Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = sulforaphene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2673 KB  
Review
Photodynamic Therapy for Thyroid Cancer
by Julia Inglot, Joanna Katarzyna Strzelczyk, Dorota Bartusik-Aebisher and David Aebisher
BioMed 2025, 5(1), 8; https://doi.org/10.3390/biomed5010008 - 14 Mar 2025
Viewed by 2244
Abstract
Background/Objectives: Thyroid cancer is the most common cancer of the endocrine system worldwide. Despite many available therapeutic options, the mortality rate of some subtypes, including anaplastic thyroid cancer, is still significant. Photodynamic therapy brings hope, which, through local activation of cell death [...] Read more.
Background/Objectives: Thyroid cancer is the most common cancer of the endocrine system worldwide. Despite many available therapeutic options, the mortality rate of some subtypes, including anaplastic thyroid cancer, is still significant. Photodynamic therapy brings hope, which, through local activation of cell death pathways, as well as its effect on the immune system and vessels feeding the tumor, brings effects incomparable to classical methods. Photosensitizers particularly used in the case of thyroid cancer are hypericin, porphyrin, photophrin, radachlorin, or 5-aminolevulinic acid. Even better effects are achieved by administering sulforaphene, carboplatin, or genistein before therapy. Methods: For this research, we review articles in regard to provide a critical summary of the existing literature on thyroid cancer to explain the current state of scientific evidence on this topic. Conclusions: Photodynamic therapy is undoubtedly a technique of the future; the main advantages of which are low invasiveness, the possibility of combining with other treatment methods, or the possibility of outpatient use. Full article
Show Figures

Figure 1

15 pages, 4292 KB  
Article
Preparation, Characterization and In Vitro Anticancer Activity of Sulforaphene-Loaded Solid Lipid Nanoparticles
by Lijuan Han, Xiaobo Ma, Mingwen Chen, Junbo He and Weinong Zhang
Foods 2024, 13(23), 3898; https://doi.org/10.3390/foods13233898 - 3 Dec 2024
Cited by 3 | Viewed by 1361
Abstract
Sulforaphane (SFE) extracted from radish seeds has garnered significant research attention in recent years due to its notable biological activities, particularly its anticancer properties. However, SFE is highly sensitive to the environment; therefore, solid lipid nanoparticles (SLNs) were used to embed SFE to [...] Read more.
Sulforaphane (SFE) extracted from radish seeds has garnered significant research attention in recent years due to its notable biological activities, particularly its anticancer properties. However, SFE is highly sensitive to the environment; therefore, solid lipid nanoparticles (SLNs) were used to embed SFE to enhance its stability. SFE-SLNs were characterized and compared with free SFE to assess the impact of SLNs on SFE. The SFE-SLNs exhibited a spherical shape with a uniform and stable distribution. FTIR analysis suggested that SLNs might distribute SFE both within and on their surface. The SLNs effectively protected free SFE from breaking down at high temperatures, in water with pH levels between 2.0 and 9.0, and while being stored for over 8 weeks at 25 °C. In addition, the SFE in SFE-SLNs exhibited a sustained release compared to a sudden release of free SFE, leading to enhanced absorption in the intestine and improved bioavailability. Embedding SFE in SLNs did not make it less effective at killing cancer cells. This study provides an effective approach to improving the efficiency and stability of SFE, which could aid in incorporating its beneficial characteristics into products such as beverages, dairy products, solid formulations, and dietary supplements. Full article
Show Figures

