Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = stereoselective biocatalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 895 KB  
Review
Hybrid Biocatalysis with Photoelectrocatalysis for Renewable Furan Derivatives’ Valorization: A Review
by Shize Zheng, Xiangshi Liu, Bingqian Guo, Yanou Qi, Xifeng Lv, Bin Wang and Di Cai
Photochem 2025, 5(4), 35; https://doi.org/10.3390/photochem5040035 - 1 Nov 2025
Viewed by 222
Abstract
Biocatalysis is fundamental to biological processes and sustainable chemical productions. Over time, the biocatalysis strategy has been widely researched. Initially, biomanufacturing and catalysis of high-value chemicals were carried out through direct immobilization and application of biocatalysts, including natural enzymes and living cells. With [...] Read more.
Biocatalysis is fundamental to biological processes and sustainable chemical productions. Over time, the biocatalysis strategy has been widely researched. Initially, biomanufacturing and catalysis of high-value chemicals were carried out through direct immobilization and application of biocatalysts, including natural enzymes and living cells. With the evolution of green chemistry and environmental concern, hybrid photoelectro-biocatalysis (HPEB) platforms are seen as a new approach to enhance biocatalysis. This strategy greatly expands the domain of natural biocatalysis, especially for bio-based components. The selective valorization of renewable furan derivatives, such as 5-hydroxymethylfurfural (HMF) and furfural, is central to advancing biomass-based chemical production. Biocatalysis offers high chemo-, regio-, and stereo-selectivity under mild conditions compared with traditional chemical catalysis, yet it is often constrained by the costly and inefficient regeneration of redox cofactors like NAD(P)H. Photoelectrocatalysis provides a sustainable means to supply reducing equivalents using solar or electrical energy. In recent years, hybrid systems that integrate biocatalysis with photoelectrocatalysis have emerged as a promising strategy to overcome this limitation. This review focuses on recent advances in such systems, where photoelectrochemical platforms enable in situ cofactor regeneration to drive enzymatic transformations of furan-based substrates. We critically analyze representative coupling strategies, materials and device configurations, and reaction engineering approaches. Finally, we outline future directions for developing efficient, robust, and industrially viable hybrid catalytic platforms for green biomass valorization. Full article
(This article belongs to the Special Issue Feature Review Papers in Photochemistry)
Show Figures

Figure 1

25 pages, 6054 KB  
Review
Recent Advances in Biocatalytic Dearomative Spirocyclization Reactions
by Xiaorui Chen, Changtong Zhu, Luyun Ji, Changmei Liu, Yan Zhang, Yijian Rao and Zhenbo Yuan
Catalysts 2025, 15(7), 673; https://doi.org/10.3390/catal15070673 - 10 Jul 2025
Viewed by 1674
Abstract
Spirocyclic architectures, which feature two rings sharing a single atom, are common in natural products and exhibit beneficial biological and material properties. Due to the significance of these architectures, biocatalytic dearomative spirocyclization has recently emerged as a powerful approach for constructing three-dimensional spirocyclic [...] Read more.
Spirocyclic architectures, which feature two rings sharing a single atom, are common in natural products and exhibit beneficial biological and material properties. Due to the significance of these architectures, biocatalytic dearomative spirocyclization has recently emerged as a powerful approach for constructing three-dimensional spirocyclic frameworks under mild, sustainable conditions and with exquisite stereocontrol. This review surveys the latest advances in biocatalyzed spirocyclization of all-carbon arenes (phenols and benzenes), aza-aromatics (indoles and pyrroles), and oxa-aromatics (furans). We highlight cytochrome P450s, flavin-dependent monooxygenases, multicopper oxidases, and novel metalloenzyme platforms that effect regio- and stereoselective oxidative coupling, epoxidation/semi-pinacol rearrangement, and radical-mediated cyclization to produce diverse spirocycles. Mechanistic insights gleaned from structural, computational, and isotope-labeling studies are discussed where necessary to help the readers further understand the reported reactions. Collectively, these examples demonstrate the transformative potential of biocatalysis to streamline access to spirocyclic scaffolds that are challenging to prepare through traditional methods, underscoring biocatalysis as a transformative tool for synthesizing pharmaceutically relevant spiroscaffolds while adhering to green chemistry paradigms to ultimately contribute to a cleaner and more sustainable future. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

