Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = retinal vascular damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1905 KiB  
Review
Therapeutic Potential of Hexahydrocurcumin in the Regeneration and Protection of the Retinal Pigment Epithelium
by Ilona Nowak, Robert Kubina and Barbara Strzałka-Mrozik
Pharmaceuticals 2025, 18(4), 554; https://doi.org/10.3390/ph18040554 - 9 Apr 2025
Viewed by 531
Abstract
Hexahydrocurcumin (HHC), the primary metabolite of curcumin, shows promising therapeutic potential due to its antioxidant and anti-inflammatory properties. The retinal pigment epithelium (RPE) plays a crucial role in maintaining retinal homeostasis; however, its dysfunction—linked to oxidative stress and chronic inflammation—contributes to the progression [...] Read more.
Hexahydrocurcumin (HHC), the primary metabolite of curcumin, shows promising therapeutic potential due to its antioxidant and anti-inflammatory properties. The retinal pigment epithelium (RPE) plays a crucial role in maintaining retinal homeostasis; however, its dysfunction—linked to oxidative stress and chronic inflammation—contributes to the progression of degenerative diseases such as age-related macular degeneration (AMD). This review highlights the therapeutic potential of HHC in protecting and regenerating RPE cells. It explores the effects of oxidative stress on the RPE, the mechanisms underlying its damage, and the involvement of reactive oxygen species (ROS) and inflammatory mediators. HHC has demonstrated the ability to modulate these pathways by activating nuclear factor erythroid 2-related factor 2 (NRF2), enhancing antioxidant defenses, and inhibiting pro-inflammatory cytokine production. Preclinical studies suggest that HHC mitigates vascular remodeling and endothelial dysfunction by reducing the expression of transforming growth factor β (TGF-β1) and matrix metalloproteinase-9 (MMP-9). Moreover, HHC improves nitric oxide bioavailability and promotes nitric oxide synthase expression, thereby counteracting oxidative stress-induced vascular damage. Emerging evidence indicates that HHC may be a promising candidate for the treatment of retinal degenerative diseases, particularly those associated with oxidative stress and inflammation. However, further studies, including clinical trials, are essential to confirm its efficacy and elucidate the precise mechanisms underlying HHC’s protective effects on RPE cells. Full article
Show Figures

Figure 1

24 pages, 6008 KiB  
Article
Phlorizin Protects Against Oxidative Stress and Inflammation in Age-Related Macular Degeneration Model
by Zhen-Yu Liao, Chih-Yu Hung, Yu-Jou Hsu, I-Chia Liang, Yi-Chun Chen, Chao-Hsien Sung and Chi-Feng Hung
Biomolecules 2025, 15(4), 523; https://doi.org/10.3390/biom15040523 - 3 Apr 2025
Viewed by 599
Abstract
Background:Sweet Tea (Lithocarpus polystachyus Rehd.), a traditional ethnobotanical medicine, contains phlorizin, a dihydrochalcone compound with antioxidative and anti-inflammatory properties. Given the critical role of oxidative stress and inflammation in age-related macular degeneration (AMD), this study tested the hypothesis that phlorizin mitigates oxidative [...] Read more.
Background:Sweet Tea (Lithocarpus polystachyus Rehd.), a traditional ethnobotanical medicine, contains phlorizin, a dihydrochalcone compound with antioxidative and anti-inflammatory properties. Given the critical role of oxidative stress and inflammation in age-related macular degeneration (AMD), this study tested the hypothesis that phlorizin mitigates oxidative damage and inflammation in AMD models, thereby offering therapeutic potential. Materials and Methods: Adult retinal pigmented epithelial cells (ARPE-19) were pre-treated with phlorizin (0.01–0.1 μM) and subjected to oxidative stress induced by ultraviolet A (UVA) radiation or sodium iodate (NaIO3). Cell viability, reactive oxygen species (ROS) production, MAPK/NF-κB signaling, and the level of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and pro-angiogenic factors (VEGF, MMP2, MMP9) expression were assessed using MTT assays, fluorescence imaging, Western blotting, and RT-qPCR. In vivo, a laser-induced choroidal neovascularization (CNV) mouse model was used to evaluate phlorizin’s effects on CNV formation and vascular leakage via fundus photography and fluorescence angiography. Result: Phlorizin significantly enhanced cell viability, reduced ROS production, inhibited MAPK/NF-κB activation, and downregulated inflammatory and angiogenic mediators. In vivo studies confirmed the reduced CNV formation and vascular leakage following the phlorizin treatment. Conclusions: Phlorizin demonstrated significant protective effects against oxidative stress and inflammation, highlighting its therapeutic potential for treating AMD. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

