Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = shear lag model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 12305 KiB  
Article
The Effect of Graphene Nanofiller on Electromagnetic-Related Primary Resonance of an Axially Moving Nanocomposite Beam
by Liwen Wang, Jie Wang, Jinyuan Hu, Xiaomalong Pu and Liangfei Gong
Symmetry 2025, 17(5), 651; https://doi.org/10.3390/sym17050651 - 25 Apr 2025
Viewed by 211
Abstract
The primary resonance responses of high-performance nanocomposite materials used in spacecraft components in complex electromagnetic field environments were investigated. Simultaneously considering the interfacial effect, agglomeration effect, and percolation threshold, a theoretical model that can predict Young’s modulus and electrical conductivity of graphene nanocomposites [...] Read more.
The primary resonance responses of high-performance nanocomposite materials used in spacecraft components in complex electromagnetic field environments were investigated. Simultaneously considering the interfacial effect, agglomeration effect, and percolation threshold, a theoretical model that can predict Young’s modulus and electrical conductivity of graphene nanocomposites is developed by the effective medium theory (EMT), shear lag theory, and the Mori-Tanaka method. The magnetoelastic vibration equation for an axially moving graphene nanocomposite current-carrying beam was derived via the Hamilton principle. The amplitude-frequency response equations were obtained for different external loading conditions. The study reveals the significant role of graphene concentration, external force, and magnetic field on the system’s primary resonance, highlighting how electromagnetic forces play a critical role similar to external excitation forces. It is shown that the increase in graphene content could lead the system from period-doubling motion into chaotic behavior. Moreover, an enhanced magnetic field strength may lower the minimum graphene concentration needed for period-doubling motion. This work provides new insights into controlling nonlinear vibrations of such systems through applied electromagnetic fields, emphasizing the importance of designing multifunctional nanocomposites in multi-physics coupled environments. The concentration of graphene filler would significantly affect the primary resonance and bifurcation and chaos behaviors of the system. Full article
(This article belongs to the Special Issue Symmetry in Graphene and Nanomaterials)
Show Figures

Figure 1

27 pages, 18176 KiB  
Article
The Effects of Runoff and Erosion Hydrodynamics by Check Dams Under Different Precipitation Types in the Watershed of Loess Plateau
by Naichang Zhang, Yangfan Feng, Zhaohui Xia, Peng Li, Fan Yue, Yongxiang Cao, Pengfei Wang, Tian Wang, Xingyue Guo and Shixuan Zhou
Water 2025, 17(7), 947; https://doi.org/10.3390/w17070947 - 25 Mar 2025
Viewed by 293
Abstract
As one of the most important soil and water conservation engineering measures, the check dam plays an important role in the process of soil erosion control on the Loess Plateau of China. Combined with the hydrodynamic model, the regulation effects of runoff and [...] Read more.
As one of the most important soil and water conservation engineering measures, the check dam plays an important role in the process of soil erosion control on the Loess Plateau of China. Combined with the hydrodynamic model, the regulation effects of runoff and erosion hydrodynamics on check dams was studied under different precipitation types in the Xiliugou watershed of Loess Plateau. The Xiliugou watershed is dominated by the four precipitation types, short duration and small total amounts (P1), long duration and small total amounts (small total amounts), short duration and larger total amounts (P3) and short duration and largest total amounts (P4). The results show that the peak flow time may lag behind in the upper and middle reaches, while it may be advanced in the downstream in the parallel layout of the dam system watershed. The check dam system plays a significant role in reducing runoff and erosion hydrodynamics. The construction of check dams results in a significant reduction in the peak flow under the P2 precipitation type, reaching 39.41%. For the average maximum velocity, runoff shear stress and runoff power along the main channel, the P2 precipitation type results in a significant reduction in hydrodynamics in the dam system watershed, reaching 16.72%, 21.44% and 33.10%, respectively. However, for peak velocity, runoff shear stress and runoff power along the main channel, the P3 precipitation type results in a significant reduction in hydrodynamics in the dam system watershed, reaching 14.34%, 19.99% and 31.42%, respectively. The regulation effect of the check dam system on erosion hydrodynamics is stronger in the middle reaches and gradually weakened in the lower reaches of the watershed. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

