Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = proton MR spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 691 KB  
Review
Using 1H-Magnetic Resonance Spectroscopy to Evaluate the Efficacy of Pharmacological Treatments in Parkinson’s Disease: A Systematic Review
by Lilla Bonanno, Miriana Caporlingua, Jole Castellano, Angelo Quartarone and Rosella Ciurleo
Int. J. Mol. Sci. 2025, 26(19), 9351; https://doi.org/10.3390/ijms26199351 - 25 Sep 2025
Viewed by 288
Abstract
Parkinson’s Disease (PD) is the fastest-growing neurological disorder, characterized by the degeneration of dopaminergic neurons. Treatments remain symptomatic, and objective biomarkers for therapeutic response are lacking. This review aims to evaluate the potential of Proton Magnetic Resonance Spectroscopy (1H-MRS) to provide [...] Read more.
Parkinson’s Disease (PD) is the fastest-growing neurological disorder, characterized by the degeneration of dopaminergic neurons. Treatments remain symptomatic, and objective biomarkers for therapeutic response are lacking. This review aims to evaluate the potential of Proton Magnetic Resonance Spectroscopy (1H-MRS) to provide objective and reproducible biomarkers for monitoring treatment response in PD. This systematic review followed PRISMA guidelines. Articles were searched in PubMed, Web of Science, Scopus, and Embase, and studies employing 1H-MRS to evaluate pharmacological treatments in PD were included, analyzing pre- and post-treatment changes. Six studies were included, investigating cannabinoids, dopamine agonists, monoamine oxidase B inhibitors, and levodopa. Key metabolites analyzed were N-acetylaspartate, Creatine, Choline, myo-Inositol, and Glx (glutamate+glutamine). Increases in NAA, a marker of neuronal integrity and mitochondrial function, suggested neuroprotective mechanisms of dopaminergic drugs, while stable Cho and mI levels, markers of membrane metabolism and inflammatory processes, suggested limited short-term responsiveness. This is the first systematic review evaluating 1H-MRS for monitoring neurometabolic changes induced by pharmacological treatments in PD. Observed metabolite changes appear to reflect treatment mechanisms and potential neuroprotective properties. Findings suggest that 1H-MRS may serve as an objective biomarker for assessing therapeutic efficacy and potential neuroprotective drug effects, although further studies are needed to confirm its clinical utility. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

18 pages, 1612 KB  
Article
Decoding Thalamic Glial Interplay in Multiple Sclerosis Through Proton Magnetic Resonance Spectroscopy and Positron Emission Tomography
by Firat Kara, Nur Neyal, Michael G. Kamykowski, Christopher G. Schwarz, June Kendall-Thomas, Holly A. Morrison, Matthew L. Senjem, Scott A. Przybelski, Angela J. Fought, John D. Port, Dinesh K. Deelchand, Val J. Lowe, Gülin Öz, Kejal Kantarci, Orhun H. Kantarci and Burcu Zeydan
Int. J. Mol. Sci. 2025, 26(17), 8656; https://doi.org/10.3390/ijms26178656 - 5 Sep 2025
Viewed by 1001
Abstract
The study assesses the relationship between thalamic proton-MR spectroscopy (1H-MRS) metabolites and thalamic 11C-ER176 translocator-protein positron emission tomography (TSPO-PET) standardized uptake value ratios (SUVR) to advance our understanding of thalamic involvement in multiple sclerosis (MS)-associated neurodegeneration and disability. In this [...] Read more.
The study assesses the relationship between thalamic proton-MR spectroscopy (1H-MRS) metabolites and thalamic 11C-ER176 translocator-protein positron emission tomography (TSPO-PET) standardized uptake value ratios (SUVR) to advance our understanding of thalamic involvement in multiple sclerosis (MS)-associated neurodegeneration and disability. In this prospective cross-sectional study, patients with MS (pwMS) and controls underwent 3T-MRI, 1H-MRS, and 11C-ER176-PET targeting the thalamus. MRI-derived thalamic volume was normalized by intracranial volume. 1H-MRS metabolites—N-acetylaspartate (NAA), glutamate (Glu), glutamine (Gln), total choline (tCho), and myo-inositol (mIns)—were normalized to total creatine (tCr). Clinical disability was evaluated using MS-specific tests of Expanded Disability Status Scale-EDSS and MS-functional composite-MSFC (including Paced Auditory Serial Addition Test-PASAT). Compared to controls (n = 30), pwMS (n = 21) exhibited smaller thalamic volume, higher thalamic 1H-MRS mIns/tCr (putative gliosis marker), and higher thalamic 11C-ER176-PET SUVR (glial density marker). In pwMS, higher thalamic mIns/tCr (r = −0.67) and tCho/tCr (r = −0.52) correlated with smaller thalamic volume. In pwMS, higher thalamic mIns/tCr correlated with higher thalamic 11C-ER176-PET SUVR (r = 0.48) and decreased cognitive function (PASAT, rho = −0.48). In controls, decreased thalamic NAA/tCr correlated with increased thalamic 11C-ER176-PET SUVR (r = −0.41). Thalamus, a core central nervous system relay, is affected early in MS disease course. Glial-mediated innate immune activation in the thalamus, evaluated by increased 1H-MRS mIns/tCr and 11C-ER176-PET SUVR, is associated with loss of thalamic volume and increased disability in pwMS. The multimodal imaging approach with 1H-MRS mIns/tCr and 11C-ER176-PET SUVR emerges as potential glial biomarkers, to better understand disease mechanisms and evaluate therapeutic interventions targeting glial activity in MS. Full article
(This article belongs to the Special Issue Glial Cells in Neurodegenerative Disorders)
Show Figures