16 pages, 1696 KB  
Review
Recent Advances in the Engineering of Cytochrome P450 Enzymes
by Chang Liu and Xi Chen
Catalysts 2025, 15(4), 374; https://doi.org/10.3390/catal15040374 - 11 Apr 2025
Cited by 2 | Viewed by 4435
Abstract
Cytochrome P450 enzymes (CYPs) are versatile heme-containing monooxygenases involved in the metabolism of endogenous and exogenous compounds, as well as natural product biosynthesis. Their ability to catalyze regio- and stereoselective oxidation reactions makes them valuable in pharmaceuticals, fine chemicals, and biocatalysis. However, wild-type [...] Read more.
Cytochrome P450 enzymes (CYPs) are versatile heme-containing monooxygenases involved in the metabolism of endogenous and exogenous compounds, as well as natural product biosynthesis. Their ability to catalyze regio- and stereoselective oxidation reactions makes them valuable in pharmaceuticals, fine chemicals, and biocatalysis. However, wild-type CYPs suffer from low catalytic efficiency, limited substrate specificity, and instability under industrial conditions. Recent advances in protein engineering—rational design, semi-rational design, and directed evolution—have enhanced their activity, stability, and substrate scope. These strategies have enabled CYPs to be engineered for applications like C–H functionalization, carbene transfer, and complex molecule biosynthesis. Despite progress, challenges remain in optimizing efficiency, expanding substrate ranges, and scaling production for industrial use. Future directions include integrating CYPs with other biocatalysts, improving high-throughput screening, and applying machine learning to enzyme design. This review highlights recent developments and the promising future of engineered CYPs in sustainable chemistry, drug development, and high-value chemical production. Full article
(This article belongs to the Special Issue Enzyme Engineering—the Core of Biocatalysis)
Show Figures

Figure 1

13 pages, 1499 KB  
Article
Fungal Biocatalysis in Stereoselective Oxidation of 2-Phenylethanol
by Agnieszka Raczyńska, Beata Szmigiel-Merena, Małgorzata Brzezińska-Rodak, Magdalena Klimek-Ochab and Ewa Żymańczyk-Duda
Symmetry 2025, 17(1), 17; https://doi.org/10.3390/sym17010017 - 26 Dec 2024
Cited by 1 | Viewed by 1127
Abstract
Three fungal strains were employed for the stereoselective oxidation of the cheap and commercially available substrate 2-phenylethanol, which resulted in chiral building blocks being received. The whole-cell biocatalysts were as follows: Beauveria bassiana DSM 1344, Beauveria brongniartii DSM 6651, and Rhizopus arrhizus DSM [...] Read more.
Three fungal strains were employed for the stereoselective oxidation of the cheap and commercially available substrate 2-phenylethanol, which resulted in chiral building blocks being received. The whole-cell biocatalysts were as follows: Beauveria bassiana DSM 1344, Beauveria brongniartii DSM 6651, and Rhizopus arrhizus DSM 1185. The main product of Beauveria bassiana bioconversion was 1-phenylethane-1,2-diol, obtained, depending on the form of the biocatalyst, as an R-enantiomer (e.g., 99.9%) with fresh biomass application or as a racemic mixture in cases of immobilization in agar-agar. The best and most innovative results for the synthesis of the R-enantiomer of diol were received under precisely defined conditions as a result of a scaling study conducted on an automatic batch reactor. This is a pioneering result, since, in previous studies, fresh mycelium of Aspergillus niger resulted in this product being received as the (S) enantiomer. Also, the use of Rhizopus arrhizus DSM 1185 (immobilized in polyurethane foams) presented important results, as the bioconversion of phenyl ethanol led, indeed, to the racemic mixture of 1-phenylethane-1,2-diol but was accompanied by a noticeable tyrosol synthesis, which had not been reported previously. Full article
(This article belongs to the Special Issue Chemistry: Symmetry/Asymmetry—Feature Papers and Reviews)
Show Figures