20 pages, 7333 KiB  
Article
Experimental Simulation Investigation on Slab Buckling Rockburst in Deep Tunnel
by Chao Ren, Xiaoming Sun, Manchao He and Dongqiao Liu
Appl. Sci. 2025, 15(4), 1682; https://doi.org/10.3390/app15041682 - 7 Feb 2025
Cited by 1 | Viewed by 632
Abstract
The relationship between slabbing failure and rockburst has become a hot issue in rockburst research. In this paper, the experimental system of impact rockburst is used to conduct a simulation experiment of rockburst induced by slab failure on metamorphic sandstone samples taken from [...] Read more.
The relationship between slabbing failure and rockburst has become a hot issue in rockburst research. In this paper, the experimental system of impact rockburst is used to conduct a simulation experiment of rockburst induced by slab failure on metamorphic sandstone samples taken from the deep-buried horseshoe-shaped tunnel in Gaoloushan, with “pan-shaped” rockburst pits on site and laboratory simulation experiments, which prove the rationality of the experimental results of rockburst. The quantitative analysis of the displacement field in the process of the slab buckling rockburst is carried out, which shows that the slab structure will undergo a long period of gestation before its formation, and the formation of the slab structure will accelerate the occurrence of rockburst. This type of rockburst has attenuation characteristics in the process of rockburst; in addition, the phenomenon of “slab buckling circle” is found. The generation of the “slab buckling circle” and the formation of slab buckling cracks are inconsistent, which is a time-lagged fracture in engineering. The relationship between the rupture parameters of rockburst disaster rock mass and time shows a compound exponential growth relationship, revealing that the mechanism of the slab buckling rockburst can be regarded as the result of the combined action of shear crack and tension crack, which plays a leading role, reflecting the characteristic of progressive fracture development. It is a typical progressive fracture-induced instability rockburst model, which is a strain-lag rockburst. Full article
Show Figures

Figure 1

18 pages, 933 KiB  
Article
Formulation, Quality Control and Stability Study of Pediatric Oral Dextrose Gel
by Edouard Lamy, Caroline Orneto, Oumil Her Abdou Ali, Lyna Kireche, Fanny Mathias, Cyrielle Bouguergour, Florence Peyron, Nicolas Primas, Christophe Sauzet, Philippe Piccerelle, Anne-Marie Maillotte, Veronique Brevaut-Malaty, Pascal Rathelot, Patrice Vanelle and Christophe Curti
Pharmaceuticals 2025, 18(2), 204; https://doi.org/10.3390/ph18020204 - 3 Feb 2025
Viewed by 1174
Abstract
Background/Objective: Little information is available on the stability and quality controls of compounded 40% dextrose gel required to ensure its safe use in the treatment and prevention of neonatal hypoglycemia. Whether its efficacy relies on buccal absorption also remains uncertain. This study investigates [...] Read more.
Background/Objective: Little information is available on the stability and quality controls of compounded 40% dextrose gel required to ensure its safe use in the treatment and prevention of neonatal hypoglycemia. Whether its efficacy relies on buccal absorption also remains uncertain. This study investigates the stability, microbiological safety, rheological properties and dextrose diffusion of a compounded 40% oral dextrose gel, ensuring it can be widely compounded and stored for clinical use. Methods: A 40% dextrose gel compounded with anhydrous dextrose, carboxymethylcellulose, citric acid, sorbic acid and sterile water was subjected to quality control measures including a dextrose content assay, degradation product analysis, microbiological testing and preservative efficacy. Stability studies were conducted at refrigerated (4–8 °C) and ambient temperatures for 7 days and 3 months, respectively. Rheological properties were assessed, and dextrose permeation was measured through an artificial membrane model that mimics a biological membrane. Results: The compounded gel demonstrated stability for up to 7 days at ambient temperature and 90 days when refrigerated. The dextrose content remained within the acceptable range (90–110%) and microbiological tests confirmed compliance with safety standards. The gel exhibited the consistent rheological properties and shear-thinning behavior appropriate for oral mucosal administration. In vitro permeation studies showed no evidence of dextrose diffusion with a long lag time followed by a low steady-state permeation flux. Conclusions: This study validates the compounding process of a stable 40% oral dextrose gel formulation for neonatal hypoglycemia management, which meets quality control criteria and can be safely administered in clinical practice, offering a cost-effective and safe alternative for neonatal care. Full article
(This article belongs to the Special Issue Pharmaceutical Formulation Characterization Design)
Show Figures