Graphical abstract

27 pages, 1897 KB  
Article
A Proton Magnetic Resonance Spectroscopy (1H MRS) Pilot Study Revealing Altered Glutamatergic and Gamma-Aminobutyric Acid (GABA)ergic Neurotransmission in Social Anxiety Disorder (SAD)
by Sonja Elsaid, Ruoyu Wang, Stefan Kloiber, Kimberly L. Desmond and Bernard Le Foll
Int. J. Mol. Sci. 2025, 26(14), 6915; https://doi.org/10.3390/ijms26146915 - 18 Jul 2025
Viewed by 2200
Abstract
Social anxiety disorder (SAD) is characterized by fear and avoidance of social situations. Considering the reduced availability of conventional therapies, we aimed to improve our understanding of the biological mechanisms in SAD by evaluating gamma-aminobutyric acid (GABA) and other neurometabolites (including glutamate + [...] Read more.
Social anxiety disorder (SAD) is characterized by fear and avoidance of social situations. Considering the reduced availability of conventional therapies, we aimed to improve our understanding of the biological mechanisms in SAD by evaluating gamma-aminobutyric acid (GABA) and other neurometabolites (including glutamate + glutamine/glutamix (Glx), N-acetyl aspartate (NAA), myo-inositol (mI), total choline (tCho), and total creatine (tCr) in the dorsomedial prefrontal cortex/anterior cingulate cortex (dmPFC/ACC), dorsolateral prefrontal cortex (dlPFC), and the insula). In this pilot study, we recruited 26 (age: 25.3 ± 5.0 years; 61.5% female) individuals with SAD and 26 (age: 25.1 ± 4.4 years; 61.5% female) sex-age-matched controls. Using proton magnetic resonance spectroscopy, we found that compared to the controls, GABA+ macromolecular signal (GABA+) in dlPFC (t = 2.63; p = 0.012) and Glx in the insula (Mann–Whitney U = 178.3; p = 0.024) were higher in the participants with SAD. However, no between-group differences were observed in dmPFC/ACC (t = 0.39; p = 0.699). Increased GABA+ in dlPFC could be explained by aberrant GABA transporters. In the insula, increased Glx may be associated with the dysfunction of glutamate transporters or decreased activity of glutamic acid decarboxylase in the GABAergic inhibitory neurons. However, these proposed mechanisms need to be further investigated in SAD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