17 pages, 8265 KiB  
Article
Automated Foveal Avascular Zone Segmentation in Optical Coherence Tomography Angiography Across Multiple Eye Diseases Using Knowledge Distillation
by Peter Racioppo, Aya Alhasany, Nhuan Vu Pham, Ziyuan Wang, Giulia Corradetti, Gary Mikaelian, Yannis M. Paulus, SriniVas R. Sadda and Zhihong Hu
Bioengineering 2025, 12(4), 334; https://doi.org/10.3390/bioengineering12040334 - 23 Mar 2025
Viewed by 646
Abstract
Optical coherence tomography angiography (OCTA) is a noninvasive imaging technique used to visualize retinal blood flow and identify changes in vascular density and enlargement or distortion of the foveal avascular zone (FAZ), which are indicators of various eye diseases. Although several automated FAZ [...] Read more.
Optical coherence tomography angiography (OCTA) is a noninvasive imaging technique used to visualize retinal blood flow and identify changes in vascular density and enlargement or distortion of the foveal avascular zone (FAZ), which are indicators of various eye diseases. Although several automated FAZ detection and segmentation algorithms have been developed for use with OCTA, their performance can vary significantly due to differences in data accessibility of OCTA in different retinal pathologies, and differences in image quality in different subjects and/or different OCTA devices. For example, data from subjects with direct macular damage, such as in age-related macular degeneration (AMD), are more readily available in eye clinics, while data on macular damage due to systemic diseases like Alzheimer’s disease are often less accessible; data from healthy subjects may have better OCTA quality than subjects with ophthalmic pathologies. Typically, segmentation algorithms make use of convolutional neural networks and, more recently, vision transformers, which make use of both long-range context and fine-grained detail. However, transformers are known to be data-hungry, and may overfit small datasets, such as those common for FAZ segmentation in OCTA, to which there is limited access in clinical practice. To improve model generalization in low-data or imbalanced settings, we propose a multi-condition transformer-based architecture that uses four teacher encoders to distill knowledge into a shared base model, enabling the transfer of learned features across multiple datasets. These include intra-modality distillation using OCTA datasets from four ocular conditions: healthy aging eyes, Alzheimer’s disease, AMD, and diabetic retinopathy; and inter-modality distillation incorporating color fundus photographs of subjects undergoing laser photocoagulation therapy. Our multi-condition model achieved a mean Dice Index of 83.8% with pretraining, outperforming single-condition models (mean of 83.1%) across all conditions. Pretraining on color fundus photocoagulation images improved the average Dice Index by a small margin on all conditions except AMD (1.1% on single-condition models, and 0.1% on multi-condition models). Our architecture demonstrates potential for broader applications in detecting and analyzing ophthalmic and systemic diseases across diverse imaging datasets and settings. Full article
(This article belongs to the Special Issue AI in OCT (Optical Coherence Tomography) Image Analysis)
Show Figures

Figure 1

15 pages, 1500 KiB  
Review
The Role of Th17/Treg Axis in Retinal Pathology Associated with Diabetes and Treatment Options
by Michel-Edwar Mickael, Norwin Kubick, Kreshnik Miftari, Jarosław Olav Horbańczuk, Atanas G. Atanasov, Korona Binçe, Piotr Religa, Agnieszka Kamińska, Mariusz Sacharczuk and Michał Ławiński
Biology 2025, 14(3), 275; https://doi.org/10.3390/biology14030275 - 7 Mar 2025
Viewed by 979
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes, leading to vision impairment and blindness. The pathogenesis of DR involves multiple factors, including hyperglycemia-induced vascular damage, hypertension, obesity, anemia, immune dysregulation, and disruption of the blood–retinal barrier (BRB). Th17 and Treg cells, two [...] Read more.
Diabetic retinopathy (DR) is a major complication of diabetes, leading to vision impairment and blindness. The pathogenesis of DR involves multiple factors, including hyperglycemia-induced vascular damage, hypertension, obesity, anemia, immune dysregulation, and disruption of the blood–retinal barrier (BRB). Th17 and Treg cells, two types of CD4+ T cells, play opposing roles in inflammation. Th17 cells are pro-inflammatory, producing cytokines such as IL-17A, while Treg cells help suppress immune responses and promote anti-inflammatory effects. Recent studies highlight the importance of the Th17/Treg balance in retinal inflammation and disease progression in DR. Our literature review reveals an imbalance in DR, with increased Th17 activity and reduced Treg function. This shift creates a pro-inflammatory environment in the retina, worsening vascular leakage, neovascularization, and vision loss. The limited infiltration of Treg cells suggests that Th17 cells may uniquely infiltrate the retina by overwhelming or outnumbering Tregs or increasing the expression of recruiting chemokines, rather than only taking advantage of a damaged BRB. Therapeutic strategies, such as neutralizing IL-17A and enhancing Treg function with compounds like IL-35 or curcumin, may reduce inflammation and retinal damage. Restoring the balance between Th17 and Treg cells could provide new approaches for treating DR by controlling inflammation and preventing further retinal damage. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Figure 1