Figure 1

12 pages, 1606 KB  
Article
The Effects of Different Thiol-Containing Compounds on the Degradation of Sulforaphene
by Rui Gao, Pingxiang Liu, Jingxiu Bi, Yuying Jiang, Tong Zhao, Xuexia Yuan, Chao Zhang and Yutao Wang
Molecules 2024, 29(18), 4328; https://doi.org/10.3390/molecules29184328 - 12 Sep 2024
Viewed by 1268
Abstract
Sulforaphene (4-methylsufinyl-3-butenyl isothiocyanate, SFE), produced by myrosinase hydrolysis of glucoraphenin (4-methylsulfinyl-3-butenyl glucosinolate) found in radish seeds, is strongly associated with cancer prevention. In this study, we investigated the stability of SFE (purity above 98%) under various thiol-containing compounds at 25 °C, such as [...] Read more.
Sulforaphene (4-methylsufinyl-3-butenyl isothiocyanate, SFE), produced by myrosinase hydrolysis of glucoraphenin (4-methylsulfinyl-3-butenyl glucosinolate) found in radish seeds, is strongly associated with cancer prevention. In this study, we investigated the stability of SFE (purity above 98%) under various thiol-containing compounds at 25 °C, such as sodium hydrosulfide (NaHS), glutathione (GSH), and cysteine (Cys). We observed that the degradation of SFE was closely related to the presence and dissociation capacity of thiol-containing compounds in the solution, particularly the thiol group. We found that the degradation rate of SFE was influenced by incubation with NaHS, GSH, and Cys, with distinct degradation products detected for each of these thiol-containing compounds. Compared to GSH, sulfide and Cys played important roles in promoting the degradation of SFE. Furthermore, we found substantial quantities of hydrogen sulfide in conjunction with SFE during the hydrolysis process of seeds, and a heat treatment of the seeds resulted in increased production of SFE. However, the introduction of sulfide-oxidizing bacteria to the hydrolytic system did not exhibit any inhibitory effect on the degradation of SFE. These results provided a guideline for industries to improve the stability of SFE during preparation. Full article
(This article belongs to the Special Issue Biomanufacturing of Natural Bioactive Compounds)
Show Figures

Graphical abstract

15 pages, 1932 KB  
Article
Effect of UV-A Irradiation on Bioactive Compounds Accumulation and Hypoglycemia-Related Enzymes Activities of Broccoli and Radish Sprouts
by Gongheng Che, Mingmei Chen, Xiaodan Li, Junxia Xiao, Liang Liu and Liping Guo
Plants 2024, 13(3), 450; https://doi.org/10.3390/plants13030450 - 3 Feb 2024
Cited by 6 | Viewed by 2432
Abstract
In the present study, different intensities of UV-A were applied to compare their effects on growth, bioactive compounds and hypoglycemia-related enzyme activities in broccoli and radish sprouts. The growth of sprouts was decreased after UV-A irradiation. A total of 12 W of UV-A [...] Read more.
In the present study, different intensities of UV-A were applied to compare their effects on growth, bioactive compounds and hypoglycemia-related enzyme activities in broccoli and radish sprouts. The growth of sprouts was decreased after UV-A irradiation. A total of 12 W of UV-A irradiation resulted in the highest content of anthocyanin, chlorophyll, polyphenol and ascorbic acid in broccoli and radish sprouts. The highest soluble sugar content was recorded in sprouts under 8 W of UV-A irradiation, while no significant difference was obtained in soluble protein content among different UV-A intensities. Furthermore, 12 W of UV-A irradiation induced the highest glucosinolate accumulation, especially glucoraphanin and glucoraphenin in broccoli and radish sprouts, respectively; thus, it enhanced sulforaphane and sulforaphene formation. The α-amylase, α-glucosidase and pancrelipase inhibitory rates of two kinds of sprouts were enhanced significantly after UV-A irradiation, indicating UV-A-irradiation-treated broccoli and radish sprouts have new prospects as hypoglycemic functional foods. Full article
Show Figures

Graphical abstract

17 pages, 8578 KB  
Article
Effects of Sulforaphene on the Cariogenic Properties of Streptococcus Mutans In Vitro and Dental Caries Development In Vivo
by Yuehong Zhou, Binhan Zhang, Yufei Wang and Rongdang Hu
Antibiotics 2023, 12(9), 1359; https://doi.org/10.3390/antibiotics12091359 - 24 Aug 2023
Cited by 6 | Viewed by 2690
Abstract
Sulforaphene (SFE) is a common nutritional supplement with antibacterial, anti-cancer, and anti-inflammatory effects. However, the effects of SFE on the cariogenicity of Streptococcus mutans and dental caries have not been reported. The objectives of this study were to investigate the caries-controlling potential of [...] Read more.
Sulforaphene (SFE) is a common nutritional supplement with antibacterial, anti-cancer, and anti-inflammatory effects. However, the effects of SFE on the cariogenicity of Streptococcus mutans and dental caries have not been reported. The objectives of this study were to investigate the caries-controlling potential of SFE. The effects of SFE on S. mutans were investigated using the broth microdilution method, crystal violet staining, SEM observation, acid tolerance assays, lactic acid quantification, and polysaccharide measurements. A rat caries model was established to evaluate the caries-controlling effects and biocompatibility of SFE in vivo. SFE inhibited S. mutans growth and biofilm formation. Furthermore, SFE restrained the cariogenic properties of S. mutans, including its acid production, acid tolerance, and extracellular polysaccharide production, without affecting the bacterial viability at sub-inhibitory levels. In the rat caries model, SFE significantly arrested the onset and development of dental caries. Moreover, no visible hemolytic phenomenon or cytotoxicity was detected in the SFE groups. After four weeks of SFE treatment, all rats remained in apparent good health with no significant differences in weight gain; their hemogram and biochemical parameters were normal; no pathological changes were observed in the oral mucosa, liver, or kidneys. In conclusion, SFE was safe and inhibited the development of caries effectively. Full article
(This article belongs to the Special Issue Pathogen Detection and Antimicrobial Treatment in Oral Diseases)
Show Figures