15 pages, 2346 KB  
Article
Neurometabolite Changes After Transcranial Photobiomodulation in Major Depressive Disorder: A Randomized Controlled Trial Investigating Dose-Dependent Effects
by David R. A. Coelho, Ümit Tural, Aura Maria Hurtado Puerto, Katherine Anne Collins, Maia Beth Gersten, Zamfira Parincu, Kari Siu, Dan Vlad Iosifescu, Eva-Maria Ratai, Paolo Cassano and Akila Weerasekera
J. Clin. Med. 2025, 14(10), 3402; https://doi.org/10.3390/jcm14103402 - 13 May 2025
Viewed by 1583
Abstract
Background: Transcranial photobiomodulation (t-PBM) is a promising non-invasive therapy for Major Depressive Disorder (MDD). MDD is associated with altered brain metabolism, including changes in N-acetylaspartate (NAA), choline (Cho), and creatine (Cr). This study assessed the effects of varying t-PBM doses on neurometabolite levels [...] Read more.
Background: Transcranial photobiomodulation (t-PBM) is a promising non-invasive therapy for Major Depressive Disorder (MDD). MDD is associated with altered brain metabolism, including changes in N-acetylaspartate (NAA), choline (Cho), and creatine (Cr). This study assessed the effects of varying t-PBM doses on neurometabolite levels in the dorsolateral prefrontal cortex (dlPFC) and their correlations with clinical outcomes. Methods: In this randomized, sham-controlled, cross-over study, 33 adults with MDD received one session of t-PBM at low, medium, and high doses and a sham treatment. Proton magnetic resonance spectroscopy (1H-MRS) measured NAA, Cho, and Cr pre- and post-treatment. Clinical outcomes were assessed using the Montgomery–Åsberg Depression Rating Scale (MADRS) and the Symptoms of Depression Questionnaire (SDQ). Statistical analyses included paired t-tests or Wilcoxon signed-rank tests for neurometabolite changes, and linear mixed-effects regression models for t-PBM dose, neurometabolites, and time effects. Results: NAA levels increased significantly (7.52 ± 0.777 to 8.12 ± 1.05 mmol/L for one session; 7.36 ± 0.85 to 7.85 ± 0.68 mmol/L across all sessions); however, these changes were not associated with specific t-PBM doses or sham. No significant changes were observed for Cho and Cr levels. Positive correlations were found between Cho levels and MADRS scores (r = 0.59, p = 0.017), and negative correlations between Cr levels and SDQ scores at the medium dose (r = −0.91, p = 0.011). Conclusions: While NAA levels increased, and correlations between neurometabolites and clinical outcomes were observed, these findings do not suggest a specific effect of t-PBM. Larger randomized controlled trials with optimized dosing protocols, extended follow-up, and advanced spectroscopy are needed to clarify the neurometabolic therapeutic potential of t-PBM in MDD. Full article
Show Figures

Figure 1

22 pages, 1820 KB  
Review
Detecting Tumor-Associated Intracranial Hemorrhage Using Proton Magnetic Resonance Spectroscopy
by Hye Bin Yoo, Hyeong Hun Lee, Vincent Diong Weng Nga, Yoon Seong Choi and Jeong Hoon Lim
Neurol. Int. 2024, 16(6), 1856-1877; https://doi.org/10.3390/neurolint16060133 - 17 Dec 2024
Cited by 1 | Viewed by 2604
Abstract
Intracranial hemorrhage associated with primary or metastatic brain tumors is a critical condition that requires urgent intervention, often through open surgery. Nevertheless, surgical interventions may not always be feasible due to two main reasons: (1) extensive hemorrhage can obscure the underlying tumor mass, [...] Read more.
Intracranial hemorrhage associated with primary or metastatic brain tumors is a critical condition that requires urgent intervention, often through open surgery. Nevertheless, surgical interventions may not always be feasible due to two main reasons: (1) extensive hemorrhage can obscure the underlying tumor mass, limiting radiological assessment; and (2) intracranial hemorrhage may occasionally present as the first symptom of a brain tumor without prior knowledge of its existence. The current review of case studies suggests that advanced radiological imaging techniques can improve diagnostic power for tumoral hemorrhage. Adding proton magnetic resonance spectroscopy (1H-MRS), which profiles biochemical composition of mass lesions could be valuable: it provides unique information about tumor states distinct from hemorrhagic lesions bypassing the structural obliteration caused by the hemorrhage. Recent advances in 1H-MRS techniques may enhance the modality’s reliability in clinical practice. This perspective proposes that 1H-MRS can be utilized in clinical settings to enhance diagnostic power in identifying tumors underlying intracranial hemorrhage. Full article
Show Figures