21 pages, 4283 KiB  
Article
Potential of Pterostilbene as an Antioxidant Therapy for Delaying Retinal Damage in Diabetic Retinopathy
by Raquel Burggraaf-Sánchez de las Matas, Isabel Torres-Cuevas, Iván Millán, María del Carmen Desco, Candela Oblaré-Delgado, Miguel Asensi, Salvador Mena-Mollá, Camille Oger, Jean-Marie Galano, Thierry Durand and Ángel Luis Ortega
Antioxidants 2025, 14(3), 244; https://doi.org/10.3390/antiox14030244 - 20 Feb 2025
Viewed by 875
Abstract
Chronic hyperglycemia is a major driver of neurovascular damage in diabetic retinopathy (DR), a leading cause of preventable blindness in adults. DR progression is often undetected until its advanced stages, with oxidative stress recognized as a primary contributor. In diabetes, oxidative stress disrupts [...] Read more.
Chronic hyperglycemia is a major driver of neurovascular damage in diabetic retinopathy (DR), a leading cause of preventable blindness in adults. DR progression is often undetected until its advanced stages, with oxidative stress recognized as a primary contributor. In diabetes, oxidative stress disrupts retinal cellular balance, damaging proteins, DNA, and lipids, and triggering photoreceptor degeneration. Pterostilbene (Pter), a polyphenol with antioxidant properties, has demonstrated protective effects in DR animal models and was assessed in a pilot clinical study. DR patients treated with 250 mg/day of oral Pter showed a reduction in the development of retinal vascular alterations characteristic of the disease. Urinary analyses confirmed Pter’s role in reducing the lipid peroxidation of polyunsaturated fatty acids (PUFAs), including arachidonic and adrenic acids, indicators of oxidative damage in DR. Pter also improved the GSH/GSSG ratio, reflecting a restored redox balance. However, after six months without treatment, retinal damage indicators reappeared, highlighting the importance of sustained intervention. These findings suggest that Pter may help slow the progression of DR by protecting against oxidative stress and highlight the importance of implementing antioxidant therapies from the diagnosis of diabetes, although its long-term impact and the development of consistent biomarkers deserve more research to optimize DR management. Full article
Show Figures

Figure 1

14 pages, 17359 KiB  
Article
Naringin Suppresses CoCl2-Induced Ferroptosis in ARPE-19 Cells
by Yuchang Yang, Manting Liu, Xiaoxv Dong, Jie Bai, Wenjuan Shi, Qian Zhu, Juan Liu, Ziheng Wang, Lisa Yi, Xingbin Yin, Jian Ni and Changhai Qu
Antioxidants 2025, 14(2), 236; https://doi.org/10.3390/antiox14020236 - 18 Feb 2025
Cited by 1 | Viewed by 739
Abstract
Hypoxic damage to retinal pigment epithelial (RPE) cells and subsequent neovascularization are key factors in the pathogenesis of branch retinal vein occlusion (BRVO). Naringin (NG), a naturally occurring flavanone glycoside, has demonstrated significant antioxidant and anti-neovascular activities. However, the regulatory effects and mechanisms [...] Read more.
Hypoxic damage to retinal pigment epithelial (RPE) cells and subsequent neovascularization are key factors in the pathogenesis of branch retinal vein occlusion (BRVO). Naringin (NG), a naturally occurring flavanone glycoside, has demonstrated significant antioxidant and anti-neovascular activities. However, the regulatory effects and mechanisms of NG on ferroptosis in BRVO are yet to be explored. Our study aimed to investigate the protective effects of NG on RPE cells under hypoxic stress and to elucidate the underlying molecular mechanisms. Our findings revealed that NG significantly reduced cytotoxicity induced by cobaltous chloride (CoCl2) and also inhibited vascular proliferation in the retina, thereby attenuating choroidal neovascularization. NG pretreatment largely countered the overproduction of reactive oxygen species (ROS) and malondialdehyde (MDA) triggered by hypoxic damage, while also restoring levels of the antioxidants glutathione (GSH) and superoxide dismutase (SOD). Furthermore, NG pretreatment significantly activated the expression of hypoxia-inducible factor-1 alpha (HIF-1α) and its downstream heme oxygenase-1 (HO-1) and NADPH dehydrogenase (NQO1). In conclusion, NG not only inhibits neovascularization but also alleviates inflammation in RPE cells by modulating the HO-1/GPX4 pathway to inhibit ferroptosis. These findings highlight the potential of NG as a promising therapeutic agent for the treatment of BRVO. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

