show Figures

Figure 1

13 pages, 5571 KB  
Article
Lysine-Triggered Polymeric Hydrogels with Self-Adhesion, Stretchability, and Supportive Properties
by Chieh-Yun Juan, You-Sheng Zhang, Jen-Kun Cheng, Yu-Hsu Chen, Hsin-Chieh Lin and Mei-Yu Yeh
Polymers 2024, 16(10), 1388; https://doi.org/10.3390/polym16101388 - 13 May 2024
Cited by 4 | Viewed by 2876
Abstract
Hydrogels, recognized for their flexibility and diverse characteristics, are extensively used in medical fields such as wearable sensors and soft robotics. However, many hydrogel sensors derived from biomaterials lack mechanical strength and fatigue resistance, emphasizing the necessity for enhanced formulations. In this work, [...] Read more.
Hydrogels, recognized for their flexibility and diverse characteristics, are extensively used in medical fields such as wearable sensors and soft robotics. However, many hydrogel sensors derived from biomaterials lack mechanical strength and fatigue resistance, emphasizing the necessity for enhanced formulations. In this work, we utilized acrylamide and polyacrylamide as the primary polymer network, incorporated chemically modified poly(ethylene glycol) (DF-PEG) as a physical crosslinker, and introduced varying amounts of methacrylated lysine (LysMA) to prepare a series of hydrogels. This formulation was labeled as poly(acrylamide)-DF-PEG-LysMA, abbreviated as pADLx, with x denoting the weight/volume percentage of LysMA. We observed that when the hydrogel contained 2.5% w/v LysMA (pADL2.5), compared to hydrogels without LysMA (pADL0), its stress increased by 642 ± 76%, strain increased by 1790 ± 95%, and toughness increased by 2037 ± 320%. Our speculation regarding the enhanced mechanical performance of the pADL2.5 hydrogel revolves around the synergistic effects arising from the co-polymerization of LysMA with acrylamide and the formation of multiple intermolecular hydrogen bonds within the network structures. Moreover, the acid, amine, and amide groups present in the LysMA molecules have proven to be instrumental contributors to the self-adhesion capability of the hydrogel. The validation of the pADL2.5 hydrogel’s exceptional mechanical properties through rigorous tensile tests further underscores its suitability for use in strain sensors. The outstanding stretchability, adhesive strength, and fatigue resistance demonstrated by this hydrogel affirm its potential as a key component in the development of robust and reliable strain sensors that fulfill practical requirements. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

11 pages, 917 KB  
Article
Rational Design of a Portable Chemometric-Assisted Voltammetric Sensor Based on Ion-Imprinted Polymeric Film for Co(II) Determination in Water
by Sabrina Di Masi, Nelson Arturo Manrique Rodriguez, Marco Costa, Giuseppe Egidio De Benedetto and Cosimino Malitesta
Nanomaterials 2024, 14(6), 536; https://doi.org/10.3390/nano14060536 - 18 Mar 2024
Cited by 4 | Viewed by 1660
Abstract
Herein, chemometric-assisted synthesis of electrochemical sensors based on electropolymerised ion-imprinted polymeric (e-IIP) films was explored. Co(II)-IIPs sensors were prepared by performing electropolymerisation procedures of polymerisation mixtures comprising varying concentrations of an electroactive o-aminophenol (o-AP) monomer and Co(II) ions, respectively, according to the Taguchi [...] Read more.
Herein, chemometric-assisted synthesis of electrochemical sensors based on electropolymerised ion-imprinted polymeric (e-IIP) films was explored. Co(II)-IIPs sensors were prepared by performing electropolymerisation procedures of polymerisation mixtures comprising varying concentrations of an electroactive o-aminophenol (o-AP) monomer and Co(II) ions, respectively, according to the Taguchi L9 experimental design, exploiting the simultaneous evaluation of other controlled parameters during electrosynthesis. Each e-IIP developed from Taguchi runs was compared with the respective non-imprinted polymer (NIP) films and fitted according to Langmuir–Freudlich isotherms. Distinctive patterns of low and high-affinity films were screened based on the qualities and properties of the developed IIPs in terms of binding kinetics (KD), imprinting factor, and the heterogeneity index of produced cavities. These results can provide a generic protocol for chemometric-assisted synthesis of e-IIPs based on poly-o-AP, providing highly stable, reproducible, and high-affinity imprinted polymeric films for monitoring purposes. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