Figure 1

23 pages, 7117 KB  
Article
Synthesis of Chiral Acyclic Pyrimidine Nucleoside Analogues from DHAP-Dependent Aldolases
by Mariano Nigro, Israél Sánchez-Moreno, Raúl Benito-Arenas, Ana L. Valino, Adolfo M. Iribarren, Nicolás Veiga, Eduardo García-Junceda and Elizabeth S. Lewkowicz
Biomolecules 2024, 14(7), 750; https://doi.org/10.3390/biom14070750 - 25 Jun 2024
Viewed by 1743
Abstract
Dihydroxyacetone phosphate (DHAP)-dependent aldolases catalyze the aldol addition of DHAP to a variety of aldehydes and generate compounds with two stereocenters. This reaction is useful to synthesize chiral acyclic nucleosides, which constitute a well-known class of antiviral drugs currently used. In such compounds, [...] Read more.
Dihydroxyacetone phosphate (DHAP)-dependent aldolases catalyze the aldol addition of DHAP to a variety of aldehydes and generate compounds with two stereocenters. This reaction is useful to synthesize chiral acyclic nucleosides, which constitute a well-known class of antiviral drugs currently used. In such compounds, the chirality of the aliphatic chain, which mimics the open pentose residue, is crucial for activity. In this work, three DHAP-dependent aldolases: fructose-1,6-biphosphate aldolase from rabbit muscle, rhanmulose-1-phosphate aldolase from Thermotoga maritima, and fuculose-1-phosphate aldolase from Escherichia coli, were used as biocatalysts. Aldehyde derivatives of thymine and cytosine were used as acceptor substrates, generating new acyclic nucleoside analogues containing two new stereocenters with conversion yields between 70% and 90%. Moreover, structural analyses by molecular docking were carried out to gain insights into the diasteromeric excess observed. Full article
Show Figures

Figure 1

19 pages, 3204 KB  
Review
Recent Applications of Flavin-Dependent Monooxygenases in Biosynthesis, Pharmaceutical Development, and Environmental Science
by Yuze Guan and Xi Chen
Catalysts 2023, 13(12), 1495; https://doi.org/10.3390/catal13121495 - 6 Dec 2023
Cited by 6 | Viewed by 4874
Abstract
Flavin-dependent monooxygenases (FMOs) have raised substantial interest as catalysts in monooxygenation reactions, impacting diverse fields such as drug metabolism, environmental studies, and natural product synthesis. Their application in biocatalysis boasts several advantages over conventional chemical catalysis, such as heightened selectivity, safety, sustainability, and [...] Read more.
Flavin-dependent monooxygenases (FMOs) have raised substantial interest as catalysts in monooxygenation reactions, impacting diverse fields such as drug metabolism, environmental studies, and natural product synthesis. Their application in biocatalysis boasts several advantages over conventional chemical catalysis, such as heightened selectivity, safety, sustainability, and eco-friendliness. In the realm of biomedicine, FMOs are pivotal in antibiotic research, significantly influencing the behavior of natural products, antimicrobial agents, and the pathways critical to drug synthesis They are also underscored as potential pharmaceutical targets, pivotal in opposing disease progression and viable for therapeutic intervention. Additionally, FMOs play a substantial role in environmental science, especially in pesticide processing and in preserving plant vitality. Their involvement in the biosynthesis of compounds like polyethers, tropolones, and ω-hydroxy fatty acids, with remarkable regio- and stereoselectivity, renders them indispensable in drug discovery and development. As our comprehension of FMOs’ catalytic mechanisms and structures advances, through the use of cutting-edge biotechnologies like computational design and directed evolution, FMOs are poised to occupy an increasingly significant role in both scientific exploration and industrial applications. Full article
(This article belongs to the Special Issue State-of-the-Art Enzyme Engineering and Biocatalysis in China)
Show Figures