21 pages, 1619 KiB  
Review
Enhancing Retinal Resilience: The Neuroprotective Promise of BDNF in Diabetic Retinopathy
by Daniela Maria Tanase, Emilia Valasciuc, Evelina Maria Gosav, Mariana Floria, Oana Nicoleta Buliga-Finis, Anca Ouatu, Andrei Ionut Cucu, Tina Botoc and Claudia Florida Costea
Life 2025, 15(2), 263; https://doi.org/10.3390/life15020263 - 9 Feb 2025
Cited by 1 | Viewed by 1300
Abstract
Diabetic retinopathy (DR), a leading cause of vision impairment worldwide, is characterized by progressive damage to the retina due to prolonged hyperglycemia. Despite advances in treatment, current interventions largely target late-stage vascular complications, leaving underlying neurodegenerative processes insufficiently addressed. This article explores the [...] Read more.
Diabetic retinopathy (DR), a leading cause of vision impairment worldwide, is characterized by progressive damage to the retina due to prolonged hyperglycemia. Despite advances in treatment, current interventions largely target late-stage vascular complications, leaving underlying neurodegenerative processes insufficiently addressed. This article explores the crucial role in neuronal survival, axonal growth, and synaptic plasticity and the neuroprotective potential of Brain-Derived Neurotrophic Factor (BDNF) as a therapeutic strategy for enhancing retinal resilience in DR. Furthermore, it discusses innovative delivery methods for BDNF, such as gene therapy and nanocarriers, which may overcome the challenges of achieving sustained and targeted therapeutic levels in the retina, focusing on early intervention to preserve retinal function and prevent vision loss. Full article
(This article belongs to the Special Issue Feature Paper in Physiology and Pathology: 2nd Edition)
Show Figures

Figure 1

21 pages, 7648 KiB  
Article
CX3CR1–Fractalkine Dysregulation Affects Retinal GFAP Expression, Inflammatory Gene Induction, and LPS Response in a Mouse Model of Hypoxic Retinopathy
by Colin Rorex, Sandra M. Cardona, Kaira A. Church, Derek Rodriguez, Difernando Vanegas, Reina A. Saldivar, Amira El-Sheikh, Yufeng Wang, Stefka Gyoneva, Anne C. Cotleur and Astrid E. Cardona
Int. J. Mol. Sci. 2025, 26(3), 1131; https://doi.org/10.3390/ijms26031131 - 28 Jan 2025
Cited by 1 | Viewed by 1160
Abstract
Diabetic retinopathy (DR) causes vision loss due to sustained inflammation and vascular damage. The vascular damage is evident by fibrinogen leakage, angiogenesis, and hypoxia. Neuronal regulation of microglia via the CX3CL1 (Fractalkine or FKN)-CX3CR1 pathway plays a significant role in retinal pathology. Defects [...] Read more.
Diabetic retinopathy (DR) causes vision loss due to sustained inflammation and vascular damage. The vascular damage is evident by fibrinogen leakage, angiogenesis, and hypoxia. Neuronal regulation of microglia via the CX3CL1 (Fractalkine or FKN)-CX3CR1 pathway plays a significant role in retinal pathology. Defects in FKN or CX3CR1 exacerbate inflammation, vascular damage, and vision impairment. However, the contribution of hypoxic astrocytes to the pathological process of DR is unclear. A hypoxic model (7 days of systemic 7.5% O2) was utilized to induce retinal damage in adult mice in the absence of systemic inflammatory signals. This model induced vascular and microglial responses similar to 10 weeks of STZ-induced hyperglycemia. The goal of this study is to characterize retinal damage in WT and mice with defects in the FKN-CX3CR1 signaling axis and hence assess the impact of the microglial inflammatory responses to hypoxic retinopathy. Tissues were analyzed by immunostaining, RNA sequencing, and cytokine quantification. We found that CX3CR1 deficiency in hypoxic animals induced reactive astrogliosis and that Müller glial responses to hypoxia and systemic inflammation were dependent on FKN signaling. Exacerbated microglial reactivity to hypoxic conditions significantly altered the expression of HIF transcripts. Microglial dysregulation was found to reduce the anti-inflammatory response to hypoxic conditions, downregulate hypoxia-responsive gene expression, and restrained LPS-induced inflammatory responses. We found that microglia dysregulation alters the hypoxic response by inhibiting the upregulation of HIF2α/3α, increasing CD31 immunoreactivity, and altering the expression of ECM-associated transcripts such as type I, III, and XVIII collagens to hypoxic conditions. Full article
(This article belongs to the Special Issue Advanced Research in Retina: 3rd Edition)
Show Figures