Figure 1

20 pages, 16193 KB  
Article
New Insight into the Potential Protective Function of Sulforaphene against ROS−Mediated Oxidative Stress Damage In Vitro and In Vivo
by Bo Zhang, Pengtao Liu, Huakang Sheng, Yang Guo, Yongzhi Han, Lin Suo and Qipeng Yuan
Int. J. Mol. Sci. 2023, 24(17), 13129; https://doi.org/10.3390/ijms241713129 - 23 Aug 2023
Cited by 10 | Viewed by 2065
Abstract
Sulforaphene (SFE) is a kind of isothiocyanate isolated from radish seeds that can prevent free-radical-induced diseases. In this study, we investigated the protective effect of SFE on oxidative-stress-induced damage and its molecular mechanism in vitro and in vivo. The results of cell experiments [...] Read more.
Sulforaphene (SFE) is a kind of isothiocyanate isolated from radish seeds that can prevent free-radical-induced diseases. In this study, we investigated the protective effect of SFE on oxidative-stress-induced damage and its molecular mechanism in vitro and in vivo. The results of cell experiments show that SFE can alleviate D-gal-induced cytotoxicity, promote cell cycle transformation by inhibiting the production of reactive oxygen species (ROS) and cell apoptosis, and show a protective effect on cells with H2O2-induced oxidative damage. Furthermore, the results of mice experiments show that SFE can alleviate D-galactose-induced kidney damage by inhibiting ROS, malondialdehyde (MDA), and 4-hydroxyalkenals (4-HNE) production; protect the kidney against oxidative stress-induced damage by increasing antioxidant enzyme activity and upregulating the Nrf2 signaling pathway; and inhibit the activity of pro-inflammatory factors by downregulating the expression of Toll-like receptor 4 (TLR4)—mediated inflammatory response. In conclusion, this research shows that SFE has antioxidant effects, providing a new perspective for studying the anti−aging properties of natural compounds. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