Figure 1

15 pages, 2063 KB  
Article
Asymmetric Bioreduction of Ethyl 4-Chloroacetoacetate into Ethyl 4-Chloro-3-hydroxybutyrate by Recombinant Escherichia coli CgCR in Ethyl Acetate-Betaine:Lactic Acid-Water
by Linsong Yang, Daozhu Xu, Luyao Jiang and Yucai He
Processes 2023, 11(11), 3144; https://doi.org/10.3390/pr11113144 - 3 Nov 2023
Cited by 4 | Viewed by 2292
Abstract
Objective: Optically active (R)-ethyl 4-chloro-3-hydroxybutyrate ((R)-CHBE) is a useful chiral building block for the synthesis of pharmaceuticals. Recently, there has been great interest in the synthesis of (R)-CHBE via the highly stereoselective bioreduction of ethyl 4-chloro-3-oxobutanoate [...] Read more.
Objective: Optically active (R)-ethyl 4-chloro-3-hydroxybutyrate ((R)-CHBE) is a useful chiral building block for the synthesis of pharmaceuticals. Recently, there has been great interest in the synthesis of (R)-CHBE via the highly stereoselective bioreduction of ethyl 4-chloro-3-oxobutanoate (COBE) under mild conditions. Methods: A highly efficient bioreduction process for transforming COBE into (R)-CHBE was developed in a biocompatible organic solvent–deep eutectic solvent–water reaction medium. Results: Recombinant Escherichia coli containing carbonyl reductase (CgCR) and glucose dehydrogenase (GDH) was successfully constructed and characterized. In addition, the feasibility of the asymmetric bioreduction of COBE to (R)-CHBE was verified in an organic solvent–deep eutectic solvent–water (ethyl acetate-betaine/lactic acid-water) system. At pH 7.0 and 30 °C, the kinetic constants Km and kcat of COBE were 20.9 mM and 56.1 s−1, respectively. A high (R)-CHBE yield (≥90%) was achieved by catalyzing COBE (1000 mM) in 12 h with E. coli CgCR cells in the presence of Ni2+ (7 mM) and glucose (3.5 mM glucose/mM COBE) in an ethyl acetate-betaine/lactic acid-H2O (50/7/43, v/v/v) system. The effects of organic solvents and DESs on whole-cell permeability were analyzed. Conclusions: An efficient bioreduction system was constructed for biologically transforming COBE to (R)-CHBE via whole-cell biocatalysis, and the established bioprocess has potential application in future. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