Figure 1

12 pages, 4972 KB  
Article
Effects of Acute Stress on Metabolic Interactions Related to the Tricarboxylic Acid (TCA) Cycle in the Left Hippocampus of Mice
by Chang-Soo Yun, Yoon Ho Hwang, Jehyeong Yeon, Hyeon-Man Baek, Dong Youn Kim and Bong Soo Han
Metabolites 2024, 14(12), 699; https://doi.org/10.3390/metabo14120699 - 11 Dec 2024
Cited by 1 | Viewed by 1153
Abstract
Background/objectives: The acute stress response affects brain metabolites closely linked to the tricarboxylic acid (TCA) cycle. This response involves time-dependent changes in hormones and neurotransmitters, which contribute to resilience and the ability to adapt to acute stress while maintaining homeostasis. This physiological mechanism [...] Read more.
Background/objectives: The acute stress response affects brain metabolites closely linked to the tricarboxylic acid (TCA) cycle. This response involves time-dependent changes in hormones and neurotransmitters, which contribute to resilience and the ability to adapt to acute stress while maintaining homeostasis. This physiological mechanism of metabolic dynamics, combined with time-series analysis, has prompted the development of new methods to observe the relationship between TCA cycle-related brain metabolites. This study aimed to observe the acute stress response through metabolic interactions using time-series proton magnetic resonance spectroscopy (1H-MRS) in the left hippocampus of mice. Methods: In this study, 4-week-old male C57BL/6N mice (n = 24) were divided into control (n = 12) and acute stress groups (n = 12). Acute stress was induced through a 2 h restraint protocol. Time-series 1H-MRS data were obtained on the left hippocampus of both groups using a 9.4 T 1H-MRS scanner. Time-series MRS data were quantified using LCModel, and significant metabolic interactions were identified through Spearman correlation analysis, a one-tailed sign test, and false discovery rate correction. Results: No significant metabolic correlation coefficient was observed in the control group. However, in the acute stress group, glutathione (GSH) and N-acetyl aspartate (NAA) showed a significant positive correlation over time, with a high correlation coefficient exceeding 0.5. Conclusions: Temporal measurement of GSH and NAA, combined with correlation analysis, offers a comprehensive understanding for the metabolic dynamics during acute stress. This approach emphasizes their distinct roles and interdependence in the progression of oxidative stress, mitochondrial function, and the maintenance of physiological homeostasis. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

17 pages, 4587 KB  
Article
Improving Brain Metabolite Detection with a Combined Low-Rank Approximation and Denoising Diffusion Probabilistic Model Approach
by Yeong-Jae Jeon, Kyung Min Nam, Shin-Eui Park and Hyeon-Man Baek
Bioengineering 2024, 11(11), 1170; https://doi.org/10.3390/bioengineering11111170 - 20 Nov 2024
Viewed by 1234
Abstract
In vivo proton magnetic resonance spectroscopy (MRS) is a noninvasive technique for monitoring brain metabolites. However, it is challenged by a low signal-to-noise ratio (SNR), often necessitating extended scan times to compensate. One of the conventional techniques for noise reduction is signal averaging, [...] Read more.
In vivo proton magnetic resonance spectroscopy (MRS) is a noninvasive technique for monitoring brain metabolites. However, it is challenged by a low signal-to-noise ratio (SNR), often necessitating extended scan times to compensate. One of the conventional techniques for noise reduction is signal averaging, which is inherently time-consuming and can lead to participant discomfort, thus posing limitations in clinical settings. This study aimed to develop a hybrid denoising strategy that integrates low-rank approximation and denoising diffusion probabilistic model (DDPM) to enhance MRS data quality and shorten scan times. Using publicly available 1H MRS datasets from 15 subjects, we applied the Casorati SVD and DDPM to obtain baseline and functional data during a pain stimulation task. This method significantly improved SNR, resulting in outcomes comparable to or better than averaging over 32 signals. It also provided the most consistent metabolite measurements and adequately tracked temporal changes in glutamate levels, correlating with pain intensity ratings after heating. These findings demonstrate that our approach enhances MRS data quality, offering a more efficient alternative to conventional methods and expanding the potential for the real-time monitoring of neurochemical changes. This contribution has the potential to advance MRS techniques by integrating advanced denoising methods to increase the acquisition speed and enhance the precision of brain metabolite analyses. Full article
(This article belongs to the Special Issue Monitoring and Analysis of Human Biosignals, 3rd Edition)
Show Figures