21 pages, 2061 KB  
Article
Broccoli, Kale, and Radish Sprouts: Key Phytochemical Constituents and DPPH Free Radical Scavenging Activity
by Camille Bowen-Forbes, Edward Armstrong, Audric Moses, Richard Fahlman, Helia Koosha and Jerome Y. Yager
Molecules 2023, 28(11), 4266; https://doi.org/10.3390/molecules28114266 - 23 May 2023
Cited by 10 | Viewed by 6912
Abstract
Our research group previously found that broccoli sprouts possess neuroprotective effects during pregnancy. The active compound has been identified as sulforaphane (SFA), obtained from glucosinolate and glucoraphanin, which are also present in other crucifers, including kale. Sulforaphene (SFE), obtained from glucoraphenin in radish, [...] Read more.
Our research group previously found that broccoli sprouts possess neuroprotective effects during pregnancy. The active compound has been identified as sulforaphane (SFA), obtained from glucosinolate and glucoraphanin, which are also present in other crucifers, including kale. Sulforaphene (SFE), obtained from glucoraphenin in radish, also has numerous biological benefits, some of which supersede those of sulforaphane. It is likely that other components, such as phenolics, contribute to the biological activity of cruciferous vegetables. Notwithstanding their beneficial phytochemicals, crucifers are known to contain erucic acid, an antinutritional fatty acid. The aim of this research was to phytochemically examine broccoli, kale, and radish sprouts to determine good sources of SFA and SFE to inform future studies of the neuroprotective activity of cruciferous sprouts on the fetal brain, as well as product development. Three broccoli: Johnny’s Sprouting Broccoli (JSB), Gypsy F1 (GYP), and Mumm’s Sprouting Broccoli (MUM), one kale: Johnny’s Toscano Kale (JTK), and three radish cultivars: Black Spanish Round (BSR), Miyashige (MIY), and Nero Tunda (NT), were analyzed. We first quantified the glucosinolate, isothiocyanate, phenolics, and DPPH free radical scavenging activity (AOC) of one-day-old dark- and light-grown sprouts by HPLC. Radish cultivars generally had the highest glucosinolate and isothiocyanate contents, and kale had higher glucoraphanin and significantly higher sulforaphane content than the broccoli cultivars. Lighting conditions did not significantly affect the phytochemistry of the one-day-old sprouts. Based on phytochemistry and economic factors, JSB, JTK, and BSR were chosen for further sprouting for three, five, and seven days and subsequently analyzed. The three-day-old JTK and radish cultivars were identified to be the best sources of SFA and SFE, respectively, both yielding the highest levels of the respective compound while retaining high levels of phenolics and AOC and markedly lower erucic acid levels compared to one-day-old sprouts. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Natural Products Chemistry 2.0)
Show Figures

Figure 1

19 pages, 2921 KB  
Article
Thai Rat-Tailed Radish Prevents Hepatocarcinogenesis in Rats by Blocking Mutagenicity, Inducing Hepatic Phase II Enzyme, and Decreasing Hepatic Pro-Inflammatory Cytokine Gene Expression
by Piman Pocasap, Natthida Weerapreeyakul and Rawiwan Wongpoomchai
Cancers 2023, 15(6), 1906; https://doi.org/10.3390/cancers15061906 - 22 Mar 2023
Cited by 6 | Viewed by 2483
Abstract
Raphanus sativus L. var. caudatus Alef (RS) is an indigenous Thai plant with nutritional and medicinal values such as anticancer activity, but only in vitro. The chemopreventive effects of RS were, therefore, investigated in the initial stage of hepatocarcinogenesis in rats. Diethylnitrosamine (DEN), [...] Read more.
Raphanus sativus L. var. caudatus Alef (RS) is an indigenous Thai plant with nutritional and medicinal values such as anticancer activity, but only in vitro. The chemopreventive effects of RS were, therefore, investigated in the initial stage of hepatocarcinogenesis in rats. Diethylnitrosamine (DEN), a carcinogen, was intraperitoneally injected into rats to induce liver cancer. Along with the DEN injection, either aqueous (RS-H2O) or dichloromethane (RS-DCM) extract was administered orally. Immunohistochemistry was used to detect glutathione S-transferase placental (GST-P) positive foci and apoptotic cells in rat livers as indicators of initial-stage carcinogenesis. The underlying mechanisms of chemoprevention were investigated with (a) antimutagenic activity, (b) hepatic phase II enzyme induction, and (c) hepatic pro-inflammatory cytokine gene expression. The results showed that RS-DCM was more potent than RS-H2O in decreasing GST-P positive foci and apoptotic cells induced by DEN. The mechanisms of RS-DCM (phenolics and sulforaphene contents) against liver carcinogenesis (1) block the activity of carcinogens; (2) elevate phase II detoxifying enzymes; and (3) suppress the pro-inflammatory gene expression. RS-H2O (phenolics contents), in contrast, only decreases pro-inflammatory gene expression. In conclusion, the RS extract consisting of phenolics and isothiocyanates exerted significant chemopreventive activity against DEN-induced liver carcinogenesis. Full article
Show Figures