12 pages, 1639 KB  
Article
An Enzymatic Strategy for the Selective Methylation of High-Value-Added Tetrahydroprotoberberine Alkaloids
by Wanli Zhao, Manyu Liu, Kemeng Liu, Hanqing Liu, Xiufeng Liu and Jihua Liu
Int. J. Mol. Sci. 2023, 24(20), 15214; https://doi.org/10.3390/ijms242015214 - 16 Oct 2023
Cited by 2 | Viewed by 2105
Abstract
Tetrahydroprotoberberines (THPBs) are plant-specific alkaloids with significant medicinal value. They are present in trace amounts in plants and are difficult to chemically synthesize due to stereoselectivity and an unfavorable environment. In this study, a selective methylation strategy was developed for the biocatalysis of [...] Read more.
Tetrahydroprotoberberines (THPBs) are plant-specific alkaloids with significant medicinal value. They are present in trace amounts in plants and are difficult to chemically synthesize due to stereoselectivity and an unfavorable environment. In this study, a selective methylation strategy was developed for the biocatalysis of seven high-value-added THPB compounds using 4’-O-methyltransferase (Cj4’OMT), norcoclaurine 6-O-methyltransferase (Cj6OMT), and (S)-scoulerine 9-O-methyltransferase (SiSOMT and PsSOMT) in engineered E. coli. The methyltransferases Cj4’OMT, Cj6OMT, PsSOMT, and SiSOMT were expressed heterologously in E. coli. Compound 1 (10-methoxy-2,3,9-tetrahydroxyberbine) was synthesized using the recombinant E. coli strain Cj4’OMT and the substrate 2,3,9,10-tetrahydroxyberbine. Compound 2 (9-methoxy-2,3,10-tetrahydroxyberbine) was produced in the recombinant Escherichia coli (E. coli) strain PsSOMT, and compounds 2 and 3 (discretamine) were produced in the recombinant E. coli strain SiSOMT. Compounds 4 (9,10-methoxy-2,3-tetrahydroxyberbine) and 5 (corypalmine) were obtained by co-culturing the recombinant strains Cj4’OMT and SiSOMT with substrate. Compounds 6 (scoulerine) and 7 (isoscoulerine) were produced by co-culturing the substrate with the recombinant strains Cj4’OMT and Cj6OMT. To increase the yield of novel compound 2, the flask culture conditions of the engineered SiSOMT strain were optimized, resulting in the production of 165.74 mg/L of this compound. This study thus presents an enzymatic approach to the synthesis of high-value-added THPBs with minimum environmental wastage. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

20 pages, 9564 KB  
Review
Recent Advances in Enantioselective Catalytic Electrochemical Organic Transformations
by Fabrizio Medici, Simonetta Resta, Stefano Andolina and Maurizio Benaglia
Catalysts 2023, 13(6), 944; https://doi.org/10.3390/catal13060944 - 28 May 2023
Cited by 11 | Viewed by 4153
Abstract
Different approaches can be undertaken to realise a stereoselective electrochemical synthesis. Significant contributions to enantioselective electrochemical organic synthesis have been reported and largely reviewed in recent years. However, the development of general strategies for the electrochemical enantiocontrol of a transformation still presents considerable [...] Read more.
Different approaches can be undertaken to realise a stereoselective electrochemical synthesis. Significant contributions to enantioselective electrochemical organic synthesis have been reported and largely reviewed in recent years. However, the development of general strategies for the electrochemical enantiocontrol of a transformation still presents considerable challenges; in particular, relatively few contributions of highly enantioselective catalytic electrochemical reactions have been reported to date. In this review article, the most recent examples of asymmetric electrochemical catalysis are discussed. The article is organised by the three types of enantioselective catalysis: metal-based catalysis, organocatalysis and biocatalysis; in each section, the most significant and recent advances are presented and discussed. Full article
(This article belongs to the Special Issue New Trends in Asymmetric Catalysis: Green and Sustainable Catalysts)
Show Figures

Graphical abstract

14 pages, 9664 KB  
Article
New Anti-Prelog Stereospecific Whole-Cell Biocatalyst for Asymmetric Reduction of Prochiral Ketones
by Min-Yu Wang, Shun-Ju Cai, Jia-Chun Lin, Xiao-Jun Ji and Zhi-Gang Zhang
Molecules 2023, 28(3), 1422; https://doi.org/10.3390/molecules28031422 - 2 Feb 2023
Cited by 4 | Viewed by 2824
Abstract
The biocatalytic asymmetric reduction of prochiral ketones for the production of enantiopure alcohols is highly desirable due to its inherent advantages over chemical methods. In this study, a new bacterial strain capable of transforming ketones to corresponding alcohols with high activity and excellent [...] Read more.
The biocatalytic asymmetric reduction of prochiral ketones for the production of enantiopure alcohols is highly desirable due to its inherent advantages over chemical methods. In this study, a new bacterial strain capable of transforming ketones to corresponding alcohols with high activity and excellent enantioselectivity was discovered in a soil sample. The strain was subsequently identified as Bacillus cereus TQ-2 based on its physiological characteristics and 16S rDNA sequence analysis. Under optimized reaction conditions, the resting cells of B. cereus TQ-2 converted acetophenone to enantioenriched (R)-1-phenylethanol with 99% enantiometric excess following anti-Prelog’s rule, which is scarce in biocatalytic ketone reduction. The optimum temperature for the cells was 30 °C, and considerable catalytic activity was observed over a broad pH range from 5.0 to 9.0. The cells showed enhanced catalytic activity in the presence of 15% (v/v) glycerol as a co-substrate. The catalytic activity can also be substantially improved by adding Ca2+ or K+ ions. Moreover, the B. cereus TQ-2 cell was highly active in reducing several structurally diverse ketones and aldehydes to form corresponding alcohols with good to excellent conversion. Our study provides a versatile whole-cell biocatalyst that can be used in the asymmetric reduction of ketones for the production of chiral alcohol, thereby expanding the biocatalytic toolbox for potential practical applications. Full article
Show Figures

Figure 1

33 pages, 6573 KB  
Review
Stereoselective Synthesis of Flavonoids: A Brief Overview
by Ana Margarida Pereira, Honorina Cidade and Maria Elizabeth Tiritan
Molecules 2023, 28(1), 426; https://doi.org/10.3390/molecules28010426 - 3 Jan 2023
Cited by 23 | Viewed by 9601
Abstract
Stereoselective synthesis has been emerging as a resourceful tool because it enables the obtaining of compounds with biological interest and high enantiomeric purity. Flavonoids are natural products with several biological activities. Owing to their biological potential and aiming to achieve enantiomerically pure forms, [...] Read more.
Stereoselective synthesis has been emerging as a resourceful tool because it enables the obtaining of compounds with biological interest and high enantiomeric purity. Flavonoids are natural products with several biological activities. Owing to their biological potential and aiming to achieve enantiomerically pure forms, several methodologies of stereoselective synthesis have been implemented. Those approaches encompass stereoselective chalcone epoxidation, Sharpless asymmetric dihydroxylation, Mitsunobu reaction, and the cycloaddition of 1,4-benzoquinone. Chiral auxiliaries, organo-, organometallic, and biocatalysis, as well as the chiral pool approach were also employed with the goal of obtaining chiral bioactive flavonoids with a high enantiomeric ratio. Additionally, the employment of the Diels–Alder reaction based on the stereodivergent reaction on a racemic mixture strategy or using catalyst complexes to synthesise pure enantiomers of flavonoids was reported. Furthermore, biomimetic pathways displayed another approach as illustrated by the asymmetric coupling of 2-hydroxychalcones driven by visible light. Recently, an asymmetric transfer hydrogen-dynamic kinetic resolution was also applied to synthesise (R,R)-cis-alcohols which, in turn, would be used as building blocks for the stereoselective synthesis of flavonoids. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

21 pages, 2357 KB  
Review
Hijacking Chemical Reactions of P450 Enzymes for Altered Chemical Reactions and Asymmetric Synthesis
by Eerappa Rajakumara, Dubey Saniya, Priyanka Bajaj, Rajanna Rajeshwari, Jyotsnendu Giri and Mehdi D. Davari
Int. J. Mol. Sci. 2023, 24(1), 214; https://doi.org/10.3390/ijms24010214 - 22 Dec 2022
Cited by 7 | Viewed by 4446
Abstract
Cytochrome P450s are heme-containing enzymes capable of the oxidative transformation of a wide range of organic substrates. A protein scaffold that coordinates the heme iron, and the catalytic pocket residues, together, determine the reaction selectivity and regio- and stereo-selectivity of the P450 enzymes. [...] Read more.
Cytochrome P450s are heme-containing enzymes capable of the oxidative transformation of a wide range of organic substrates. A protein scaffold that coordinates the heme iron, and the catalytic pocket residues, together, determine the reaction selectivity and regio- and stereo-selectivity of the P450 enzymes. Different substrates also affect the properties of P450s by binding to its catalytic pocket. Modulating the redox potential of the heme by substituting iron-coordinating residues changes the chemical reaction, the type of cofactor requirement, and the stereoselectivity of P450s. Around hundreds of P450s are experimentally characterized, therefore, a mechanistic understanding of the factors affecting their catalysis is increasingly vital in the age of synthetic biology and biotechnology. Engineering P450s can enable them to catalyze a variety of chemical reactions viz. oxygenation, peroxygenation, cyclopropanation, epoxidation, nitration, etc., to synthesize high-value chiral organic molecules with exceptionally high stereo- and regioselectivity and catalytic efficiency. This review will focus on recent studies of the mechanistic understandings of the modulation of heme redox potential in the engineered P450 variants, and the effect of small decoy molecules, dual function small molecules, and substrate mimetics on the type of chemical reaction and the catalytic cycle of the P450 enzymes. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 7316 KB  
Article
Functional Characterization and Synthetic Application of Is2-SDR, a Novel Thermostable and Promiscuous Ketoreductase from a Hot Spring Metagenome
by Erica Elisa Ferrandi, Ivan Bassanini, Susanna Bertuletti, Sergio Riva, Chiara Tognoli, Marta Vanoni and Daniela Monti
Int. J. Mol. Sci. 2022, 23(20), 12153; https://doi.org/10.3390/ijms232012153 - 12 Oct 2022
Cited by 5 | Viewed by 3257
Abstract
In a metagenome mining-based search of novel thermostable hydroxysteroid dehydrogenases (HSDHs), enzymes that are able to selectively oxidize/reduce steroidal compounds, a novel short-chain dehydrogenase/reductase (SDR), named Is2-SDR, was recently discovered. This enzyme, found in an Icelandic hot spring metagenome, shared a high sequence [...] Read more.
In a metagenome mining-based search of novel thermostable hydroxysteroid dehydrogenases (HSDHs), enzymes that are able to selectively oxidize/reduce steroidal compounds, a novel short-chain dehydrogenase/reductase (SDR), named Is2-SDR, was recently discovered. This enzyme, found in an Icelandic hot spring metagenome, shared a high sequence similarity with HSDHs, but, unexpectedly, showed no activity in the oxidation of the tested steroid substrates, e.g., cholic acid. Despite that, Is2-SDR proved to be a very active and versatile ketoreductase, being able to regio- and stereoselectively reduce a diversified panel of carbonylic substrates, including bulky ketones, α- and β-ketoesters, and α-diketones of pharmaceutical relevance. Further investigations showed that Is2-SDR was indeed active in the regio- and stereoselective reduction of oxidized steroid derivatives, and this outcome was rationalized by docking analysis in the active site model. Moreover, Is2-SDR showed remarkable thermostability, with an apparent melting temperature (TM) around 75 °C, as determined by circular dichroism analysis, and no significant decrease in catalytic activity, even after 5 h at 80 °C. A broad tolerance to both water-miscible and water-immiscible organic solvents was demonstrated as well, thus, confirming the potential of this new biocatalyst for its synthetic application. Full article
Show Figures

Figure 1

28 pages, 31227 KB  
Review
Diversifying Arena of Drug Synthesis: In the Realm of Lipase Mediated Waves of Biocatalysis
by Sahil Verma, Rahul Narayanlal Choudhary, Akash Prakash Kanadje and Uttam Chand Banerjee
Catalysts 2021, 11(11), 1328; https://doi.org/10.3390/catal11111328 - 31 Oct 2021
Cited by 17 | Viewed by 4599
Abstract
Hydrolases, being most prominent enzymes used in industrial processes have left no stone unturned in fascinating the pharmaceutical industry. Lipases, being a part of acyl hydrolases are the ones that function similarly to esterases (except an interfacial action) wherein they generally catalyze the [...] Read more.
Hydrolases, being most prominent enzymes used in industrial processes have left no stone unturned in fascinating the pharmaceutical industry. Lipases, being a part of acyl hydrolases are the ones that function similarly to esterases (except an interfacial action) wherein they generally catalyze the hydrolysis of ester bonds. Be it in terms of stereoselectivity or regioselectivity, lipases have manifested their promiscuous proficiency in rendering biocatalytic drug synthesis and intermediates thereof. Industrial utilization of lipases is prevalent since decades ago, but their distinctive catalytic competencies have rendered them suitable for maneuverability in various tides of biocatalytic industrial process development. Numbers of exquisite catalysts have been fabricated out of lipases using nanobiotechnology whereby enzyme reusability and robustness have been conferred to many of the organic synthesis procedures. This marks a considerable achievement of lipases in the second wave of biocatalysis. Furthermore, in the third wave an advent of genetic engineering has fostered an era of customized lipases for suitable needs. Be it stability or an enhanced efficacy, genetic engineering techniques have ushered an avenue for biocatalytic development of drugs and drug intermediates through greener processes using lipases. Even in the forthcoming concept of co-modular catalytic systems, lipases may be the frontiers because of their astonishing capability to act along with other enzymes. The concept may render feasibility in the development of cascade reactions in organic synthesis. An upcoming wave demands fulfilling the vision of tailored lipase whilst a far-flung exploration needs to be unveiled for various research impediments in rendering lipase as a custom fit biocatalyst in pharmaceutical industry. Full article
(This article belongs to the Special Issue Applications of Hydrolases in Medicinal Chemistry)
Show Figures

Figure 1

18 pages, 2703 KB  
Article
Two (Chemo)-Enzymatic Cascades for the Production of Opposite Enantiomers of Chiral Azidoalcohols
by Elia Calderini, Philipp Süss, Frank Hollmann, Rainer Wardenga and Anett Schallmey
Catalysts 2021, 11(8), 982; https://doi.org/10.3390/catal11080982 - 17 Aug 2021
Cited by 5 | Viewed by 3635
Abstract
Multi-step cascade reactions have gained increasing attention in the biocatalysis field in recent years. In particular, multi-enzymatic cascades can achieve high molecular complexity without workup of reaction intermediates thanks to the enzymes’ intrinsic selectivity; and where enzymes fall short, organo- or metal catalysts [...] Read more.
Multi-step cascade reactions have gained increasing attention in the biocatalysis field in recent years. In particular, multi-enzymatic cascades can achieve high molecular complexity without workup of reaction intermediates thanks to the enzymes’ intrinsic selectivity; and where enzymes fall short, organo- or metal catalysts can further expand the range of possible synthetic routes. Here, we present two enantiocomplementary (chemo)-enzymatic cascades composed of either a styrene monooxygenase (StyAB) or the Shi epoxidation catalyst for enantioselective alkene epoxidation in the first step, coupled with a halohydrin dehalogenase (HHDH)-catalysed regioselective epoxide ring opening in the second step for the synthesis of chiral aliphatic non-terminal azidoalcohols. Through the controlled formation of two new stereocenters, corresponding azidoalcohol products could be obtained with high regioselectivity and excellent enantioselectivity (99% ee) in the StyAB-HHDH cascade, while product enantiomeric excesses in the Shi-HHDH cascade ranged between 56 and 61%. Full article
(This article belongs to the Special Issue Biocatalytic Cascade Reactions (in vivo and in vitro))
Show Figures

Figure 1

Back to TopTop