Figure 1

15 pages, 930 KiB  
Review
Molecular Findings Before Vision Loss in the Streptozotocin-Induced Rat Model of Diabetic Retinopathy
by Mădălina Moldovan, Roxana-Denisa Capraș, Raluca Paşcalău and Gabriela Adriana Filip
Curr. Issues Mol. Biol. 2025, 47(1), 28; https://doi.org/10.3390/cimb47010028 - 4 Jan 2025
Viewed by 1100
Abstract
The streptozotocin-induced rat model of diabetic retinopathy presents similarities to the disease observed in humans. After four weeks following the induction of diabetes, the rats experience vision impairment. During this crucial four-week period, significant changes occur, with vascular damage standing out as a [...] Read more.
The streptozotocin-induced rat model of diabetic retinopathy presents similarities to the disease observed in humans. After four weeks following the induction of diabetes, the rats experience vision impairment. During this crucial four-week period, significant changes occur, with vascular damage standing out as a clinically significant factor, alongside neovascularization. While redox imbalance, activation of microglia, secretion of pro-inflammatory cytokines, and neuronal cell death are also observed, the latter remains an emerging hypothesis requiring further exploration. This review is a comprehensive and up-to-date chronological depiction of the progression of diabetic retinopathy within the initial four weeks of hyperglycemia, which precede the onset of vision loss. The data are structured in weekly changes. In the first week, oxidative stress triggers the activation of retinal microglia, which produces inflammation, leading to altered neurotransmission. The second week is characterized by leukostasis, which promotes ischemia, while neural degeneration begins and is accompanied by a simultaneous increase in vessel permeability. The progression of redox and inflammatory imbalances characterized the third week. Finally, in the fourth week, significant developments occur as vessels dilate and become tortuous, neovascularization develops, and retinal thickness diminishes, ultimately leading to vision loss. Through this clearly structured outline, this review aims to delineate a framework for the progression of streptozotocin-induced diabetic retinopathy. Full article
Show Figures

Figure 1

15 pages, 37035 KiB  
Article
Platelet-Derived Growth Factor Subunit A Strengthens the Neurovascular Unit and Inhibits Retinal Vascular Regression Under Hyperoxic Conditions
by Kaito Yokota, Haruhiko Yamada, Hidetsugu Mori, Yuki Hattori, Masatoshi Omi, Yuichi Yamamoto, Keiko Toyama and Hisanori Imai
Int. J. Mol. Sci. 2024, 25(23), 12945; https://doi.org/10.3390/ijms252312945 - 2 Dec 2024
Cited by 1 | Viewed by 924
Abstract
Retinopathy of prematurity (ROP) is primarily caused by the exposure of preterm infants with underdeveloped blood vessels to high oxygen concentrations. This damages the astrocytes that promote normal vascular development, leading to avascularity, pathological neovascularization, and retinal detachment, and even blindness as the [...] Read more.
Retinopathy of prematurity (ROP) is primarily caused by the exposure of preterm infants with underdeveloped blood vessels to high oxygen concentrations. This damages the astrocytes that promote normal vascular development, leading to avascularity, pathological neovascularization, and retinal detachment, and even blindness as the disease progresses. In this study, the aim was to investigate the differences in the characteristics of astrocytes and blood vessels between wild-type (WT) and genetically modified mice overexpressing platelet-derived growth factor subunit A (PDGF-A) in the retina immediately after high oxygen exposure, a protocol in the oxygen-induced retinopathy (OIR) model of ROP. Our results showed that PDGF-A mice exhibited an increased population of astrocytes and higher vascular density than WT mice and that PDGF-A strengthened the resistance to hyperoxic conditions. In the OIR model, PDGF-A mice had reduced avascular zone areas following hyperoxia exposure. Furthermore, immunostaining for NG2 and CD31 showed that pericytes tended to regress earlier than endothelial cells, particularly at the vessel edges in both WT and transgenic mice, indicating relatively higher susceptibility to hyperoxia-induced damage. These findings suggest that PDGF-A plays a crucial role in stabilizing retinal vessels and may serve as a novel therapeutic target for ROP, highlighting the potential significance of PDGF-A in the pathological mechanisms of retinal diseases. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