Figure 1

16 pages, 5276 KB  
Article
Multimodal MRI and 1H-MRS for Preoperative Stratification of High-Risk Molecular Subtype in Adult-Type Diffuse Gliomas
by Xin Han, Kai Xiao, Jie Bai, Fengqi Li, Bixiao Cui, Ye Cheng, Huawei Liu and Jie Lu
Diagnostics 2024, 14(22), 2569; https://doi.org/10.3390/diagnostics14222569 - 15 Nov 2024
Viewed by 1512
Abstract
Isocitrate dehydrogenase (IDH) and O6-methylguanine-DNA methyltransferase (MGMT) genes are critical molecular markers in determining treatment options and predicting the prognosis of adult-type diffuse gliomas. Objectives: this study aimed to investigate whether multimodal MRI enables the differentiation of genotypes in adult-type [...] Read more.
Isocitrate dehydrogenase (IDH) and O6-methylguanine-DNA methyltransferase (MGMT) genes are critical molecular markers in determining treatment options and predicting the prognosis of adult-type diffuse gliomas. Objectives: this study aimed to investigate whether multimodal MRI enables the differentiation of genotypes in adult-type diffuse gliomas. Methods: a total of 116 adult-type diffuse glioma patients (61 males, 51.5 (37, 62) years old) who underwent multimodal MRI before surgery were retrospectively analysed. Multimodal MRI included conventional MRI, proton magnetic resonance spectroscopy (1H-MRS), and diffusion tensor imaging (DTI). Conventional visual features, N-acetyl-aspartate (NAA)/Creatine (Cr), Choline (Cho)/Cr, Cho/NAA, fractional anisotropy (FA), mean diffusivity (MD), and diffusion histogram parameters were extracted on the whole tumour. Multimodal MRI parameters of IDH-mutant and IDH-wildtype gliomas were compared using the Mann–Whitney U test, Student’s t-test, or Pearson chi-square tests. Logistic regression was used to select the MRI parameters to predict IDH-mutant gliomas. Furthermore, multimodal MRI parameters were selected to establish models for predicting MGMT methylation in the IDH-wildtype gliomas. The performance of models was evaluated by the receiver operating characteristics curve. Results: a total of 56 patients with IDH-mutant gliomas and 60 patients with IDH-wildtype glioblastomas (GBM) (37 with methylated MGMT and 17 with unmethylated MGMT) were diagnosed by 2021 WHO classification criteria. The enhancement degree (OR = 4.298, p < 0.001), necrosis/cyst (OR = 5.381, p = 0.011), NAA/Cr (OR = 0.497, p = 0.037), FA-Skewness (OR = 0.497, p = 0.033), MD-Skewness (OR = 1.849, p = 0.035), FAmean (OR = 1.924, p = 0.049) were independent factors for the multimodal combined prediction model in predicting IDH-mutant gliomas. The combined modal based on conventional MRI, 1H-MRS, DTI parameters, and histogram performed best in predicting IDH-wildtype status (AUC = 0.890). However, only NAA/Cr (OR = 0.17, p = 0.043) and FA (OR = 0.38, p = 0.015) were associated with MGMT methylated in IDH-wildtype GBM. The combination of NAA/Cr and FA-Median is more accurate for predicting MGMT methylation levels than using these elements alone (AUC, 0.847 vs. 0.695/0.684). Conclusions: multimodal MRI based on conventional MRI, 1H-MRS, and DTI can provide compound imaging markers for stratified individual diagnosis of IDH mutant and MGMT promoter methylation in adult-type diffuse gliomas. Full article
Show Figures

Figure 1

23 pages, 1420 KB  
Review
Understanding Proton Magnetic Resonance Spectroscopy Neurochemical Changes Using Alzheimer’s Disease Biofluid, PET, Postmortem Pathology Biomarkers, and APOE Genotype
by Firat Kara and Kejal Kantarci
Int. J. Mol. Sci. 2024, 25(18), 10064; https://doi.org/10.3390/ijms251810064 - 19 Sep 2024
Cited by 1 | Viewed by 2532
Abstract
In vivo proton (1H) magnetic resonance spectroscopy (MRS) is a powerful non-invasive method that can measure Alzheimer’s disease (AD)-related neuropathological alterations at the molecular level. AD biomarkers include amyloid-beta (Aβ) plaques and hyperphosphorylated tau neurofibrillary tangles. These biomarkers can be detected [...] Read more.
In vivo proton (1H) magnetic resonance spectroscopy (MRS) is a powerful non-invasive method that can measure Alzheimer’s disease (AD)-related neuropathological alterations at the molecular level. AD biomarkers include amyloid-beta (Aβ) plaques and hyperphosphorylated tau neurofibrillary tangles. These biomarkers can be detected via postmortem analysis but also in living individuals through positron emission tomography (PET) or biofluid biomarkers of Aβ and tau. This review offers an overview of biochemical abnormalities detected by 1H MRS within the biologically defined AD spectrum. It includes a summary of earlier studies that explored the association of 1H MRS metabolites with biofluid, PET, and postmortem AD biomarkers and examined how apolipoprotein e4 allele carrier status influences brain biochemistry. Studying these associations is crucial for understanding how AD pathology affects brain homeostasis throughout the AD continuum and may eventually facilitate the development of potential novel therapeutic approaches. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatments in Neurodegenerative Diseases)
Show Figures