Figure 1

27 pages, 14463 KiB  
Article
Numerical Investigation of Track and Intensity Evolution of Typhoon Doksuri (2023)
by Dieu-Hong Vu, Ching-Yuang Huang and Thi-Chinh Nguyen
Atmosphere 2024, 15(9), 1105; https://doi.org/10.3390/atmos15091105 - 11 Sep 2024
Viewed by 1232
Abstract
This study utilized the WRF model to investigate the track evolution and rapid intensification (RI) of Typhoon Doksuri (2023) as it moved across the Luzon Strait and through the South China Sea (SCS). The simulation results indicate that Doksuri has a smaller track [...] Read more.
This study utilized the WRF model to investigate the track evolution and rapid intensification (RI) of Typhoon Doksuri (2023) as it moved across the Luzon Strait and through the South China Sea (SCS). The simulation results indicate that Doksuri has a smaller track sensitivity to the use of different physics schemes, while having a greater intensity sensitivity. Sensitivity numerical experiments with different physics schemes can well capture its northwestward movement in the first two days, but they predict less westward track deflection as the typhoon moves across the Luzon Strait and through the SCS. Moreover, all the experiments successfully simulated Doksuri’s RI, albeit with quite different rates and a time lag of 12 h. Among different combinations of physics schemes, there exists an optimal set of cumulus parameterization and cloud microphysics schemes for track and intensity predictions. Doksuri’s track changes as the typhoon moved across the Luzon Strait and through the SCS were influenced by the topographic effects of the terrain of the Philippines and Taiwan, to different extents. The track changes of Doksuri are explained by the wavenumber-one potential vorticity (PV) tendency budget from different physical processes, highlighting that the horizontal PV advection dominates the PV tendency throughout most of the simulation time due to the offset of vertical PV advection and differential diabatic heating. In addition, this study applies the extended Sawyer–Eliassen (SE) equation to compare the transverse circulations of the typhoon induced by various forcing sources. The SE solution indicates that radial inflow was largely driven in the lower-tropospheric vortex by strong diabatic heating, while being significantly enhanced in the lower boundary layer due to turbulent friction. All other physical forcing terms were relatively insignificant for the induced transverse circulation. The coordinated radial inflow at low levels may have led to the eyewall development in unbalanced dynamics. Intense diabatic heating thus was vital to the severe RI of Doksuri under a weak vertical wind shear. Full article
(This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (2nd Edition))
Show Figures

Figure 1

16 pages, 9421 KiB  
Article
Investigation of Type A Aortic Dissection Using Computational Modelling
by Mohammad Al-Rawi, Djelloul Belkacemi, Eric T. A. Lim and Manar Khashram
Biomedicines 2024, 12(9), 1973; https://doi.org/10.3390/biomedicines12091973 - 1 Sep 2024
Cited by 1 | Viewed by 1622
Abstract
Aortic dissection is a catastrophic failure of the endothelial wall that could lead to malperfusion or rupture. Computational modelling tools may help detect arterial damage. Technological advancements have led to more sophisticated forms of modelling being made available to low-grade computers. These devices [...] Read more.
Aortic dissection is a catastrophic failure of the endothelial wall that could lead to malperfusion or rupture. Computational modelling tools may help detect arterial damage. Technological advancements have led to more sophisticated forms of modelling being made available to low-grade computers. These devices can create 3D models with clinical data, where the clinical blood pressure waveforms’ model can be used to form boundary conditions for assessing hemodynamic parameters, modelling blood flow propagation along the aorta to predict the development of cardiovascular disease. This study presents patient-specific data for a rare case of severe Type A aortic dissection. CT scan images were taken nine months apart, consisting of the artery both before and after dissection. The results for the pre-dissection CT showed that the pressure waveform at the ascending aorta was higher, and the systolic pressure was lagging at the descending aorta. For the post-dissection analysis, we observed the same outcome; however, the amplitude for the waveform (systolic pressure) at the ascending aorta increased in the false lumen by 25% compared to the true lumen by 3%. Also, the waveform peak (systolic) was leading by 0.01 s. The hemodynamic parameter of wall shear stress (WSS) predicted the aneurysm’s existence at the ascending aorta, as well as potential aortic dissection. The high WSS contours were located at the tear location at the peak blood flow of 0.14 s, which shows the potential of this tool for earlier diagnosis of aortic dissection. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