20 pages, 9874 KiB  
Article
Targeting Oxidative Stress and Inflammation in the Eye: Insights from a New Model of Experimental Autoimmune Uveitis
by Dmitry V. Chistyakov, Veronika V. Tiulina, Olga S. Gancharova, Viktoriia E. Baksheeva, Sergei V. Goriainov, Natalia G. Shebardina, Vasily A. Ivlev, Sergey V. Komarov, Marina P. Shevelyova, Natalia K. Tikhomirova, Pavel P. Philippov, Vasiliy G. Vasil’ev, Marina G. Sergeeva, Sergei E. Permyakov, Elena N. Iomdina, Philipp O. Tsvetkov, Ivan I. Senin and Evgeni Yu. Zernii
Int. J. Mol. Sci. 2024, 25(23), 12910; https://doi.org/10.3390/ijms252312910 - 30 Nov 2024
Cited by 1 | Viewed by 1418
Abstract
Autoimmune uveitis is a relapsing blind-causing ocular condition with complex pathogenesis that is not completely understood. There is a high demand for accurate animal models of experimental autoimmune uveitis (EAU) suitable for elucidating the molecular mechanisms of the disease and testing new therapeutic [...] Read more.
Autoimmune uveitis is a relapsing blind-causing ocular condition with complex pathogenesis that is not completely understood. There is a high demand for accurate animal models of experimental autoimmune uveitis (EAU) suitable for elucidating the molecular mechanisms of the disease and testing new therapeutic approaches. Here, we demonstrated that photoreceptor Ca2+/Zn2+-sensor protein recoverin is a uveoretinal antigen in albino rabbits provoking typical autoimmune chorioretinitis 2–4 weeks after immunization. The pathologic process in recoverin-induced EAU shared features with human disease and included lymphocytic infiltration of the retina, Dalen–Fuchs nodules and foci of subtotal or total retinal atrophy, manifested as a decrease in amplitude of the a-wave of the electroretinogram. In some cases, changes in the retinal vascular pattern and subretinal hemorrhages were also observed. These signs were accompanied by a gradual accumulation of serum antibodies against recoverin. Biochemical examination of the aqueous humor (AH) revealed typical characteristics of inflammation and oxidative stress, including increased levels of TNF-α and IL-6 and decreased levels of IL-10, as well as decreased total antioxidant activity, superoxide dismutase and glutathione peroxidase activities, and increased zinc concentration. Consistently, metabolomic and targeted lipidomic analysis of AH showed high lactate and low ascorbic acid levels in early EAU; increased levels of key pro-inflammatory signaling lipids such as PGE2, TXB2, 11-HETE and Lyso-PAF; and reduced levels of the anti-inflammatory fatty acid DHA in advanced stages of the disease. Uveitic AH became enriched with recoverin, confirming disruption of the blood–ocular barrier and photoreceptor damage. Notably, the application of mitochondria-targeted antioxidant therapy impeded EAU progression by maintaining local antioxidant activity and suppressing TNF-α, IL-6 and PGE2 signaling. Overall, our results demonstrate that recoverin-induced EAU in rabbits represents an accurate model of human autoimmune posterior uveitis and suggest new directions for its therapy that can be trialed using the developed model. Full article
(This article belongs to the Special Issue Emerging Roles of Inflammation in Retinal and Optic Nerve Pathologies)
Show Figures

Figure 1

12 pages, 824 KiB  
Article
Relationship Between Short-Term Blood Pressure Variability and Choroidal–Retinal Thicknesses Assessed by Optical Coherence Tomography in Hypertensive Subjects
by Caterina Carollo, Maria Vadalà, Marta Ferrara, Enea Chisci, Alberto La Felice, Katia Valeria Di Natale, Alessandra Sorce, Vincenza Maria Elena Bonfiglio and Giuseppe Mulè
J. Pers. Med. 2024, 14(12), 1123; https://doi.org/10.3390/jpm14121123 - 27 Nov 2024
Viewed by 876
Abstract
Background/Objectives: The complications of hypertension depend not only on the mean blood pressure (BP) but also on its variability (BPV). Recent studies suggest that the choroid may serve as an indicator of systemic vascular damage. These studies have been made possible by the [...] Read more.
Background/Objectives: The complications of hypertension depend not only on the mean blood pressure (BP) but also on its variability (BPV). Recent studies suggest that the choroid may serve as an indicator of systemic vascular damage. These studies have been made possible by the increased availability of optical coherence tomography (OCT). The aim of our study was to analyze the relationship between short-term BP variability (STBPV) and choroid–retinal thickness in hypertensive patients. Methods: A total of 98 patients with a mean age of 49 ± 12 years were enrolled in the study. All participants underwent 24 h blood pressure (BP) monitoring to measure 24 h mean systolic (SBP) and diastolic blood pressure (DBP), along with their respective standard deviations (SD), the weighted SD of 24 h SBP and DBP, and the average real variability (ARV) of 24 h SBP and DBP. The choroid–retinal region was assessed using Swept-Source OCT, with choroidal thickness (ChT) and retinal thickness divided into three concentric rings, and their mean choroidal thickness (ChT-or) was calculated. Results: The choroidal thickness of the concentric rings was found to be inversely correlated with all ARV values of the monitored blood pressure means. In particular, a correlation was observed between the ARV of daytime DBP and ChT-or. This correlation remained statistically significant (β = −0.34; p = 0.02) even after adjustment for various confounding factors. The ARV of daytime DBP was the only STBPV index to maintain a significant association, in the multivariate analysis, with the central ring mean thickness (β = −0.314; p = 0.001) and the inner choroidal ring mean thickness (β = −0.262; p = 0.003). Conclusions: Our study demonstrated an independent negative association between short-term BP variability (STBPV), when expressed as ARV of daytime DBP, and choroidal thickness. This finding confirms the value of choroidal thickness as a marker of cardiovascular risk. Full article
(This article belongs to the Special Issue Retinal Diseases: Mechanisms, Diagnosis and Treatments)
Show Figures