17 pages, 5960 KB  
Article
Lead-Free Perovskite Thin Films for Gas Sensing through Surface Acoustic Wave Device Detection
by Nicoleta Enea, Valentin Ion, Cristian Viespe, Izabela Constantinoiu, Anca Bonciu, Maria Luiza Stîngescu, Ruxandra Bîrjega and Nicu Doinel Scarisoreanu
Nanomaterials 2024, 14(1), 39; https://doi.org/10.3390/nano14010039 - 22 Dec 2023
Cited by 1 | Viewed by 2359
Abstract
Thin film technology shows great promise in fabricating electronic devices such as gas sensors. Here, we report the fabrication of surface acoustic wave (SAW) sensors based on thin films of (1 − x) Ba(Ti0.8Zr0.2)O3−x(Ba0.7Ca0.3 [...] Read more.
Thin film technology shows great promise in fabricating electronic devices such as gas sensors. Here, we report the fabrication of surface acoustic wave (SAW) sensors based on thin films of (1 − x) Ba(Ti0.8Zr0.2)O3−x(Ba0.7Ca0.3)TiO3 (BCTZ50, x = 50) and Polyethylenimine (PEI). The layers were deposited by two laser-based techniques, namely pulsed laser deposition (PLD) for the lead-free material and matrix assisted pulsed laser evaporation (MAPLE) for the sensitive polymer. In order to assay the impact of the thickness, the number of laser pulses was varied, leading to thicknesses between 50 and 350 nm. The influence of BCTZ film’s crystallographic features on the characteristics and performance of the SAW device was studied by employing substrates with different crystal structures, more precisely cubic Strontium Titanate (SrTiO3) and orthorhombic Gadolinium Scandium Oxide (GdScO3). The SAW sensors were further integrated into a testing system to evaluate the response of the BCTZ thin films with PEI, and then subjected to tests for N2, CO2 and O2 gases. The influence of the MAPLE’s deposited PEI layer on the overall performance was demonstrated. For the SAW sensors based on BCTZ/GdScO3 thin films with a PEI polymer, a maximum frequency shift of 39.5 kHz has been obtained for CO2; eight times higher compared to the sensor without the polymeric layer. Full article
(This article belongs to the Special Issue New Challenges in Designed Nanointerfaces)
Show Figures

Figure 1

17 pages, 16693 KB  
Article
Self-Standing 3D-Printed PEGDA–PANIs Electroconductive Hydrogel Composites for pH Monitoring
by Rocco Carcione, Francesca Pescosolido, Luca Montaina, Francesco Toschi, Silvia Orlanducci, Emanuela Tamburri and Silvia Battistoni
Gels 2023, 9(10), 784; https://doi.org/10.3390/gels9100784 - 26 Sep 2023
Cited by 8 | Viewed by 2274
Abstract
Additive manufacturing (AM), or 3D printing processes, is introducing new possibilities in electronic, biomedical, sensor-designing, and wearable technologies. In this context, the present work focuses on the development of flexible 3D-printed polyethylene glycol diacrylate (PEGDA)- sulfonated polyaniline (PANIs) electrically conductive hydrogels (ECHs) for [...] Read more.
Additive manufacturing (AM), or 3D printing processes, is introducing new possibilities in electronic, biomedical, sensor-designing, and wearable technologies. In this context, the present work focuses on the development of flexible 3D-printed polyethylene glycol diacrylate (PEGDA)- sulfonated polyaniline (PANIs) electrically conductive hydrogels (ECHs) for pH-monitoring applications. PEGDA platforms are 3D printed by a stereolithography (SLA) approach. Here, we report the successful realization of PEGDA–PANIs electroconductive hydrogel (ECH) composites produced by an in situ chemical oxidative co-polymerization of aniline (ANI) and aniline 2-sulfonic acid (ANIs) monomers at a 1:1 equimolar ratio in acidic medium. The morphological and functional properties of PEGDA–PANIs are compared to those of PEGDA–PANI composites by coupling SEM, swelling degree, I–V, and electro–chemo–mechanical analyses. The differences are discussed as a function of morphological, structural, and charge transfer/transport properties of the respective PANIs and PANI filler. Our investigation showed that the electrochemical activity of PANIs allows for the exploitation of the PEGDA–PANIs composite as an electrode material for pH monitoring in a linear range compatible with that of most biofluids. This feature, combined with the superior electromechanical behavior, swelling capacity, and water retention properties, makes PEGDA–PANIs hydrogel a promising active material for developing advanced biomedical, soft tissue, and biocompatible electronic applications. Full article
(This article belongs to the Special Issue Functional Gel Materials and Applications)
Show Figures