Figure 1

22 pages, 3389 KB  
Article
A Magnetic Resonance Spectroscopy Study on Polarity Subphenotypes in Bipolar Disorder
by Georgios D. Argyropoulos, Foteini Christidi, Efstratios Karavasilis, Peter Bede, Georgios Velonakis, Anastasia Antoniou, Ioannis Seimenis, Nikolaos Kelekis, Nikolaos Smyrnis, Olympia Papakonstantinou, Efstathios Efstathopoulos and Panagiotis Ferentinos
Diagnostics 2024, 14(11), 1170; https://doi.org/10.3390/diagnostics14111170 - 31 May 2024
Viewed by 1732
Abstract
Although magnetic resonance spectroscopy (MRS) has provided in vivo measurements of brain chemical profiles in bipolar disorder (BD), there are no data on clinically and therapeutically important onset polarity (OP) and predominant polarity (PP). We conducted a proton MRS study in BD polarity [...] Read more.
Although magnetic resonance spectroscopy (MRS) has provided in vivo measurements of brain chemical profiles in bipolar disorder (BD), there are no data on clinically and therapeutically important onset polarity (OP) and predominant polarity (PP). We conducted a proton MRS study in BD polarity subphenotypes, focusing on emotion regulation brain regions. Forty-one euthymic BD patients stratified according to OP and PP and sixteen healthy controls (HC) were compared. 1H-MRS spectra of the anterior and posterior cingulate cortex (ACC, PCC), left and right hippocampus (LHIPPO, RHIPPO) were acquired at 3.0T to determine metabolite concentrations. We found significant main effects of OP in ACC mI, mI/tNAA, mI/tCr, mI/tCho, PCC tCho, and RHIPPO tNAA/tCho and tCho/tCr. Although PP had no significant main effects, several medium and large effect sizes emerged. Compared to HC, manic subphenotypes (i.e., manic-OP, manic-PP) showed greater differences in RHIPPO and PCC, whereas depressive suphenotypes (i.e., depressive-OP, depressive-PP) in ACC. Effect sizes were consistent between OP and PP as high intraclass correlation coefficients (ICC) were confirmed. Our findings support the utility of MRS in the study of the neurobiological underpinnings of OP and PP, highlighting that the regional specificity of metabolite changes within the emotion regulation network consistently marks both polarity subphenotypes. Full article
Show Figures

Figure 1

16 pages, 3813 KB  
Article
Verification of In Vitro Anticancer Activity and Bioactive Compounds in Cordyceps Militaris-Infused Sweet Potato Shochu Spirits
by Kozue Sakao, Cho Sho, Takeshi Miyata, Kensaku Takara, Rio Oda and De-Xing Hou
Molecules 2024, 29(9), 2119; https://doi.org/10.3390/molecules29092119 - 3 May 2024
Cited by 3 | Viewed by 2101
Abstract
Many liqueurs, including spirits infused with botanicals, are crafted not only for their taste and flavor but also for potential medicinal benefits. However, the scientific evidence supporting their medicinal effects remains limited. This study aims to verify in vitro anticancer activity and bioactive [...] Read more.
Many liqueurs, including spirits infused with botanicals, are crafted not only for their taste and flavor but also for potential medicinal benefits. However, the scientific evidence supporting their medicinal effects remains limited. This study aims to verify in vitro anticancer activity and bioactive compounds in shochu spirits infused with Cordyceps militaris, a Chinese medicine. The results revealed that a bioactive fraction was eluted from the spirit extract with 40% ethanol. The infusion time impacted the inhibitory effect of the spirit extract on the proliferation of colon cancer-derived cell line HCT-116 cells, and a 21-day infusion showed the strongest inhibitory effect. Furthermore, the spirit extract was separated into four fractions, A-D, by high-performance liquid chromatography (HPLC), and Fractions B, C, and D, but not A, exerted the effects of proliferation inhibition and apoptotic induction of HCT-116 cells and HL-60 cells. Furthermore, Fractions B, C, and D were, respectively, identified as adenosine, cordycepin, and N6-(2-hydroxyethyl)-adenosine (HEA) by comprehensive chemical analyses, including proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FT-IR), and electrospray ionization mass spectrometry (ESI-MS). To better understand the bioactivity mechanisms of cordycepin and HEA, the agonist and antagonist tests of the A3 adenosine receptor (A3AR) were performed. Cell viability was suppressed by cordycepin, and HEA was restored by the A3AR antagonist MR1523, suggesting that cordycepin and HEA possibly acted as agonists to activate A3ARs to inhibit cell proliferation. Molecular docking simulations revealed that both adenosine and cordycepin bound to the same pocket site of A3ARs, while HEA exhibited a different binding pattern, supporting a possible explanation for the difference in their bioactivity. Taken together, the present study demonstrated that cordycepin and HEA were major bioactive ingredients in Cordyceps militaries-infused sweet potato shochu spirits, which contributed to the in vitro anticancer activity. Full article
Show Figures