Figure 1

14 pages, 602 KiB  
Article
Evaluation of Retinal and Posterior Segment Vascular Changes Due to Systemic Hypoxia Using Optical Coherence Tomography Angiography
by Nadav Levinger, Nir Erdinest, Ayman Abu Rmeileh, Eisa Mouallem, Shadi Zahran, Sheer Shabat, Yotam Kolben, Talmon Aviv, Rottem Kuint, Liran Tiosano and Samer Khateb
J. Clin. Med. 2024, 13(22), 6680; https://doi.org/10.3390/jcm13226680 - 7 Nov 2024
Viewed by 948
Abstract
Background/Objectives: Retinal vascular occlusions are a significant cause of visual impairment in older adults, resulting in ischemic retinal damage and sudden vision loss. This study evaluates the retinal, optic nerve head (ONH), and choroidal capillary networks in chronic and acute-on-chronic hypoxia compared to [...] Read more.
Background/Objectives: Retinal vascular occlusions are a significant cause of visual impairment in older adults, resulting in ischemic retinal damage and sudden vision loss. This study evaluates the retinal, optic nerve head (ONH), and choroidal capillary networks in chronic and acute-on-chronic hypoxia compared to normal controls using optical coherence tomography angiography (OCT-A). Methods: We evaluated a prospective study including twenty patients in the hypoxic group (mean age 61.2 ± 10.2) in two phases, chronic hypoxia and acute-on-chronic hypoxia, and 21 control subjects (mean age 59 ± 9.4 years). All patients underwent a comprehensive eye examination, OCT, and OCT-A imaging. The data were analyzed using OCT-A analysis software (Zeiss OCT-A software 2.1.0.55513) and Fiji software (1.51a). Vascular density of the retina and ONH, choriocapillaries, and foveal avascular zone (FAZ) size were measured. Results: The superficial peripapillary vascular density was higher for the control group (0.387 ± 0.03) compared to the hypoxic patients with (0.383 ± 0.03) and without O2 supplementation (0.383 ± 0.03; p = 0.018). No retinal angiographic differences were identified between the two study groups. The ganglion cell layer (GCL) was thinner in the hypoxic group. Both hypoxic subgroups demonstrated denser choriocapillaries (mean 13,073 ± 1812 and 12,689 ± 1815, with and without O2 supplementation, respectively) compared to the control group (mean 9749 ± 2881, p < 0.001 for both groups). Hypoxic patients demonstrated increased area size of choriocapillaries (+O2 supplementation—mean 44,347 ± 10,563; −O2 supplementation—mean 46,984 ± 12,822) compared to the control group (mean 30,979 ± 9635; p < 0.01 and p < 0.001, respectively). Conclusions: Chronic and acute-on-chronic hypoxia did not affect the retinal vascular network, most probably due to the strong autoregulation of vascular function of the retina. However, compared to the control group, GCL, ONH vasculature density, and most choriocapillaries indices were significantly altered among hypoxic patients. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