Graphical abstract

27 pages, 7670 KB  
Article
Novel Cytochrome P450-3A4 Enzymatic Nanobiosensor for Lapatinib (a Breast Cancer Drug) Developed on a Poly(anilino-co-4-aminobenzoic Acid-Green-Synthesised Indium Nanoparticle) Platform
by Jaymi Leigh January, Ziyanda Zamaswazi Tshobeni, Nokwanda Precious Pearl Ngema, Abongile Nwabisa Jijana, Emmanuel Iheanyichukwu Iwuoha, Takalani Mulaudzi, Samantha Fiona Douman and Rachel Fanelwa Ajayi
Biosensors 2023, 13(9), 897; https://doi.org/10.3390/bios13090897 - 21 Sep 2023
Cited by 4 | Viewed by 2894
Abstract
Breast cancer (BC) is one of the most common types of cancer disease worldwide and it accounts for thousands of deaths annually. Lapatinib is among the preferred drugs for the treatment of breast cancer. Possible drug toxicity effects of lapatinib can be controlled [...] Read more.
Breast cancer (BC) is one of the most common types of cancer disease worldwide and it accounts for thousands of deaths annually. Lapatinib is among the preferred drugs for the treatment of breast cancer. Possible drug toxicity effects of lapatinib can be controlled by real-time determination of the appropriate dose for a patient at the point of care. In this study, a novel highly sensitive polymeric nanobiosensor for lapatinib is presented. A composite of poly(anilino-co-4-aminobenzoic acid) co-polymer {poly(ANI-co-4-ABA)} and coffee extract-based green-synthesized indium nanoparticles (InNPs) was used to develop the sensor platform on a screen-printed carbon electrode (SPCE), i.e., SPCE||poly(ANI-co-4-ABA-InNPs). Cytochrome P450-3A4 (CYP3A4) enzyme and polyethylene glycol (PEG) were incorporated on the modified platform to produce the SPCE||poly(ANI-co-4-ABA-InNPs)|CYP3A4|PEG lapatinib nanobiosensor. Experiments for the determination of the electrochemical response characteristics of the nanobiosensor were performed with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The nanobiosensor calibration for 0–100 ng/mL lapatinib was linear and gave limit of detection (LOD) values of 13.21 ng/mL lapatinib and 18.6 ng/mL lapatinib in physiological buffer and human serum, respectively. The LOD values are much lower than the peak plasma concentration (Cmax) of lapatinib (2.43 µg/mL), which is attained 4 h after the administration of a daily dose of 1250 mg lapatinib. The electrochemical nanobiosensor also exhibited excellent anti-interference performance and stability. Full article
Show Figures

Graphical abstract

13 pages, 3014 KB  
Article
Rhodamine-Anchored Polyacrylamide Hydrogel for Fluorescent Naked-Eye Sensing of Fe3+
by Dandan Jiang, Minghao Zheng, Xiaofan Ma, Yingzhen Zhang, Shaohua Jiang, Juanhua Li, Chunmei Zhang, Kunming Liu and Liqing Li
Molecules 2023, 28(18), 6572; https://doi.org/10.3390/molecules28186572 - 11 Sep 2023
Cited by 8 | Viewed by 2116
Abstract
A fluorescent and colorimetric poly (acrylamide)-based copolymer probe P(AAm-co-RBNCH) has been designed via free radical polymerization of a commercial acrylamide monomer with a rhodamine-functionalized monomer RBNCH. Metal ion selectivity of RBNCH was investigated by fluorescence and colorimetric spectrophotometry. Upon addition of Fe [...] Read more.
A fluorescent and colorimetric poly (acrylamide)-based copolymer probe P(AAm-co-RBNCH) has been designed via free radical polymerization of a commercial acrylamide monomer with a rhodamine-functionalized monomer RBNCH. Metal ion selectivity of RBNCH was investigated by fluorescence and colorimetric spectrophotometry. Upon addition of Fe3+, a visual color change from colorless to red and a large fluorescence enhancement were observed for the ring-opening of the rhodamine spirolactam mechanism. The monomer gives a sensitive method for quantitatively detecting Fe3+ in the linear range of 100–200 μM, with a limit of detection as low as 27 nM and exhibiting high selectivity for Fe3+ over 12 other metal ions. The hydrogel sensor was characterized by FTIR, and the effects of RBNCH amount on gel content and swelling properties were explored. According to the recipe of 1.0 mol% RBNCH to the total monomers, the fabricated hydrogel sensor displayed a good swelling property and reversibility performance and has potential for application in the imaging of Fe3+ level in industrial wastewater. Full article
Show Figures

Figure 1

25 pages, 7921 KB  
Review
Nano-Enabled Antivirals for Overcoming Antibody Escaped Mutations Based SARS-CoV-2 Waves
by Aminur Rahman, Kumar Jyotirmoy Roy, Gautam Kumar Deb, Taehyeong Ha, Saifur Rahman, Mst. Khudishta Aktar, Md. Isahak Ali, Md. Abdul Kafi and Jeong-Woo Choi
Int. J. Mol. Sci. 2023, 24(17), 13130; https://doi.org/10.3390/ijms241713130 - 23 Aug 2023
Cited by 3 | Viewed by 3641
Abstract
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing [...] Read more.
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid–polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host–virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Figure 1

Back to TopTop