Graphical abstract

12 pages, 1790 KB  
Article
Pure-Shift-Based Proton Magnetic Resonance Spectroscopy for High-Resolution Studies of Biological Samples
by Haolin Zhan, Yulei Chen, Yinping Cui, Yunsong Zeng, Xiaozhen Feng, Chunhua Tan, Chengda Huang, Enping Lin, Yuqing Huang and Zhong Chen
Int. J. Mol. Sci. 2024, 25(9), 4698; https://doi.org/10.3390/ijms25094698 - 25 Apr 2024
Cited by 2 | Viewed by 1991
Abstract
Proton magnetic resonance spectroscopy (1H MRS) presents a powerful tool for revealing molecular-level metabolite information, complementary to the anatomical insight delivered by magnetic resonance imaging (MRI), thus playing a significant role in in vivo/in vitro biological studies. However, its further applications [...] Read more.
Proton magnetic resonance spectroscopy (1H MRS) presents a powerful tool for revealing molecular-level metabolite information, complementary to the anatomical insight delivered by magnetic resonance imaging (MRI), thus playing a significant role in in vivo/in vitro biological studies. However, its further applications are generally confined by spectral congestion caused by numerous biological metabolites contained within the limited proton frequency range. Herein, we propose a pure-shift-based 1H localized MRS method as a proof of concept for high-resolution studies of biological samples. Benefitting from the spectral simplification from multiplets to singlet peaks, this method addresses the challenge of spectral congestion encountered in conventional MRS experiments and facilitates metabolite analysis from crowded NMR resonances. The performance of the proposed pure-shift 1H MRS method is demonstrated on different kinds of samples, including brain metabolite phantom and in vitro biological samples of intact pig brain tissue and grape tissue, using a 7.0 T animal MRI scanner. This proposed MRS method is readily implemented in common commercial NMR/MRI instruments because of its generally adopted pulse-sequence modules. Therefore, this study takes a meaningful step for MRS studies toward potential applications in metabolite analysis and disease diagnosis. Full article
Show Figures

Figure 1

13 pages, 1734 KB  
Article
Hardware and Software Setup for Quantitative 23Na Magnetic Resonance Imaging at 3T: A Phantom Study
by Giulio Giovannetti, Alessandra Flori, Nicola Martini, Filippo Cademartiri, Giovanni Donato Aquaro, Alessandro Pingitore and Francesca Frijia
Sensors 2024, 24(9), 2716; https://doi.org/10.3390/s24092716 - 24 Apr 2024
Cited by 2 | Viewed by 1977
Abstract
Magnetic resonance (MR) with sodium (23Na) is a noninvasive tool providing quantitative biochemical information regarding physiology, cellular metabolism, and viability, with the potential to extend MR beyond anatomical proton imaging. However, when using clinical scanners, the low detectable 23Na signal [...] Read more.
Magnetic resonance (MR) with sodium (23Na) is a noninvasive tool providing quantitative biochemical information regarding physiology, cellular metabolism, and viability, with the potential to extend MR beyond anatomical proton imaging. However, when using clinical scanners, the low detectable 23Na signal and the low 23Na gyromagnetic ratio require the design of dedicated radiofrequency (RF) coils tuned to the 23Na Larmor frequency and sequences, as well as the development of dedicated phantoms for testing the image quality, and an MR scanner with multinuclear spectroscopy (MNS) capabilities. In this work, we propose a hardware and software setup for evaluating the potential of 23Na magnetic resonance imaging (MRI) with a clinical scanner. In particular, the reliability of the proposed setup and the reproducibility of the measurements were verified by multiple acquisitions from a 3T MR scanner using a homebuilt RF volume coil and a dedicated sequence for the imaging of a phantom specifically designed for evaluating the accuracy of the technique. The final goal of this study is to propose a setup for standardizing clinical and research 23Na MRI protocols. Full article
Show Figures