Graphical abstract

12 pages, 2430 KB  
Article
Natural Thiols, but Not Thioethers, Attenuate Patulin-Induced Endoplasmic Reticulum Stress in HepG2 Cells
by Hye Mi Kim, Hwa Young Choi, Gun Hee Cho, Ju Hee Im, Eun Young Hong and Hyang Sook Chun
Toxins 2021, 13(10), 727; https://doi.org/10.3390/toxins13100727 - 14 Oct 2021
Cited by 5 | Viewed by 2961
Abstract
Patulin, a mycotoxin, is known to have cytotoxic effects, but few studies have focused on the involvement of the endoplasmic reticulum (ER) stress response in patulin toxicity and the natural compounds that attenuate it in HepG2 cells. This study tested the ability of [...] Read more.
Patulin, a mycotoxin, is known to have cytotoxic effects, but few studies have focused on the involvement of the endoplasmic reticulum (ER) stress response in patulin toxicity and the natural compounds that attenuate it in HepG2 cells. This study tested the ability of patulin to induce ER stress, and that of four thiols and three thioethers to attenuate patulin-induced ER stress in HepG2 cells. Patulin dose-dependently inhibited cell proliferation (IC50, 8.43 μM). Additionally, patulin was found to increase the expression levels of ER stress-related genes and/or protein markers, including BiP, CHOP, and spliced XBP1, in HepG2 cells compared to the vehicle control, indicating its potential in ER stress induction. Patulin-induced cytotoxicity in HepG2 cells was reduced by naturally occurring thiol compounds (glutathione, L-acetyl-L-cysteine, cysteine, and captopril), but not by thioether compounds (sulforaphane, sulforaphene, and S-allyl-L-cysteine). Patulin-thiol co-treatment decreased CHOP expression and BiP and CHOP levels in HepG2 cells but did not alter BiP expression. Spliced XBP1 expression was decreased by patulin-thiol co-treatment. Thus, patulin induced ER stress in HepG2 cells and thiols, but not in thioethers, attenuated patulin-induced ER stress. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

15 pages, 2746 KB  
Article
Identifying the p65-Dependent Effect of Sulforaphene on Esophageal Squamous Cell Carcinoma Progression via Bioinformatics Analysis
by Sichong Han, Zhe Wang, Jining Liu and Qipeng Yuan
Int. J. Mol. Sci. 2021, 22(1), 60; https://doi.org/10.3390/ijms22010060 - 23 Dec 2020
Cited by 9 | Viewed by 2968
Abstract
Understanding the mechanism by which sulforaphene (SFE) affects esophageal squamous cell carcinoma (ESCC) contributes to the application of this isothiocyanate as a chemotherapeutic agent. Thus, we attempted to investigate SFE regulation of ESCC characteristics more deeply. We performed gene set enrichment analysis (GSEA) [...] Read more.
Understanding the mechanism by which sulforaphene (SFE) affects esophageal squamous cell carcinoma (ESCC) contributes to the application of this isothiocyanate as a chemotherapeutic agent. Thus, we attempted to investigate SFE regulation of ESCC characteristics more deeply. We performed gene set enrichment analysis (GSEA) on microarray data of SFE-treated ESCC cells and found that differentially expressed genes are enriched in TNFα_Signaling_via_the_NFκB_Pathway. Coupled with the expression profile data from the GSE20347 and GSE75241 datasets, we narrowed the set to 8 genes, 4 of which (C-X-C motif chemokine ligand 10 (CXCL10), TNF alpha induced protein 3 (TNFAIP3), inhibin subunit beta A (INHBA), and plasminogen activator, urokinase (PLAU)) were verified as the targets of SFE. RNA-sequence (RNA-seq) data of 182 ESCC samples from The Cancer Genome Atlas (TCGA) were grouped into two phenotypes for GSEA according to the expression of CXCL10, TNFAIP3, INHBA, and PLAU. The enrichment results proved that they were all involved in the NFκB pathway. ChIP-seq analyses obtained from the Cistrome database indicated that NFκB-p65 is likely to control the transcription of CXCL10, TNFAIP3, INHBA, and PLAU, and considering TNFAIP3 and PLAU are the most significantly differentially expressed genes, we used chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) to verify the regulation of p65 on their expression. The results demonstrated that SFE suppresses ESCC progression by down-regulating TNFAIP3 and PLAU expression in a p65-dependent manner. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