17 pages, 7427 KiB  
Article
Experimental and Analytical Study on Shear Lag Effect of T-Shaped Reinforced Concrete Shear Walls
by Jianzhao Liu, Yonghui Hou, Hongyan Wang and Xiangyong Ni
Buildings 2024, 14(6), 1875; https://doi.org/10.3390/buildings14061875 - 20 Jun 2024
Cited by 1 | Viewed by 1365
Abstract
Because of the flanges on T-shaped shear walls (TSSWs), the shear force acting on such walls results in a shear lag effect, making it impossible to forecast with accuracy the normal stresses of the flanges using the Bernoulli–Euler assumption. Shear lag (SL) in [...] Read more.
Because of the flanges on T-shaped shear walls (TSSWs), the shear force acting on such walls results in a shear lag effect, making it impossible to forecast with accuracy the normal stresses of the flanges using the Bernoulli–Euler assumption. Shear lag (SL) in flanged walls has, however, received less attention from researchers, particularly in experimental studies. Understanding the SL in T-shaped reinforced concrete shear walls under shear and axial force is the main goal of this work. First, a SL model is suggested for TSSWs. In this model, the SL deflection is considered to be the generalized displacement and the SL warping deformation, and it is assumed to be a quadratic nonlinear function. Then, experimental and numerical simulation studies are, respectively, conducted to investigate SL effect of TSSWs, and also to evaluate the accuracy of the SL method. Finally, the parameter analysis is conducted to investigate the influence of axial load, shear force, and flange length on the SL effect of TSSWs. The results show that the SL of the TSSW is significant, the normal stress distribution (NSD) of the flange is uneven, and the normal stresses near the web are higher, according to the results of the analytical, simulated, and experimental results. The SL model can accurately predict the normal stresses of the flange of TSSWs, and the quadratic parabola assumption of the SL warp displacement of TSSWs is reasonable. Parameter analysis shows that axial force has little effect on the SL effect of TSSWs. The TSSWs under larger shear force have the more obvious SL effect. A more obvious SL effect occurs in the TSSWs with longer flanges. Full article
Show Figures

Figure 1

19 pages, 4065 KiB  
Article
Experimental Study on Shear Lag Effect of Long-Span Wide Prestressed Concrete Cable-Stayed Bridge Box Girder under Eccentric Load
by Yanfeng Li, Jiyuan Xie, Fengchi Wang, Di Wu, Jiahui Wang and Yanao Liu
Constr. Mater. 2024, 4(2), 425-443; https://doi.org/10.3390/constrmater4020023 - 20 May 2024
Viewed by 1000
Abstract
Based on the engineering background of the wide-width single cable-stayed bridge, the shear lag effects of the cross-section of these bridge box girders under the action of the eccentric load were experimentally studied. The behavior of shear lag effects in the horizontal and [...] Read more.
Based on the engineering background of the wide-width single cable-stayed bridge, the shear lag effects of the cross-section of these bridge box girders under the action of the eccentric load were experimentally studied. The behavior of shear lag effects in the horizontal and longitudinal bridge directions under eccentric load in the operational stage of a single cable-stayed bridge was analyzed by a model testing method and a finite element (FE) analytical method. The results showed that the plane stress calculation under unidirectional live load was similar to the results from spatial FE analysis and structural calculations performed according to the effective flange width described in the design specification. At the position of the main beam near the cable force point of action, the positive stress at its upper wing edge was greatest. At a distance from the cable tension point, the maximum positive stress position trend showed that from the center of the top flange to the junction of the top flange and the middle web to the junction of the top flange and the middle web and the side web. Under eccentric load, the positive and negative shear lag effects on the end fulcrum existed at the same time, and the shear lag coefficient on the web plate was larger than the shear lag coefficient on the unforced side. Due to the influence of constraint at the middle fulcrum near the middle pivot point, positive and negative shear lag effects were significant, and the coefficient variation range was large, resulting in large tensile stress on the roof plate in this area. According to FE analytical results, stress and shear forces of a single box three-chamber box girder under eccentric load were theoretically analyzed, the bending load decomposed into the accumulation of bending moment and axial force, using the bar simulation method, and the overall shear lag effect coefficient λ was obtained and verified. Full article
Show Figures

Figure 1

19 pages, 1519 KiB  
Article
On the Use of the Effective Width for Simply Supported Generally Loaded Box-Girders
by Francesca Pancella and Angelo Luongo
Appl. Sci. 2024, 14(7), 2848; https://doi.org/10.3390/app14072848 - 28 Mar 2024
Viewed by 1131
Abstract
A new method for evaluating the effective flange width of simply supported rectangular box-girders in bending is illustrated. It aims to overcome the lack in the literature of a general method able to supply the effective flange width for a general distribution of [...] Read more.
A new method for evaluating the effective flange width of simply supported rectangular box-girders in bending is illustrated. It aims to overcome the lack in the literature of a general method able to supply the effective flange width for a general distribution of loads along the beam axis, not restricted, i.e., to the few cases reported in standard codes. The method consists of finding an analytical expression for the effective width under sinusoidal loads of arbitrary wavelength and combining the results in the framework of a Fourier analysis. The model allows investigating the shear-lag effects on displacements and stresses. The analytical formulation proposed is validated against numerical results supplied by refined Finite Element analyses. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

19 pages, 6116 KiB  
Article
The Intermittency of Turbulence in Magneto-Hydrodynamical Simulations and in the Cosmos
by Pierre Lesaffre, Edith Falgarone and Pierre Hily-Blant
Atmosphere 2024, 15(2), 211; https://doi.org/10.3390/atmos15020211 - 8 Feb 2024
Cited by 1 | Viewed by 1559
Abstract
Turbulent dissipation is a central issue in the star and galaxy formation process. Its fundamental property of space–time intermittency, well characterised in incompressible laboratory experiments, remains elusive in cosmic turbulence. Progress requires the combination of state-of-the-art modelling, numerical simulations and observations. The power [...] Read more.
Turbulent dissipation is a central issue in the star and galaxy formation process. Its fundamental property of space–time intermittency, well characterised in incompressible laboratory experiments, remains elusive in cosmic turbulence. Progress requires the combination of state-of-the-art modelling, numerical simulations and observations. The power of such a combination is illustrated here, where the statistical method intended to locate the extrema of velocity shears in a turbulent field, which are the signposts of intense dissipation extrema, is applied to numerical simulations of compressible magneto-hydrodynamical (MHD) turbulence dedicated to dissipation scales and to observations of a turbulent molecular cloud. We demonstrate that increments of several observables computed at the smallest lags can detect coherent structures of intense dissipation. We apply this statistical method to the observations of a turbulent molecular cloud close to the Sun in our galaxy and disclose a remarkable structure of extremely large velocity shear. At the location of the largest velocity shear, this structure is found to foster 10× more carbon monoxide molecules than standard diffuse molecular gas, an enrichment supported by models of non-equilibrium warm chemistry triggered by turbulent dissipation. In our simulations, we also compute structure functions of various synthetic observables and show that they verify Extended Self-Similarity. This allows us to compute their intermittency exponents, and we show how they constrain some properties of the underlying three-dimensional turbulence. The power of the combination of modelling and observations is also illustrated by the observations of the CH+ cation that provide unique quantitative information on the kinetic energy trail in the massive, multi-phase and turbulent circum-galactic medium of a galaxy group at redshift z=2.8. Full article
Show Figures

Figure 1

18 pages, 8128 KiB  
Article
Refined Analysis of Spatial Three-Curved Steel Box Girder Bridge and Temperature Stress Prediction Based on WOA-BPNN
by Wei Hu, Zhongyong Zhang, Junwei Shi, Yulun Chen, Yixuan Li and Qian Feng
Buildings 2024, 14(2), 415; https://doi.org/10.3390/buildings14020415 - 3 Feb 2024
Cited by 5 | Viewed by 1232
Abstract
Bridges often improve the visual appeal of urban landscapes by incorporating curve elements to create iconic forms. However, it is noteworthy that curved bridges have unique mechanical properties under loads compared to straight bridges. This study analyzes a spatial three-curved steel box girder [...] Read more.
Bridges often improve the visual appeal of urban landscapes by incorporating curve elements to create iconic forms. However, it is noteworthy that curved bridges have unique mechanical properties under loads compared to straight bridges. This study analyzes a spatial three-curved steel box girder bridge based on an actual engineering case with a complex configuration. Initially, the finite element software Midas/Civil 2021 is utilized to establish a beam element model and a plate element model to examine the structural responses under dead loads in detail. Then, two different temperature gradient distribution models are employed for the temperature effect analysis. The backpropagation neural network (BPNN) optimized by the WOA algorithm is trained as a surrogate model for finite element models based on the results of temperature stress simulation. The results reveal that the bending–torsion coupling effect in the second span of the spatial three-curved steel box girder bridge is pronounced, with the maximum torque reaching 40% of the bending moment. The uneven distribution of cross-section stress is particularly significant at the vertices, where the shear lag coefficient exceeds 3. Under the action of temperature gradients, the bridge displays a warped stress state; the stress results obtained from the exponential model exhibit a 21% increase compared to BS-5400. Optimization of the weights by the WOA algorithm results in a significant improvement in prediction accuracy, and the convergence speed is improved by 30%. The coefficient of determination (R2) for predicting temperature stress can reach as high as 0.99. Full article
(This article belongs to the Special Issue Advances in Steel–Concrete Composite Structures)
Show Figures

Figure 1

11 pages, 1010 KiB  
Article
Characteristics and Treatment Strategies for Basicervical and Transcervical Shear Fractures of the Femoral Neck
by Hiroaki Kijima, Shin Yamada, Tetsuya Kawano, Motoharu Komatsu, Yosuke Iwamoto, Natsuo Konishi, Hitoshi Kubota, Hiroshi Tazawa, Takayuki Tani, Norio Suzuki, Keiji Kamo, Ken Sasaki, Masashi Fujii, Itsuki Nagahata, Takanori Miura, Shun Igarashi and Naohisa Miyakoshi
J. Clin. Med. 2023, 12(22), 7024; https://doi.org/10.3390/jcm12227024 - 10 Nov 2023
Viewed by 3598
Abstract
This study aimed to define basicervical and transcervical shear fractures using area classification and to determine the optimal osteosynthesis implants for them. The clinical outcomes of 1042 proximal femur fractures were investigated. A model of the proximal femur of a healthy adult was [...] Read more.
This study aimed to define basicervical and transcervical shear fractures using area classification and to determine the optimal osteosynthesis implants for them. The clinical outcomes of 1042 proximal femur fractures were investigated. A model of the proximal femur of a healthy adult was created from computed tomography images, and basicervical and transcervical shear fractures were established in the model. Osteosynthesis models were created using a short femoral nail with a single lag screw or two lag screws and a long femoral nail with a single lag screw or two lag screws. The minimum principal strains of the fracture surfaces were compared when the maximum loads during walking were applied to these models using finite element analysis software. Basicervical fractures accounted for 0.96% of all proximal femur fractures, 67% of which were treated with osteosynthesis; the failure rate was 0%. Transcervical shear fractures accounted for 9.6% of all proximal femur fractures, 24% of which were treated with osteosynthesis; the failure rate was 13%. Finite element analysis showed that transcervical shear fracture has high instability. To perform osteosynthesis, multiple screw insertions into the femoral head and careful postoperative management are required; joint replacement should be considered to achieve early mobility. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

21 pages, 16155 KiB  
Article
Research on a Clustering Forecasting Method for Short-Term Precipitation in Guangdong Based on the CMA-TRAMS Ensemble Model
by Jiawen Zheng, Pengfei Ren, Binghong Chen, Xubin Zhang, Hongke Cai and Haowen Li
Atmosphere 2023, 14(10), 1488; https://doi.org/10.3390/atmos14101488 - 26 Sep 2023
Cited by 2 | Viewed by 1234
Abstract
In light of the 2020–2021 flood season in Guangdong, we conducted a comprehensive assessment of short-term precipitation forecasts generated by the ensemble prediction system (EPS) based on the China Meteorological Administration Tropical Regional Atmosphere Model for the South China Sea (CMA-TRAMS). Furthermore, we [...] Read more.
In light of the 2020–2021 flood season in Guangdong, we conducted a comprehensive assessment of short-term precipitation forecasts generated by the ensemble prediction system (EPS) based on the China Meteorological Administration Tropical Regional Atmosphere Model for the South China Sea (CMA-TRAMS). Furthermore, we applied four distinct strategies to cluster the ensemble forecast data produced by the model for precipitation, aiming to enhance our understanding of their applicability in short-term precipitation forecasting for Guangdong. Our key findings were as follows.: Precipitation during the 2020–2021 flood season in Guangdong exhibited distinct characteristics. The impacting areas of frontal and subtropical high-edge rainfall were relatively scattered, predominantly occurring in the evening and nighttime. In contrast, monsoon precipitation and return-flow precipitation were concentrated, with their impacts lasting from early morning to evening. Notably, the errors using the ensemble maximum and minimum values were large, while the errors for the ensemble mean values and medians were small. This indicated that the model’s short-term precipitation forecasts possessed a high degree of stability. The vertical shear of different types of precipitation exerted a noticeable influence on the model’s performance. The model consistently displayed a tendency to underestimate short-term precipitation in Guangdong; however, this bias decreased with longer lead times. Simultaneously, the model’s dispersion increased with longer lead times. In terms of mean absolute error (MAE) test results, there was little difference in the performance of ensemble primary forecasts under various strategies, while the “ward” strategy performed well in sub-primary cluster forecasts. This was particularly true for areas and types of precipitation where the model’s performance was poor. While the clustering approach lagged behind ensemble mean forecasts in predicting rainy conditions, it exhibited improvement in forecasting short-term heavy rainfall events. The “complete” and “single” strategies consistently delivered the most accurate forecasts for such events. Our study sheds light on the effectiveness of clustering methods in improving short-term precipitation forecasts for Guangdong, particularly in regions and conditions where the model initially struggled. These findings contribute to our understanding of precipitation forecasting during flood seasons and can inform strategies for enhancing forecast accuracy in similar contexts. Full article
(This article belongs to the Special Issue Identification and Optimization of Retrieval Model in Atmosphere)
Show Figures

Figure 1

23 pages, 19629 KiB  
Article
Model Test on Grouting Properties of Alluvial Filler Soil
by Xingxing Wei and Guanghui Chen
Appl. Sci. 2023, 13(18), 10395; https://doi.org/10.3390/app131810395 - 17 Sep 2023
Viewed by 1562
Abstract
Due to the complexity and untraceability of the grouting process and the underpinning of the slurry diffusion law, the current study on the grouting properties of alluvial filler soil lags behind the engineering application. Therefore, grouting model tests, including a laboratory soil test [...] Read more.
Due to the complexity and untraceability of the grouting process and the underpinning of the slurry diffusion law, the current study on the grouting properties of alluvial filler soil lags behind the engineering application. Therefore, grouting model tests, including a laboratory soil test and a dynamic penetration test, are developed in this study to investigate the diffusion law of slurry and strength characteristics in alluvial filler soil. Through the excavation of the grouting model, the diffusion pattern of the grouting slurry can be observed precisely. Then an approach proposed in this study for estimating the shear strength growth of the grouting soil is verified by the grouting model tests. In addition, to assess the grouting volume, an analytical model considering the shrinkage coefficient of the slurry is developed. The good agreement between the test data and analytical results shows that the proposed method can effectively estimate the increase in shear strength and grouting amount. The excavation results show that the slurry is generally first filled and fractured along the interface between rock and soil and mainly fractured horizontally, with widths between 0.3~6.0 cm. The curves for the diffusion radius versus the distance from the grouting hole show a wavelike relationship in all directions (i.e., horizontal, up, and down). Full article
Show Figures

Figure 1

16 pages, 6506 KiB  
Article
Strain Transfer Mechanism in Surface-Bonded Distributed Fiber Optic Sensors under Different Strain Fields
by Wenbo Du, Xing Zheng, Bin Shi, Mengya Sun, Hao Wu, Weida Ni, Zhenming Zheng and Meifeng Niu
Sensors 2023, 23(15), 6863; https://doi.org/10.3390/s23156863 - 2 Aug 2023
Cited by 4 | Viewed by 1714
Abstract
Mastering the strain transfer mechanism in distributed fiber optic (DFO) sensors holds the key to analyzing strain measurement errors from DFO sensing systems. However, the impact of the monitored structure’s strain distribution on the strain transfer mechanism in DFO sensors has often been [...] Read more.
Mastering the strain transfer mechanism in distributed fiber optic (DFO) sensors holds the key to analyzing strain measurement errors from DFO sensing systems. However, the impact of the monitored structure’s strain distribution on the strain transfer mechanism in DFO sensors has often been overlooked in the existing research. To address this issue, a strain transfer model of surface-bonded DFO sensors with multilayered structures was established based on the shear lag theory. The closed-form solutions of the strain transfer coefficient of DFO sensors subjected to uniform, parabolic, single-linear gradient, and bilinear gradient strains were obtained. With a high-accuracy optical frequency-domain reflectometer (OFDR), the theoretical model was validated by laboratory tests. Upon parametric analysis, suggestions were further offered about designing and installing DFO sensors. Full article
(This article belongs to the Special Issue Geo-Sensing and Geo-Big Data)
Show Figures

Figure 1

Back to TopTop