Figure 1

16 pages, 3302 KB  
Article
Metabolic Imaging Biomarkers of Response to Signaling Inhibition Therapy in Melanoma
by Pradeep Kumar Gupta, Stepan Orlovskiy, Fernando Arias-Mendoza, David S. Nelson, Aria Osborne, Stephen Pickup, Jerry D. Glickson and Kavindra Nath
Cancers 2024, 16(2), 365; https://doi.org/10.3390/cancers16020365 - 15 Jan 2024
Cited by 5 | Viewed by 2597
Abstract
Dabrafenib therapy for metastatic melanoma focuses on blocking growth-promoting signals produced by a hyperactive BRAF protein. We report the metabolic differences of four human melanoma cell lines with diverse responses to dabrafenib therapy (30 mg/kg; oral): WM3918 < WM9838BR < WM983B < DB-1. [...] Read more.
Dabrafenib therapy for metastatic melanoma focuses on blocking growth-promoting signals produced by a hyperactive BRAF protein. We report the metabolic differences of four human melanoma cell lines with diverse responses to dabrafenib therapy (30 mg/kg; oral): WM3918 < WM9838BR < WM983B < DB-1. Our goal was to determine if metabolic changes produced by the altered signaling pathway due to BRAF mutations differ in the melanoma models and whether these differences correlate with response to treatment. We assessed metabolic changes in isolated cells using high-resolution proton magnetic resonance spectroscopy (1H MRS) and supplementary biochemical assays. We also noninvasively studied mouse xenografts using proton and phosphorus (1H/31P) MRS. We found consistent changes in lactate and alanine, either in isolated cells or mouse xenografts, correlating with their relative dabrafenib responsiveness. In xenografts, we also observed that a more significant response to dabrafenib correlated with higher bioenergetics (i.e., increased βNTP/Pi). Notably, our noninvasive assessment of the metabolic status of the human melanoma xenografts by 1H/31P MRS demonstrated early metabolite changes preceding therapy response (i.e., tumor shrinkage). Therefore, this noninvasive methodology could be translated to assess in vivo predictive metabolic biomarkers of response in melanoma patients under dabrafenib and probably other signaling inhibition therapies. Full article
(This article belongs to the Special Issue Lipids and Small Metabolites in Cancer)
Show Figures

Figure 1

19 pages, 4622 KB  
Article
Cortical GABA Levels Are Reduced in Post-Acute COVID-19 Syndrome
by Ksenija Marinkovic, David R. White, Austin Alderson Myers, Katie S. Parker, Donatello Arienzo and Graeme F. Mason
Brain Sci. 2023, 13(12), 1666; https://doi.org/10.3390/brainsci13121666 - 1 Dec 2023
Cited by 8 | Viewed by 4615
Abstract
After recovering from the acute COVID-19 illness, a substantial proportion of people continue experiencing post-acute sequelae of COVID-19 (PASC), also termed “long COVID”. Their quality of life is adversely impacted by persistent cognitive dysfunction and affective distress, but the underlying neural mechanisms are [...] Read more.
After recovering from the acute COVID-19 illness, a substantial proportion of people continue experiencing post-acute sequelae of COVID-19 (PASC), also termed “long COVID”. Their quality of life is adversely impacted by persistent cognitive dysfunction and affective distress, but the underlying neural mechanisms are poorly understood. The present study recruited a group of mostly young, previously healthy adults (24.4 ± 5.2 years of age) who experienced PASC for almost 6 months following a mild acute COVID-19 illness. Confirming prior evidence, they reported noticeable memory and attention deficits, brain fog, depression/anxiety, fatigue, and other symptoms potentially suggestive of excitation/inhibition imbalance. Proton magnetic resonance spectroscopy (1H-MRS) was used to examine the neurochemical aspects of cell signaling with an emphasis on GABA levels in the occipital cortex. The PASC participants were compared to a control (CNT) group matched in demographics, intelligence, and an array of other variables. Controlling for tissue composition, biological sex, and alcohol intake, the PASC group had lower GABA+/water than CNT, which correlated with depression and poor sleep quality. The mediation analysis revealed that the impact of PASC on depression was partly mediated by lower GABA+/water, indicative of cortical hyperexcitability as an underlying mechanism. In addition, N-acetylaspartate (NAA) tended to be lower in the PASC group, possibly suggesting compromised neuronal integrity. Persistent neuroinflammation may contribute to the pathogenesis of PASC-related neurocognitive dysfunction. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Figure 1

Back to TopTop