Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = seabed morphology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10029 KiB  
Article
Hydrodynamic and Morphological Effects of Non-Powered Floating Objects on Sediment Resuspension: A CFD and Regression Analysis
by Nuray Gedik, Onur Bora, Mehmet Sedat Kabdaşlı and Emel İrtem
Appl. Sci. 2025, 15(5), 2717; https://doi.org/10.3390/app15052717 - 4 Mar 2025
Viewed by 585
Abstract
This study investigates the hydrodynamic and morphological effects caused by non-powered floating objects (e.g., barges, pontoons, and floating or moored platforms) that are towed by external forces (such as tugboats) across flat, shallow seabeds. This study employs an integrated approach combining advanced computational [...] Read more.
This study investigates the hydrodynamic and morphological effects caused by non-powered floating objects (e.g., barges, pontoons, and floating or moored platforms) that are towed by external forces (such as tugboats) across flat, shallow seabeds. This study employs an integrated approach combining advanced computational fluid dynamics (CFD) simulations with multivariate polynomial regression analysis to systematically investigate the hydrodynamic and morphological effects of non-powered floating objects on sediment resuspension. A total of 96 simulation scenarios were conducted, of which 84 significant cases (where the floating object did not touch the seabed) were analyzed. Variations included bow geometries (blunt and raked), towing speeds, and operational parameters. The results indicate that, under similar towing speeds and clearance heights, blunt bows increase the suspended sediment concentration by approximately 90–190% compared to raked bows. The regression model, attaining an R-squared value of 0.9647, identified the Froude number, squat ratio, squared towing time, and object type as critical predictors of suspended sediment concentration. Furthermore, the interaction terms between the Froude number and object type were significant, enhancing the model’s predictive accuracy. These results underscore the importance of optimized design and operational strategies in minimizing the environmental impact of floating structures, especially in shallow marine environments where sediment dynamics play a crucial role in ecological balance. Careful consideration of towing speed, object geometry, and operational parameters can significantly reduce sediment resuspension, mitigating ecological consequences. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

19 pages, 32782 KiB  
Article
Artificial Fish Reef Site Evaluation Based on Multi-Source High-Resolution Acoustic Images
by Fangqi Wang, Yikai Feng, Senbo Liu, Yilan Chen and Jisheng Ding
J. Mar. Sci. Eng. 2025, 13(2), 309; https://doi.org/10.3390/jmse13020309 - 7 Feb 2025
Viewed by 686
Abstract
Marine geophysical and geological investigations are crucial for evaluating the construction suitability of artificial fish reefs (AFRs). Key factors such as seabed topography, geomorphology, sub-bottom structure, and sediment type significantly influence AFR design and site selection. Challenges such as material sinking, sediment instability, [...] Read more.
Marine geophysical and geological investigations are crucial for evaluating the construction suitability of artificial fish reefs (AFRs). Key factors such as seabed topography, geomorphology, sub-bottom structure, and sediment type significantly influence AFR design and site selection. Challenges such as material sinking, sediment instability, and scouring effects should be critically considered and addressed in the construction of AFR, particularly in areas with soft mud or dynamic environments. In this study, detailed investigations were conducted approximately seven months after the deployment of reef materials in the AFR experimental zones around Xiaoguan Island, located in the western South Yellow Sea, China. Based on morphological factors, using data from multibeam echosounders and side-scan sonar, the study area was divided into three geomorphic zones, namely, the tidal flat (TF), underwater erosion-accumulation slope (UEABS), and inclined erosion-accumulation shelf plain (IEASP) zones. The focus of this study was on the UEABS and IEASP experimental zones, where reef materials (concrete or stone blocks) were deployed seven months earlier. The comprehensive interpretation results of multi-source high-resolution acoustic images showed that the average settlement of individual reefs in the UEABS experimental zone was 0.49 m, and their surrounding seabed experienced little to no scouring. This suggested the formation of an effective range and height, making the zone suitable for AFR construction. However, in the IEASP experimental zone, the seabed sediment consisted of soft mud, causing the reef materials to sink into the seabed after deployment, preventing the formation of an effective range and height, and rendering the area unsuitable for AFR construction. These findings provided valuable scientific guidance for AFR construction in the study area and other similar coastal regions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

23 pages, 25801 KiB  
Article
A Large-Scale Focused Fluid Flow Zone Between Atolls in the Xisha Islands (South China Sea): Types, Characteristics, and Evolution
by Jixiang Zhao, Benjun Ma, Zhiliang Qin, Wenjian Lan, Benyu Zhu, Shuyi Pang, Mingzhe Li and Ruining Wang
J. Mar. Sci. Eng. 2025, 13(2), 216; https://doi.org/10.3390/jmse13020216 - 23 Jan 2025
Viewed by 660
Abstract
A large number of seabed depressions, covering an area of 2500 km2 in the Xisha Massif of the South China Sea, are investigated using newly collected high-resolution acoustic data. By analyzing the morphological features and seismic attributes of the focused fluid flow [...] Read more.
A large number of seabed depressions, covering an area of 2500 km2 in the Xisha Massif of the South China Sea, are investigated using newly collected high-resolution acoustic data. By analyzing the morphological features and seismic attributes of the focused fluid flow system, five geological structures are recognized and described in detail, including pockmarks, volcanic mounds, pipes, faults, and forced folds. Pockmarks and volcanic mounds occur as clustered groups and their distributions are related to two large-scale volcanic zones with chaotic seismic reflections. Pipes, characterized by disordered seismic reflections, mainly occur within the focused fluid flow zone (FFFZ) and directly link with the large-scale deep volcano and its surrounding areas. Faults and fractures mainly occur along pipes and extend to the seafloor, commonly presenting lateral walls of mega-pockmarks. Forced folds are primarily clustered above volcanic zones and commonly restricted between faults or pipes, characterized by sediment deformations as indicated in seismic profiles. By comprehensive analysis of the above observations and a simplified simulation model, the volcanism-induced hydrothermal fluid activities are argued herein to contribute to these focused fluid flow structures. In addition, traces of suspected submarine instability disasters such as landslides have been found in this sea area, and more observational data will be needed to determine whether seafloor fluid flow zones can be used as a predictor of seafloor instability in the future. Full article
Show Figures

Figure 1

36 pages, 1986 KiB  
Review
Exploring Innovative Approaches for the Analysis of Micro- and Nanoplastics: Breakthroughs in (Bio)Sensing Techniques
by Denise Margarita Rivera-Rivera, Gabriela Elizabeth Quintanilla-Villanueva, Donato Luna-Moreno, Araceli Sánchez-Álvarez, José Manuel Rodríguez-Delgado, Erika Iveth Cedillo-González, Garima Kaushik, Juan Francisco Villarreal-Chiu and Melissa Marlene Rodríguez-Delgado
Biosensors 2025, 15(1), 44; https://doi.org/10.3390/bios15010044 - 13 Jan 2025
Cited by 4 | Viewed by 2969
Abstract
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation [...] Read more.
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks. Effective detection and quantification of MPs and NPs are essential for understanding and mitigating their impacts. Current analytical methods include physical and chemical techniques. Physical methods, such as optical and electron microscopy, provide morphological details but often lack specificity and are time-intensive. Chemical analyses, such as Fourier transform infrared (FTIR) and Raman spectroscopy, offer molecular specificity but face challenges with smaller particle sizes and complex matrices. Thermal analytical methods, including pyrolysis gas chromatography–mass spectrometry (Py-GC-MS), provide compositional insights but are destructive and limited in morphological analysis. Emerging (bio)sensing technologies show promise in addressing these challenges. Electrochemical biosensors offer cost-effective, portable, and sensitive platforms, leveraging principles such as voltammetry and impedance to detect MPs and their adsorbed pollutants. Plasmonic techniques, including surface plasmon resonance (SPR) and surface-enhanced Raman spectroscopy (SERS), provide high sensitivity and specificity through nanostructure-enhanced detection. Fluorescent biosensors utilizing microbial or enzymatic elements enable the real-time monitoring of plastic degradation products, such as terephthalic acid from polyethylene terephthalate (PET). Advancements in these innovative approaches pave the way for more accurate, scalable, and environmentally compatible detection solutions, contributing to improved monitoring and remediation strategies. This review highlights the potential of biosensors as advanced analytical methods, including a section on prospects that address the challenges that could lead to significant advancements in environmental monitoring, highlighting the necessity of testing the new sensing developments under real conditions (composition/matrix of the samples), which are often overlooked, as well as the study of peptides as a novel recognition element in microplastic sensing. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

19 pages, 19539 KiB  
Article
Seabed Acoustic Mapping Revealing an Uncharted Habitat of Circular Depressions Along the Southeast Brazilian Outer Shelf
by Ana Carolina Lavagnino, Marcos Daniel Leite, Tarcila Franco, Pedro Smith Menandro, Fernanda Vedoato Vieira, Geandré Carlos Boni and Alex Cardoso Bastos
Geosciences 2025, 15(1), 7; https://doi.org/10.3390/geosciences15010007 - 1 Jan 2025
Viewed by 1155
Abstract
Initiatives such as the United Nations Decade of Ocean Science for Sustainable Development and Seabed 2030 promote seabed mapping worldwide. In Brazil, especially on the Espírito Santo Continental Shelf, high-resolution seabed mapping has revealed an unknown complex seascape. Circular depressions (CDs) were mapped [...] Read more.
Initiatives such as the United Nations Decade of Ocean Science for Sustainable Development and Seabed 2030 promote seabed mapping worldwide. In Brazil, especially on the Espírito Santo Continental Shelf, high-resolution seabed mapping has revealed an unknown complex seascape. Circular depressions (CDs) were mapped for the first time in the Costa das Algas Marine Protection Area. Herein, we aim to present the CD metrics characteristics and discuss their relationship with morphology and relevance as a habitat based on multibeam bathymetry and ground truthing. A total of 3660 depressions were mapped between 46 and 85 m in depth, reaching an area of 460 m2 and 5 m relief. The continental shelf morphology was subdivided into three sectors based on morphology: inter-valleys, valley edges, and valley flanks, and eleven sites were selected for direct sampling/imaging at the CDs along the sectors. The direct sampling was carried out by scuba-diving with video images and sediment samples collected inside and outside the depressions. The deeper central parts of the circular depressions appear to function as a sink, presenting aggregations of rhodoliths or other carbonate fragments. In most inter-valley depressions, mounds were observed along the edges of the depression. We did not have any indication of gas seeps and no clear sedimentological or morphological control on their occurrence. We first hypothesize that their origin results from combined diachronous processes. The circular depressions mapped at high resolution could be related to sea level processes acting during the last glacial period and shelf exposure, i.e., relict features. The CDs are responsible for biomass aggregation and fish bioturbation, forming holes and rubble mounds, representing a modern process occurring on a centimetric scale. The data collected so far indicate that this fine-scale feature is an important habitat for different fish species. The modern maintenance of these structures could be due to low sedimentation regime areas shaped by biotic excavation. Full article
(This article belongs to the Special Issue Progress in Seafloor Mapping)
Show Figures

Figure 1

21 pages, 7993 KiB  
Article
Incorporating Non-Equlibrium Ripple Dynamics into Bed Stress Estimates Under Combined Wave and Current Forcing
by Raúl P. Flores, Sabine Rijnsburger, Saulo Meirelles, Alexander R. Horner-Devine, Alejandro J. Souza and Julie D. Pietrzak
J. Mar. Sci. Eng. 2024, 12(12), 2116; https://doi.org/10.3390/jmse12122116 - 21 Nov 2024
Cited by 1 | Viewed by 746
Abstract
We present direct measurements of seafloor ripple dimensions, near-bed mean flow Reynolds stresses and near-bed turbulent sediment fluxes on a sandy inner shelf subjected to strong wave and tidal current forcing. The measurements of ripple dimensions (height, wavelength) and Reynolds stresses are used [...] Read more.
We present direct measurements of seafloor ripple dimensions, near-bed mean flow Reynolds stresses and near-bed turbulent sediment fluxes on a sandy inner shelf subjected to strong wave and tidal current forcing. The measurements of ripple dimensions (height, wavelength) and Reynolds stresses are used to evaluate the performance of a methodology for the incorporation of non-equilibrium ripple dynamics into the calculations of the drag exerted by the bed on the overlying flow (i.e., the bed stress) using a boundary layer model for wave–current interaction. The methodology is based on the simultaneous use of existing models for the time-dependent evolution of ripple geometry and for the wave–current boundary layer that enable a continuous feedback between bottom drag and small-scale seabed morphology, which determines seabed roughness. The model-data comparison shows good agreement between modeled and measured bed stresses and bedform dimensions. Moreover, the proposed methodology is shown to give better results than combining the wave–current interaction model and standard equilibrium ripple predictors, both in terms of bed stresses and ripple dimensions. The near-bed turbulent vertical sediment fluxes show good correlation with the combined wave–current stresses and are used as a proxy for the resuspension of fine sediments (d < 64 μm) from the sandy seabed matrix. Implications for the modeling of the resuspension processes and erosional fluxes are discussed in light of our findings. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

16 pages, 4929 KiB  
Article
A Comparative Crash-Test of Manual and Semi-Automated Methods for Detecting Complex Submarine Morphologies
by Vasiliki Lioupa, Panagiotis Karsiotis, Riccardo Arosio, Thomas Hasiotis and Andrew J. Wheeler
Remote Sens. 2024, 16(21), 4093; https://doi.org/10.3390/rs16214093 - 2 Nov 2024
Cited by 2 | Viewed by 1144
Abstract
Multibeam echosounders provide ideal data for the semi-automated seabed feature extraction and accurate morphometric measurements. In this study, bathymetric and raw backscatter data were initially used to manually delimit the reef morphologies found in an insular semi-enclosed gulf in the northern Aegean Sea [...] Read more.
Multibeam echosounders provide ideal data for the semi-automated seabed feature extraction and accurate morphometric measurements. In this study, bathymetric and raw backscatter data were initially used to manually delimit the reef morphologies found in an insular semi-enclosed gulf in the northern Aegean Sea (Gera Gulf, Lesvos Island, Greece). The complexity of this environment makes it an ideal area to “crash test” (test to the limit) and compare the results of the delineation methods. A large number of (more than 7000) small but prominent reefs were detected, which made manual mapping extremely time-consuming. Three semi-automated tools were also employed to map the reefs: the Benthic Terrain Modeler (BTM), Confined Morphologies Mapping (CoMMa), and eCognition Multiresolution Segmentation. BTM did not function properly with irregular reef footprints, but by modifying both the bathymetry and slope, the outcome was improved, producing accurate results that appeared to exceed the accuracy of manual mapping. CoMMa, a new GIS morphometric toolbox, was a “one-stop shop” that, besides generating satisfactory reef delineation results (i.e., detecting the same total reef area as the manual method), was also used to extract the morphometric characteristics of the polygons resulting from all the methods. Lastly, the Multiresolution Segmentation also gave satisfactory results with the highest precision. To compare the final maps with the distribution of the reefs, mapcurves were created to estimate the goodness-of-fit (GOF) with the Precision, Recall, and F1 Scores producing values higher than 0.78, suggesting a good detection accuracy for the semi-automated methods. The analysis reveals that the semi-automated methods provided more efficient results in comparison with the time-consuming manual mapping. Overall, for this case study, the modification of the bathymetry and slope enabled the results’ accuracy to be further enhanced. This study asserts that the use of semi-automated mapping is an effective method for delineating the geomorphometry of intricate relief and serves as a powerful tool for habitat mapping and decision-making. Full article
Show Figures

Figure 1

14 pages, 6378 KiB  
Article
Experimental Study of Wave-Induced Pore Pressure Gradients around a Sandbar and Their Effects on Seabed Instability
by Mili Chen, Jinhai Zheng, Linlong Tong, Jisheng Zhang, Mengyan Luo and Ning Chen
J. Mar. Sci. Eng. 2024, 12(9), 1630; https://doi.org/10.3390/jmse12091630 - 12 Sep 2024
Cited by 1 | Viewed by 1304
Abstract
The position and morphology of offshore sandbars are highly dependent on wave conditions; however, the mechanisms driving sand movement by water waves remain elusive to scientists and coastal engineers. This study presents a series of experiments conducted in a wave flume to investigate [...] Read more.
The position and morphology of offshore sandbars are highly dependent on wave conditions; however, the mechanisms driving sand movement by water waves remain elusive to scientists and coastal engineers. This study presents a series of experiments conducted in a wave flume to investigate the impact of wave-induced pore pressure gradients on seabed instability around a sandbar, observed in the Benin Gulf of Guinea. The Froude-Darcy similitude principle was developed to ensure the similarity of hydrodynamics and seepage forces between the experiments and field conditions. Pore pressure gradients and free surface elevations were measured using three arrays of pore pressure transducers and eleven wave probes, respectively. The results indicate a rapid increase in both the horizontal pressure gradient and the maximum downward pressure gradient during the shoaling process. Conversely, the maximum upward pressure gradient decreases prior to wave breaking. Wave-induced pressure gradients significantly influence seabed instability and sediment transport. The effective weight of sand particles is reduced by up to 52% due to the upward pressure gradient during the shoaling process, and momentary liquefaction is triggered by the horizontal pressure gradient near the breaking point based on the liquefaction criterion. When liquefaction occurs, shear granular flow forms on the seabed surface. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 3733 KiB  
Article
CORAL—Catamaran for Underwater Exploration: Development of a Multipurpose Unmanned Surface Vessel for Environmental Studies
by Luca Cocchi, Filippo Muccini, Marina Locritani, Leonardo Spinelli and Michele Cocco
Sensors 2024, 24(14), 4544; https://doi.org/10.3390/s24144544 - 13 Jul 2024
Viewed by 3927
Abstract
CORAL (Catamaran fOr UndeRwAter expLoration) is a compact, unmanned catamaran-type vehicle designed and developed to assist the scientific community in exploring marine areas such as inshore regions that are not easily accessible by traditional vessels. This vehicle can operate in different modalities: completely [...] Read more.
CORAL (Catamaran fOr UndeRwAter expLoration) is a compact, unmanned catamaran-type vehicle designed and developed to assist the scientific community in exploring marine areas such as inshore regions that are not easily accessible by traditional vessels. This vehicle can operate in different modalities: completely autonomous, semi-autonomous, or remotely assisted by the operator, thus accommodating various investigative scenarios. CORAL is characterized by compact dimensions, a very low draft and a total electric propulsion system. The vehicle is equipped with a single echo-sounder, a 450 kHz Side Scan Sonar, an Inertial Navigation System assisted by a GPS receiver and a pair of high-definition cameras for recording both above and below the water surface. Here, we present results from two investigations: the first conducted in the tourist harbour in Pozzuoli Gulf and the second in the Riomaggiore-Manarola marine area within the Cinque Terre territory (Italy). Both surveys yielded promising results regarding the potentiality of CORAL to collect fine-scale submarine elements such as anthropic objects, sedimentary features, and seagrass meadow spots. These capabilities characterize the CORAL system as a highly efficient investigation tool for depicting shallow bedforms, reconstructing coastal dynamics and erosion processes and monitoring the evolution of biological habitats. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

30 pages, 9236 KiB  
Article
Interactions between Hydrodynamic Forcing, Suspended Sediment Transport, and Morphology in a Microtidal Intermediate-Dissipative Beach
by Anlly Melissa Guerrero, Luis Otero, Silvio Ospino and Jairo Cueto
J. Mar. Sci. Eng. 2024, 12(7), 1141; https://doi.org/10.3390/jmse12071141 - 6 Jul 2024
Cited by 1 | Viewed by 1628
Abstract
This study aims to investigate the hydrodynamic-morphological interactions on a microtidal intermediate-dissipative beach under low to moderate wave energy conditions using field measurements during two climatic seasons. The separate contributions of currents, sea-swell waves, and infragravity waves to high- and low-frequency sediment fluxes [...] Read more.
This study aims to investigate the hydrodynamic-morphological interactions on a microtidal intermediate-dissipative beach under low to moderate wave energy conditions using field measurements during two climatic seasons. The separate contributions of currents, sea-swell waves, and infragravity waves to high- and low-frequency sediment fluxes were analyzed. The infragravity wave energy was more relevant near the swash zone than in other areas. Although the currents are the primary suspended sediment transport mechanism, the results suggest that the waves are an important driver of sediment suspension from the seabed. The results indicate that Sea-Swell (SS) waves and cross-shore currents are the prevailing hydrodynamic factors in nearshore sediment transport, and the cross-shore suspended sediment transport rates are higher than those in alongshore transport. The submerged bar intensified during the wet season (1–4 November 2018) when the wave height intensities were lower, contrary to the dry season (24–25 March 2018). Significant accretion nearshore was identified (in the subaerial beach) during the wet season when the suspended sediments were greater, the SS-wave heights nearshore were lower, and sediment flux was directed onshore. A notorious erosion was distinguished during the dry season. The most representative volume changes occurred during the dry season (with high erosion), which is attributed to the high SS-wave energy. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

24 pages, 14077 KiB  
Article
Spatio-Temporal Variation in Suspended Sediment during Typhoon Ampil under Wave–Current Interactions in the Yangtze River Estuary
by Jie Wang, Cuiping Kuang, Daidu Fan, Wei Xing, Rufu Qin and Qingping Zou
Water 2024, 16(13), 1783; https://doi.org/10.3390/w16131783 - 24 Jun 2024
Cited by 1 | Viewed by 1739
Abstract
Suspended sediment plays a major role in estuary morphological change and shoal erosion and deposition. The impact of storm waves on sediment transport and resuspension in the Yangtze River Estuary (YRE) was investigated using a 3D coupling hydrodynamic-wave model with a sediment transport [...] Read more.
Suspended sediment plays a major role in estuary morphological change and shoal erosion and deposition. The impact of storm waves on sediment transport and resuspension in the Yangtze River Estuary (YRE) was investigated using a 3D coupling hydrodynamic-wave model with a sediment transport model during Typhoon Ampil. This model has been validated in field observations of water level, current, wave, and sediment concentration. The model was run for tide only, tide + wind, tide + wind and wave forcing conditions. It was found that: (1) typhoons can increase the suspended sediment concentration (SSC) by enhancing bed shear stress (BSS), especially in the offshore area of the YRE, and there is hysteresis between SSC and BSS variation; (2) exponential and vertical-line types are the main vertical profile of the SSC in the YRE and typhoons can strengthen vertical mixing and reconstruct the vertical distribution; and (3) waves are the dominating forcing factor for the SSC in the majority of the YRE through wave-induced BSS which releases sediment from the seabed. This study comprehensively investigates the spatio-temporal variation in SSC induced by Typhoon Ampil in the main branch of the YRE, which provides insights into sediment transport and resuspension during severe storms for estuaries around the world. Full article
(This article belongs to the Special Issue Hydrodynamics and Sediment Transport in the Coastal Zone)
Show Figures

Figure 1

20 pages, 15636 KiB  
Article
Response of Sediment Dynamics to Tropical Cyclones under Various Scenarios in the Jiangsu Coast
by Can Wang, Chengyi Zhao, Gang Yang, Chunhui Li, Jianting Zhu and Xiaofei Ma
J. Mar. Sci. Eng. 2024, 12(7), 1053; https://doi.org/10.3390/jmse12071053 - 23 Jun 2024
Cited by 2 | Viewed by 1295
Abstract
The Jiangsu Coast (JC), China, is an area susceptible to the impact of tropical cyclones (TCs). However, due to the lack of available on-site observation data, nearshore sedimentary dynamic processes under the impact of TCs have not been fully explored. This study developed [...] Read more.
The Jiangsu Coast (JC), China, is an area susceptible to the impact of tropical cyclones (TCs). However, due to the lack of available on-site observation data, nearshore sedimentary dynamic processes under the impact of TCs have not been fully explored. This study developed a 3D wave–current–sediment numerical model for the JC based on the Finite Volume Community Ocean Model (FVCOM) to investigate sediment dynamic responses to TCs under various scenarios, including different tracks, intensities of TCs and tidal conditions. The validation results demonstrated the model’s satisfactory performance. According to the simulation results, typhoons can significantly impact the hydrodynamics and sediment dynamics. During Typhoon Lekima in 2019, strong southeasterly winds substantially increased the current velocity, bottom stress, wave height, and suspended sediment concentration (SSC). Three typical landfall-type typhoons, with prevailing southeasterly winds, brought significant sediment flux from southeast to northwest along the coast, while the typhoon that moved northward in the Yellow Sea induced a relatively small sediment flux from north to south. Typhoons could also induce stripe-like erosion and deposition, which is closely related to seafloor topography, resulting in seabed thickness variations of up to ±0.3 m. Additionally, strengthening typhoon wind fields can lead to increased sediment flux and seabed morphological changes. Typhoon Winnie, particularly at spring tide, had a greater impact on sediment dynamics compared to other landfall typhoons. Numerical simulations showed that the typhoon-induced net sediment flux within the spring tidal cycle could increase by 80% to 100% compared to the neap tidal cycle, indicating the significant influence of tidal conditions on sediment transport during TC events. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

21 pages, 3823 KiB  
Article
Ship-Forced Sediment Transport: A New Model for Propeller Jet Flow
by Carola Colangeli, Georgios Leftheriotis, Athanassios Dimas and Maurizio Brocchini
Water 2024, 16(12), 1647; https://doi.org/10.3390/w16121647 - 8 Jun 2024
Viewed by 1227
Abstract
A numerical model is presented for ship-induced sediment transport, focusing on the fundamental role of propeller jet flow. The new module has been implemented in the open-source numerical model FUNWAVE in order to reproduce the effect of the propeller on sediment transport. Numerical [...] Read more.
A numerical model is presented for ship-induced sediment transport, focusing on the fundamental role of propeller jet flow. The new module has been implemented in the open-source numerical model FUNWAVE in order to reproduce the effect of the propeller on sediment transport. Numerical simulations have been performed for both stationary and moving vessel cases, as well as for different values of propeller revolution speed. Numerical results are presented for the propeller-induced velocity field and the resulting morphological evolution of the seabed. Qualitative similarities are observed between the numerical results and literature experimental findings, showing the ability of the model to mimic complex morphodynamic processes induced by ship propellers. Compared to stationary vessel cases, smaller scour depths are generated in moving vessel cases. It is concluded that the effect of the propeller provides a major contribution to the mobilization and suspension of seabed sediment, and it should not be neglected in numerical models for ship-induced sediment transport. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

27 pages, 27665 KiB  
Article
Seismo-Stratigraphic Data of Wave-Cut Marine Terraces in the Licosa Promontory (Southern Tyrrhenian Sea, Italy)
by Gemma Aiello and Mauro Caccavale
Coasts 2024, 4(2), 392-418; https://doi.org/10.3390/coasts4020020 - 28 May 2024
Viewed by 1512
Abstract
Some seismo-stratigraphic evidence on the occurrence of wave-cut marine terraces in the Licosa promontory (Southern Tyrrhenian Sea, Italy) based on Sub-bottom Chirp seismic sections is herein presented. Such evidence is provided by marine terraced surfaces situated at various water depths below sea level [...] Read more.
Some seismo-stratigraphic evidence on the occurrence of wave-cut marine terraces in the Licosa promontory (Southern Tyrrhenian Sea, Italy) based on Sub-bottom Chirp seismic sections is herein presented. Such evidence is provided by marine terraced surfaces situated at various water depths below sea level and etched into the rocky acoustic basement, which are extensively extending in the seaward extension of the Licosa promontory. It is possible that the isotopic stratigraphy and the terraced marine surfaces are connected, so they can be attributed and dated indirectly. The geologic study of seismic profiles has pointed to the prominence of the acoustic basement, extending to the seabed close to the coast and subsiding seawards under the Quaternary marine succession. Ancient remains of marine terraces, found at a range of water depths between 5 m and 50 m, have documented the major morphological changes of the acoustic basement during the Late Quaternary. Full article
Show Figures

Figure 1

26 pages, 21625 KiB  
Article
Mid-Deep Circulation in the Western South China Sea and the Impacts of the Central Depression Belt and Complex Topography
by Hongtao Mai, Dongxiao Wang, Hui Chen, Chunhua Qiu, Hongzhou Xu, Xuekun Shang and Wenyan Zhang
J. Mar. Sci. Eng. 2024, 12(5), 700; https://doi.org/10.3390/jmse12050700 - 24 Apr 2024
Cited by 2 | Viewed by 2155
Abstract
As a key component of meridional overturning circulation, mid-deep circulation plays a crucial role in the vertical and meridional distribution of heat. However, due to a lack of observation data, current knowledge of the dynamics of mid-deep circulation currents moving through basin boundaries [...] Read more.
As a key component of meridional overturning circulation, mid-deep circulation plays a crucial role in the vertical and meridional distribution of heat. However, due to a lack of observation data, current knowledge of the dynamics of mid-deep circulation currents moving through basin boundaries and complicated seabed topographies is severely limited. In this study, we combined oceanic observation data, bathymetric data, and numerical modeling of the northwest continental margin of the South China Sea to investigate (i) the main features of mid-deep circulation currents traveling through the central depression belt and (ii) how atmospheric-forcing (winds) mesoscale oceanic processes such as eddies and current–topography interactions modulate the mid-deep circulation patterns. Comprehensive results suggest that the convergence of different water masses and current–topography interactions take primary responsibility for the generation of instability and enhanced mixing within the central depression belt. By contrast, winds and mesoscale eddies have limited influence on the development of local circulation patterns at mid-deep depths (>400 m). This study emphasizes that the intensification and bifurcation of mid-deep circulation; specifically, those induced by a large depression belt morphology determine the local material cycle (temperature, salinity, etc.) and energy distribution. These findings provide insights for a better understanding of mid-deep circulation structures on the western boundary of ocean basins such as the South China Sea. Full article
Show Figures

Figure 1

Back to TopTop