28 pages, 11548 KiB  
Review
Molecular and Cellular Mechanisms Involved in the Pathophysiology of Retinal Vascular Disease—Interplay Between Inflammation and Oxidative Stress
by Jovana V. Srejovic, Maja D. Muric, Vladimir Lj. Jakovljevic, Ivan M. Srejovic, Suncica B. Sreckovic, Nenad T. Petrovic, Dusan Z. Todorovic, Sergey B. Bolevich and Tatjana S. Sarenac Vulovic
Int. J. Mol. Sci. 2024, 25(21), 11850; https://doi.org/10.3390/ijms252111850 - 4 Nov 2024
Cited by 8 | Viewed by 3344
Abstract
Retinal vascular diseases encompass several retinal disorders, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and retinal vascular occlusion; these disorders are classified as similar groups of disorders due to impaired retinal vascularization. The aim of this review is to address the [...] Read more.
Retinal vascular diseases encompass several retinal disorders, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and retinal vascular occlusion; these disorders are classified as similar groups of disorders due to impaired retinal vascularization. The aim of this review is to address the main signaling pathways involved in the pathogenesis of retinal vascular diseases and to identify crucial molecules and the importance of their interactions. Vascular endothelial growth factor (VEGF) is recognized as a crucial and central molecule in abnormal neovascularization and a key phenomenon in retinal vascular occlusion; thus, anti-VEGF therapy is now the most successful form of treatment for these disorders. Interaction between angiopoietin 2 and the Tie2 receptor results in aberrant Tie2 signaling, resulting in loss of pericytes, neovascularization, and inflammation. Notch signaling and hypoxia-inducible factors in ischemic conditions induce pathological neovascularization and disruption of the blood–retina barrier. An increase in the pro-inflammatory cytokines—TNF-α, IL-1β, and IL-6—and activation of microglia create a persistent inflammatory milieu that promotes breakage of the blood–retinal barrier and neovascularization. Toll-like receptor signaling and nuclear factor-kappa B are important factors in the dysregulation of the immune response in retinal vascular diseases. Increased production of reactive oxygen species and oxidative damage follow inflammation and together create a vicious cycle because each factor amplifies the other. Understanding the complex interplay among various signaling pathways, signaling cascades, and molecules enables the development of new and more successful therapeutic options. Full article
Show Figures

Figure 1

18 pages, 4776 KiB  
Article
Retinal Microvasculature Changes Linked to Executive Function Impairment after COVID-19
by Mar Ariza, Barbara Delas, Beatriz Rodriguez, Beatriz De Frutos, Neus Cano, Bàrbara Segura, Cristian Barrué, Javier Bejar, Mouafk Asaad, Claudio Ulises Cortés, Carme Junqué, Maite Garolera and NAUTILUS Project Collaborative Group
J. Clin. Med. 2024, 13(19), 5671; https://doi.org/10.3390/jcm13195671 - 24 Sep 2024
Viewed by 3172
Abstract
Background/Objectives: Studies using optical coherence tomography angiography (OCTA) have revealed that individuals recovering from COVID-19 have a reduced retinal vascular density (VD) and larger foveal avascular zones (FAZs) than healthy individuals, with more severe cases showing greater reductions. We aimed to examine [...] Read more.
Background/Objectives: Studies using optical coherence tomography angiography (OCTA) have revealed that individuals recovering from COVID-19 have a reduced retinal vascular density (VD) and larger foveal avascular zones (FAZs) than healthy individuals, with more severe cases showing greater reductions. We aimed to examine aspects of the retinal microvascularization in patients with post-COVID-19 condition (PCC) classified by COVID-19 severity and how these aspects relate to cognitive performance. Methods: This observational cross-sectional study included 104 PCC participants from the NAUTILUS Project, divided into severe (n = 59) and mild (n = 45) COVID-19 groups. Participants underwent cognitive assessments and OCTA to measure VD and perfusion density (PD) in the superficial capillary plexus (SVP) and FAZ. Analysis of covariance and partial Pearson and Spearman correlations were used to study intergroup differences and the relationships between cognitive and OCTA variables. Results: Severe PCC participants had significantly lower central (p = 0.03) and total (p = 0.03) VD, lower central (p = 0.02) PD measurements, and larger FAZ areas (p = 0.02) and perimeters (p = 0.02) than mild cases. Severe cases showed more cognitive impairment, particularly in speed processing (p = 0.003) and executive functions (p = 0.03). Lower central VD, lower central PD, and larger FAZ areas and perimeters were associated with worse executive function performance in the entire PCC sample and in the mild COVID-19 group. Conclusions: Retinal microvascular alterations, characterized by reduced VD and PD in the SVP and larger FAZ areas, were associated with cognitive impairments in PCC individuals. These findings suggest that severe COVID-19 leads to long-lasting microvascular damage, impacting retinal and cognitive health. Full article
(This article belongs to the Special Issue Novel Insights into COVID-19-Associated Complications and Sequelae)
Show Figures

Figure 1

Back to TopTop