18 pages, 1759 KB  
Article
Sulforaphene Suppresses Adipocyte Differentiation via Induction of Post-Translational Degradation of CCAAT/Enhancer Binding Protein Beta (C/EBPβ)
by Hee Yang, Min Jeong Kang, Gihyun Hur, Tae Kyung Lee, In Sil Park, Sang Gwon Seo, Jae Gak Yu, Yong Sang Song, Jung Han Yoon Park and Ki Won Lee
Nutrients 2020, 12(3), 758; https://doi.org/10.3390/nu12030758 - 13 Mar 2020
Cited by 19 | Viewed by 4381
Abstract
Adipocyte differentiation (adipogenesis) is a crucial process that determines the total number and size of mature adipocytes that will develop. In this study, the anti-adipogenic effect of sulforaphene (SFEN), a dietary isothiocyanate (ITC) derived from radish, is investigated both in 3T3-L1 pre-adipocytes and [...] Read more.
Adipocyte differentiation (adipogenesis) is a crucial process that determines the total number and size of mature adipocytes that will develop. In this study, the anti-adipogenic effect of sulforaphene (SFEN), a dietary isothiocyanate (ITC) derived from radish, is investigated both in 3T3-L1 pre-adipocytes and in human adipose tissue-derived stem cells. The results revealed that SFEN significantly inhibit adipogenic cocktail-induced adipocyte differentiation and lipid accumulation at the early stage of adipogenesis. Additionally, the effects are more potent compared to those of other ITCs derived from various cruciferous vegetables. As a related molecular mechanism of action, SFEN promotes the post-translational degradation of CCAAT/enhancer-binding protein (C/EBP) β by decreasing the stability of C/EBPβ, which is responsible for decreasing the expression of master regulatory proteins such as peroxisome proliferator-activated receptor γ and C/EBPα. Collectively, these results suggest that the intake of SFEN-enriched natural materials could be helpful as a strategy for preventing obesity. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

15 pages, 2565 KB  
Article
Induction of Apoptosis and Cytotoxicity by Isothiocyanate Sulforaphene in Human Hepatocarcinoma HepG2 Cells
by Saie Brindha Kntayya, Muhammad Din Ibrahim, Nooraini Mohd Ain, Renato Iori, Costas Ioannides and Ahmad Faizal Abdull Razis
Nutrients 2018, 10(6), 718; https://doi.org/10.3390/nu10060718 - 4 Jun 2018
Cited by 69 | Viewed by 6610
Abstract
Glucoraphenin, a glucosinolate present in large quantities in radish is hydrolysed by myrosinase to form the isothiocyanate sulforaphene, which is believed to be responsible for its chemopreventive activity; however, the underlying mechanisms of action have not been investigated, particularly in human cell lines. [...] Read more.
Glucoraphenin, a glucosinolate present in large quantities in radish is hydrolysed by myrosinase to form the isothiocyanate sulforaphene, which is believed to be responsible for its chemopreventive activity; however, the underlying mechanisms of action have not been investigated, particularly in human cell lines. The aim of the study is to assess the cytotoxicity of sulforaphene in HepG2 cells and evaluate its potential to enhance apoptosis. The cytotoxicity of sulforaphene in HepG2 cells was carried out ensuing an initial screening with two other cell lines, MFC-7 and HT-29, where sulforaphene displayed highest toxicity in HepG2 cells following incubation at 24, 48 and 72 h. In contrast, the intact glucosinolate showed no cytotoxicity. Morphological studies indicated that sulforaphene stimulated apoptosis as exemplified by cell shrinkage, blebbing, chromatin condensation, and nuclear fragmentation. The Annexin V assay revealed significant increases in apoptosis and the same treatment increased the activity of caspases -3/7 and -9, whereas a decline in caspase-8 was observed. Impairment of cell proliferation was indicated by cell cycle arrest at the Sub G0/G1 phase as compared to the other phases. It may be concluded that sulforaphene, but not its parent glucosinolate, glucoraphenin, causes cytotoxicity and stimulates apoptosis in HepG2 cells. Full article
(This article belongs to the Special Issue Plant Food, Nutrition and Human Health)
Show Figures

Figure 1

10 pages, 1293 KB  
Article
Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster
by Nieves Baenas, Stefanie Piegholdt, Anke Schloesser, Diego A. Moreno, Cristina García-Viguera, Gerald Rimbach and Anika E. Wagner
Int. J. Mol. Sci. 2016, 17(2), 251; https://doi.org/10.3390/ijms17020251 - 18 Feb 2016
Cited by 57 | Viewed by 10730
Abstract
We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a [...] Read more.
We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop