Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = susceptors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1795 KB  
Article
Machine Learning-Based Prediction of Time Required to Reach the Melting Temperature of Metals in Domestic Microwaves Using Dimensionless Modeling and XGBoost
by Juan José Moreno Labella, Milagrosa González Fernández de Castro, Víctor Saiz Sevilla, Miguel Panizo Laiz and Yolanda Martín Álvarez
Materials 2025, 18(14), 3400; https://doi.org/10.3390/ma18143400 - 20 Jul 2025
Viewed by 451
Abstract
A novel and cost-effective methodology is introduced for the precise prediction of the melting time of metals and alloys in a 700 W domestic microwave oven, using a hybrid SiC–graphite susceptor to ensure efficient heating without direct interaction with microwaves. The study includes [...] Read more.
A novel and cost-effective methodology is introduced for the precise prediction of the melting time of metals and alloys in a 700 W domestic microwave oven, using a hybrid SiC–graphite susceptor to ensure efficient heating without direct interaction with microwaves. The study includes experimental trials with multiple alloys (Sn–Bi, Zn, Zamak, and Al–Si, among others) and variable masses, whose results made it possible to construct a dimensionless model, trained with XGBoost on easily measurable thermophysical properties (specific heat, density, thermal conductivity, mass, and melting temperature). The model achieves high accuracy, with a relative error below 5%, and metrics of MAE = 4.8 s, RMSE = 6.1 s, and R2 = 0.9996. The generalization of the model to different microwave powers (600–1100 W) is also validated through analytical adjustment, without the need for additional experiments. The proposal is implemented as a Python application with a graphical interface, suitable for any academic or teaching laboratory, and its performance is compared with classical models. This approach effectively contributes to the democratization of thermal testing of metals in educational and research settings with limited resources, providing thermodynamic rigor and advanced artificial intelligence tools. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

26 pages, 5399 KB  
Article
Microwave-Assisted Pyrolysis of Polyethylene and Polypropylene from End-of-Life Vehicles: Hydrogen Production and Energy Valorization
by Grigore Psenovschi, Ioan Calinescu, Alexandru Fiti, Ciprian-Gabriel Chisega-Negrila, Sorin-Lucian Ionascu and Lucica Barbes
Sustainability 2025, 17(13), 6196; https://doi.org/10.3390/su17136196 - 6 Jul 2025
Viewed by 1437
Abstract
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene [...] Read more.
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene (PP) and polyethylene (PE) plastic waste through microwave-assisted pyrolysis, aiming to maximize conversion into gaseous products, particularly hydrogen-rich gas. A monomode microwave reactor was employed, using layered configurations of plastic feedstock, silicon carbide as a microwave susceptor, and activated carbon as a catalyst. The influence of catalyst loading, reactor configuration, and plastic type was assessed through systematic experiments. Results showed that technical-grade PP, under optimal conditions, yielded up to 81.4 wt.% gas with a hydrogen concentration of 45.2 vol.% and a hydrogen efficiency of 44.8 g/g. In contrast, PE and mixed PP + PE waste displayed lower hydrogen performance, particularly when containing inorganic fillers. For all types of plastics studied, the gaseous fractions obtained have a high calorific value (46,941–55,087 kJ/kg) and at the same time low specific CO2 emissions (4.4–6.1 × 10−5 kg CO2/kJ), which makes these fuels very efficient and have a low carbon footprint. Comparative tests using conventional heating revealed significantly lower hydrogen yields (4.77 vs. 19.7 mmol/g plastic). These findings highlight the potential of microwave-assisted pyrolysis as an efficient method for transforming ELV-derived plastic waste into energy carriers, offering a pathway toward low-carbon, resource-efficient waste management. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

17 pages, 4366 KB  
Article
Numerical Simulation of the Effect of APCVD Reactor Tilted Ceiling Height on Silicon Epitaxial Layer Thickness Uniformity
by Ba-Phuoc Le, Jyh-Chen Chen, Chieh Hu, Wei-Jie Lin, Chun-Chin Tu and Liang-Chin Chen
Crystals 2025, 15(5), 477; https://doi.org/10.3390/cryst15050477 - 18 May 2025
Viewed by 536
Abstract
As the linewidth of semiconductor nanostructures continues to decrease, the criteria for acceptable surface homogeneity of silicon (Si) epi-films are becoming increasingly stringent. To address this challenge, the effect of different tilted ceiling heights on the Si epi thickness homogeneity in an atmospheric [...] Read more.
As the linewidth of semiconductor nanostructures continues to decrease, the criteria for acceptable surface homogeneity of silicon (Si) epi-films are becoming increasingly stringent. To address this challenge, the effect of different tilted ceiling heights on the Si epi thickness homogeneity in an atmospheric pressure chemical vapor deposition (APCVD) reactor is investigated numerically. In this study, the deposition temperature on the wafer is controlled at 1373 K. When a tilted ceiling with decreasing height along the streamwise direction is used, the average gas mixture velocity increases with the streamwise direction, which can reduce the impact of flow distortion caused by the rotation of the susceptor. At the same time, the growth of the reaction boundary layer on the wafer is suppressed, which helps with the diffusion of trichlorosilane (TCS) on the wafer surface. This makes the drop in the TCS concentration along the streamwise direction more linear, thereby improving the linearity of the growth rate on the wafer surface along the streamwise direction. Therefore, the present results for a reactor without an inlet plate show that the thickness homogeneity across the entire surface of the wafer after a complete susceptor rotation can be significantly improved by linearly reducing the ceiling height in the streamwise direction. A further increase in the inclination of the inclined ceiling leads to a further improvement in the deposition homogeneity. However, the growth rate values at the same position perpendicular to the streamwise direction are inconsistent, which is not conducive to deposition homogeneity. This shortcoming can be improved upon by using a four-inlet plate reactor with an inclined top plate and by properly selecting the position of each partition and the inlet gas mixture velocity of each inlet channel, thereby greatly increasing the deposition homogeneity of the Si epi-layer. For the cases considered in this study, the deposition thickness non-homogeneity across the wafer surface decreased from 38% to 3%. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

20 pages, 3339 KB  
Article
Experimental Dielectric Properties and Temperature Measurement Analysis to Assess the Thermal Distribution of a Multimode Microwave-Assisted Susceptor Fixed-Bed Reactor
by Alejandro Fresneda-Cruz, Gonzalo Murillo-Ciordia and Ignacio Julian
Processes 2025, 13(3), 774; https://doi.org/10.3390/pr13030774 - 7 Mar 2025
Viewed by 1197
Abstract
In this study, the integration of microwave-assisted technology into fixed-bed configuration processes is explored aiming to characterize and address its challenges with a customized multimodal microwave cavity. This research focuses on evaluating the uncertainty in contactless temperature measurement methods as spectral thermographic cameras [...] Read more.
In this study, the integration of microwave-assisted technology into fixed-bed configuration processes is explored aiming to characterize and address its challenges with a customized multimodal microwave cavity. This research focuses on evaluating the uncertainty in contactless temperature measurement methods as spectral thermographic cameras and infrared pyrometers, microwave heating performance, and the thermal homogeneity within fixed beds containing microwave–susceptor materials, including the temperature-dependent dielectric characterization of such materials, having different geometry and size (from 120 to 5000 microns). The thermal inhomogeneities along different bed configurations were quantified, assessing the most appropriate fixed-bed arrangement and size limitation at the employed irradiation frequency (2.45 GHz) to tackle microwave-assisted gas–solid chemical conversions. An increased temperature heterogeneity along the axial profile was found for finer susceptor particles, while the higher microwave susceptibility of coarser grades led to increased temperature gradients, ΔT > 300 °C. Moreover, results evidenced that the temperature measurement on the fixed-bed quartz reactor surface by a punctual infrared pyrometer entails a major error regarding the real temperature on the microwave susceptor surface within the tubular quartz reactor (up to 230% deviation). The experimental findings pave the way to assess the characteristics that microwave susceptors and fixed beds must perform to minimize thermal inhomogeneities and optimize the microwave-assisted coupling with solid–gas-phase reactor design and process upscaling using such multimode cavities. Full article
(This article belongs to the Special Issue Heat and Mass Transfer Phenomena in Energy Systems)
Show Figures

Figure 1

26 pages, 29595 KB  
Article
Induction Heating of Laminated Composite Structures with Magnetically Responsive Nanocomposite Interlayers for Debonding-on-Demand Applications
by Eleni Gkartzou, Konstantinos Zafeiris, Christos Tsirogiannis, Alberto Pedreira, Adrián Rodríguez, Pablo Romero-Rodriguez, Giorgos P. Gakis, Tatjana Kosanovic-Milickovic, Apostolos Kyritsis and Costas A. Charitidis
Polymers 2024, 16(19), 2760; https://doi.org/10.3390/polym16192760 - 30 Sep 2024
Cited by 3 | Viewed by 2548
Abstract
In the present study, the feasibility to achieve localized induction heating and debonding of multi-material composite structures is assessed in testing coupons prepared by Automated Fiber Placement (AFP) and extrusion-based additive manufacturing (AM) technologies. Nano-compounds of Polyether-ketone-ketone (PEKK) with iron oxide nanoparticles acting [...] Read more.
In the present study, the feasibility to achieve localized induction heating and debonding of multi-material composite structures is assessed in testing coupons prepared by Automated Fiber Placement (AFP) and extrusion-based additive manufacturing (AM) technologies. Nano-compounds of Polyether-ketone-ketone (PEKK) with iron oxide nanoparticles acting as electromagnetic susceptors have been processed in a parallel co-rotating twin-screw extruder to produce filament feedstock for extrusion-based AM. The integration of nanocomposite interlayers as discrete debonding zones (DZ) by AFP-AM manufacturing has been investigated for two types of sandwich-structured laminate composites, i.e., laminate-DZ-laminate panels (Type I) and laminate-DZ-AM gyroid structures (Type II). Specimens were exposed to an alternating magnetic field generated by a radio frequency generator and a flat spiral copper induction coil, and induction heating parameters (frequency, power, heating time, sample standoff distance from coil) have been investigated in correlation with real-time thermal imaging to define the debonding process window without compromising laminate quality. For the optimized process parameters, i.e., 2–3 kW generator power and 20–25 mm standoff distance, corresponding to magnetic field intensities in the range of 3–5 kA m−1, specimens were effectively heated above PEKK melting temperature, exhibiting high heating rates within the range of 5.3–9.4 °C/s (Type I) and 8.0–17.5 °C/s (Type II). The results demonstrated that localized induction heating successfully facilitated debonding, leading to full unzipping of the debonding zones in both laminate structures. Further insight on PEKK nanocomposites debonding performance was provided by thermal, morphological characterization and non-destructive inspection via X-ray micro-computed tomography at different processing stages. The developed framework aims to contribute to the development of rapid, on-demand joining, repair and disassembly technologies for thermoplastic composites, towards more efficient maintenance, repair and overhaul operations in the aviation sector and beyond. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Graphical abstract

10 pages, 2078 KB  
Article
Microwave-Assisted Oxidation of N2 into NOx over a La-Ce-Mn-O Perovskite Yielding Plasmas in a Quartz Flow Reactor at Atmospheric Pressure
by Frederic C. Meunier and Akim Kaddouri
Catalysts 2024, 14(9), 635; https://doi.org/10.3390/catal14090635 - 19 Sep 2024
Cited by 2 | Viewed by 1632
Abstract
N2 oxidation to NOx is a challenging reaction, and alternative routes to the industrial Ostwald process are of interest. A perovskite under flowing O2-N2 mixtures at atmospheric pressure in a quartz tube reactor was irradiated by microwaves (MW), [...] Read more.
N2 oxidation to NOx is a challenging reaction, and alternative routes to the industrial Ostwald process are of interest. A perovskite under flowing O2-N2 mixtures at atmospheric pressure in a quartz tube reactor was irradiated by microwaves (MW), leading to the formation of hot spots and plasmas within the catalyst bed. NOx concentrations up to 2.5 vol.% in one pass were obtained at 600 W. Using a lower MW power of 100 W led to a pulsed mode yielding lower NOx concentrations and no noticeable damage to the quartz reactor. The formation of plasma was strongly dependent on the perovskite bed packing. The perovskite acted primarily as a susceptor and likely also as a catalyst, although the proportion of heterogeneous and homogenous reactions could not be determined in the present study. The simple reactor layout allowing operation at atmospheric pressure is promising for the development of practical MW-assisted N2 fixation technologies. Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Graphical abstract

27 pages, 5900 KB  
Technical Note
Artificial Intelligence Applied to Microwave Heating Systems: Prediction of Temperature Profile through Convolutional Neural Networks
by Victor Rosario Núñez, Alfonso Hernández, Iván Rodríguez, Ignacio Fernández-Pacheco Ruiz and Luis Acevedo
Thermo 2024, 4(3), 346-372; https://doi.org/10.3390/thermo4030018 - 3 Aug 2024
Viewed by 2732
Abstract
Microwave heating, which is caused by the interaction of electromagnetic radiation and materials, has become an important component in industrial operations across numerous industries. Despite their importance, conventional numerical simulations of microwave heating are computationally intensive. Concurrently, advances in artificial intelligence (AI), particularly [...] Read more.
Microwave heating, which is caused by the interaction of electromagnetic radiation and materials, has become an important component in industrial operations across numerous industries. Despite their importance, conventional numerical simulations of microwave heating are computationally intensive. Concurrently, advances in artificial intelligence (AI), particularly machine learning algorithms, have transformed data processing by increasing accuracy while decreasing computational time. This study tackles the difficulty of efficient and accurate modelling in microwave heating by combining convolutional neural networks (CNNs) with traditional simulation techniques. The major goal of this research is to use CNNs to forecast temperature profiles in a variety of industrial materials, including susceptors, semi-transparent, and microwave-transparent materials, under varying power settings and heating periods. This unique strategy greatly reduces prediction times, with up to 60-fold speed increases over standard methods. Our research is based on examining the electromagnetic and thermal responses of these materials under microwave heating. This study’s findings emphasise the need for extensive datasets and show the transformational potential of CNNs in optimising material processing. It uses artificial intelligence to pave the way for more effective and exact simulations, supporting breakthroughs in industrial microwave heating applications. Full article
Show Figures

Figure 1

12 pages, 17572 KB  
Article
Inductive Heating of Ceramic Matrix Composites (CMC) for High-Temperature Applications
by Alexander Hackert, Jonas H. M. Stiller, Johannes Winhard, Václav Kotlan and Daisy Nestler
Materials 2024, 17(10), 2175; https://doi.org/10.3390/ma17102175 - 7 May 2024
Viewed by 2302
Abstract
The inductive heating of a CMC susceptor for industrial applications can generate very high process temperatures. Thus, the behavior of a silicon carbide-based matrix with carbon-fiber-reinforced carbon (C/C-SiC) as a susceptor is investigated. Specifically, the influence of fiber length and the distribution of [...] Read more.
The inductive heating of a CMC susceptor for industrial applications can generate very high process temperatures. Thus, the behavior of a silicon carbide-based matrix with carbon-fiber-reinforced carbon (C/C-SiC) as a susceptor is investigated. Specifically, the influence of fiber length and the distribution of carbon fibers in the composite were investigated to find out the best parameters for the most efficient heating. For a multi-factorial set of requirements with a combination of filling levels and fiber lengths, a theoretical correlation of the material structure can be used as part of a digital model. Multi-physical simulation was performed to study the behavior of an alternating magnetic field generated by an inducing coil. The simulation results were verified by practical tests. It is shown that the inductive heating of a C/C-SiC susceptor can reach very high temperatures in a particularly fast and efficient way without oxidizing if it is ensured that a silicon carbide-based matrix completely encloses the fibers. Full article
(This article belongs to the Special Issue Damage, Fracture and Fatigue of Ceramic Matrix Composites (CMCs))
Show Figures

Figure 1

17 pages, 2629 KB  
Article
Harnessing the Power of Microwave Irradiation: A Novel Approach to Bitumen Partial Upgrading
by Moataz K. Abdrabou, Xue Han, Yimin Zeng and Ying Zheng
Molecules 2023, 28(23), 7769; https://doi.org/10.3390/molecules28237769 - 25 Nov 2023
Cited by 2 | Viewed by 1712
Abstract
The partial upgrading of “tar-like” Canadian bitumen is an essential process to reduce its viscosity to an acceptable range that meets the required pipeline specifications. An innovative and potentially greener solution has emerged in the form of microwave irradiation. This work proposes and [...] Read more.
The partial upgrading of “tar-like” Canadian bitumen is an essential process to reduce its viscosity to an acceptable range that meets the required pipeline specifications. An innovative and potentially greener solution has emerged in the form of microwave irradiation. This work proposes and demonstrates the use of an electrically powered commercial microwave along with carbon-based microwave susceptors (activated carbon, biochar, coke, and graphite) to promote localized thermal cracking within bitumen at a temperature as low as 150 °C, compared to the conventional method of 400 °C. The remarkable results show that just 0.1 wt% of carbon additives can reduce the viscosity of bitumen by 96% with just 10 min of microwaving at 200 °C. A Saturates, Aromatics, Resins, and Asphaltenes (SARA) analysis reveals that the mass fractions of light components (saturates) are almost doubled and that almost one-third of heavy polar hydrocarbon constituents are cracked and decomposed into much lighter molecules, resulting in higher-quality, less viscous bitumen. Furthermore, this study highlights the key role of the surface area and porosity of the carbon microwave susceptor in absorbing microwave radiation, offering exciting new avenues for optimization. Microwave-assisted partial upgrading of bitumen is a cost-effective and eco-friendly alternative to conventional upgrading, producing upgraded bitumen that requires significantly less diluent at a lower cost prior to pipeline transportation. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Graphical abstract

13 pages, 4077 KB  
Article
Study on Motion and Deposition of Nanoparticles in Rotary MOCVD Reactors of Gallium Nitride
by Peng Su, Daihui Lu, Jinping Luo, Guangyu Zheng, Yukang Sun and Lijun Liu
Crystals 2023, 13(9), 1328; https://doi.org/10.3390/cryst13091328 - 30 Aug 2023
Viewed by 1589
Abstract
Nanoparticles have a negative effect on the preparation of Gallium Nitride (GaN) by Metal-Organic Chemical Vapor Deposition (MOCVD). We developed a particle tracking and particle-wall collision model coupled with the bulk gas flow solver to investigate the motion and deposition of nanoparticles in [...] Read more.
Nanoparticles have a negative effect on the preparation of Gallium Nitride (GaN) by Metal-Organic Chemical Vapor Deposition (MOCVD). We developed a particle tracking and particle-wall collision model coupled with the bulk gas flow solver to investigate the motion and deposition of nanoparticles in single-wafer and multi-wafer reactors. The results indicated that for the single-wafer reactor, there is no particle deposition on the reactor wall and susceptor, but there is the endless movement of some particles within the reactor, which should be avoided. For the multi-wafer reactors, some of the nanoparticles are deposited near the axis, and those whose initial position is beyond a certain position from the axis are trapped in a vortex above the receptor, resulting in more complex by-products, although no particles are trapped in endless motion. Moreover, the effects of the rotational speed of the susceptor on the deposition rate for both the single-wafer reactor and the multi-wafer reactor were also simulated and analyzed. Full article
(This article belongs to the Special Issue Heat and Mass Transfer Modeling in Crystal Growth)
Show Figures

Figure 1

16 pages, 3971 KB  
Article
Innovative Synthetic Approaches for Sulphate-Promoted Catalysts for Biomass Valorisation
by Alessia Giordana, Cristina Pizzolitto, Elena Ghedini, Michela Signoretto, Lorenza Operti and Giuseppina Cerrato
Catalysts 2023, 13(7), 1094; https://doi.org/10.3390/catal13071094 - 12 Jul 2023
Cited by 1 | Viewed by 1802
Abstract
In the present research, we report on an innovative and quick procedure for the synthesis of metal oxides: a sol-gel procedure which is followed by two steps that are assisted by microwaves (MW) heating. First, MW heating promotes gel drying and successively permits [...] Read more.
In the present research, we report on an innovative and quick procedure for the synthesis of metal oxides: a sol-gel procedure which is followed by two steps that are assisted by microwaves (MW) heating. First, MW heating promotes gel drying and successively permits the calcination of the xerogel in a few minutes, using a susceptor that rapidly reaches high temperatures. The procedure was employed for the synthesis of zirconium dioxide (ZrO2), and MW-assisted calcination enables the collection of tetragonal ZrO2, as confirmed by different experimental techniques (PXRD, HR-TEM and Raman spectroscopy). Using this MW-assisted sol-gel procedure, a promoted sulphated zirconia (SZ) has been obtained. Both the nature and strength of SZ surface acidity have been investigated with FTIR spectroscopy using CO and 2,6-dimethylpyridine (2,6-DMP) as probe molecules. The obtained materials were tested as catalysts in acid hydrolysis of glucose to give 5-(hydroxymethyl)furfural (5-HMF). One of the obtained catalysts exhibited a better selectivity towards 5-HMF with respect to SZ material prepared by a classical precipitation route, suggesting that this procedure could be employed to obtain a well-known catalyst with a less energy-consuming procedure. Catalytic results also suggest that good selectivity to 5-HMF can be achieved in aqueous media in the presence of weak Lewis and Brønsted sites. Full article
(This article belongs to the Special Issue Advanced Materials for Application in Catalysis)
Show Figures

Graphical abstract

12 pages, 2812 KB  
Article
Microwave-Assisted Chemical Ablation (MA-CA): A Novel Microwave-Assisted Tissue Ablation Procedure—Preliminary Assessment of Efficiency
by J. R. Jocelyn Paré, Jacqueline M. R. Bélanger, Gabriel Cormier, Delphine Foucher, Antony Thériault, Jean-Christophe Savoie and Jean-François Rochas
Appl. Sci. 2023, 13(12), 7177; https://doi.org/10.3390/app13127177 - 15 Jun 2023
Cited by 3 | Viewed by 2355
Abstract
Microwave (MW) ablation is becoming a routine technology in the interventional radiology field. A new approach combining MW ablation and chemical ablation is developed in this paper. The rationale for the development of this Microwave-Assisted Chemical Ablation (MA-CA) technology was to improve the [...] Read more.
Microwave (MW) ablation is becoming a routine technology in the interventional radiology field. A new approach combining MW ablation and chemical ablation is developed in this paper. The rationale for the development of this Microwave-Assisted Chemical Ablation (MA-CA) technology was to improve the utility of thermal ablation as a minimally invasive treatment for cancer. The experimental conditions for ex vivo bovine liver samples were: A—100 W (120 s) with no addition of ethanol; B—100 W (30 s), wait (60 s) (no power), and 100 W (90 s) with no addition of ethanol; C—100 W (30 s), wait (60 s), 100 W (30 s), and 100 W (60 s) with the addition of 5 mL ethanol; and D—100 W (30 s), wait (60 s), 100 W (30 s), 0 W (30 s) with the addition of 2.5 mL ethanol, and 100 W (60 s) with the addition of 5 mL ethanol (12,000 Joules Total). The results showed that with the use of ethanol, the ablation zone was enlarged and revealed improved sphericity. This novel combination has greater advantages than either technology individually. The objective is to increase the precision and efficiency of MW ablation and to broaden the range of tissues and pathologies that can be treated using this new approach, and to validate the benefits that arise from combining the advantages of MW and chemical ablation in a relevant setting. Full article
Show Figures

Figure 1

13 pages, 17915 KB  
Article
Ready-to-Use Recycled Carbon Fibres Decorated with Magnetic Nanoparticles: Functionalization after Recycling Process Using Supercritical Fluid Chemistry
by Sophie Martin, Tatjana Kosanovic Milickovic, Costas A. Charitidis and Sandy Moisan
J. Compos. Sci. 2023, 7(6), 236; https://doi.org/10.3390/jcs7060236 - 6 Jun 2023
Cited by 2 | Viewed by 1899
Abstract
An innovative simultaneous process, using supercritical fluid (SCF) chemistry, was used to recycle uncured prepregs and to functionalize the recovered carbon fibres with Fe3O4 magnetic nanoparticles (MNPs), to produce a new type of secondary raw material suitable for composite applications. [...] Read more.
An innovative simultaneous process, using supercritical fluid (SCF) chemistry, was used to recycle uncured prepregs and to functionalize the recovered carbon fibres with Fe3O4 magnetic nanoparticles (MNPs), to produce a new type of secondary raw material suitable for composite applications. This specific functionalization allows the fibres to be heated by induction through a hysteresis loss mechanism characteristic for nanoparticle susceptor-embedded systems, for triggered healing properties and a potentially easy route for CF reclamation. Using SCF and hydrothermal conditions for recycling, functionalization of fibres can be performed in the same reactor, resulting in the creation of ready-to-use fibres and limiting the use organic solvent. After cutting the uncured prepreg to the desired length to fit in future applications, supercritical CO2 extraction is performed to partially remove some components of the uncured prepreg matrix (step 1). Then, the recycled carbon fibres (rCFs), still embedded inside the remaining organic matrix, are brought into contact with reactants for the functionalization step (step 2). Two possibilities were studied: the direct synthesis of MNPs coated with PAA in hydrothermal conditions, and the deposition of already synthesized MNPs assisted by supercritical CO2-acetone. No CF surface activation is needed thanks to the presence of functional groups due to the remaining matrix. After functionalization, ready-to-use material with homogeneous depositions of MNPs at the surface of rCF is produced, with a strong magnetic behaviour and without observed degradation of the fibres. Full article
(This article belongs to the Special Issue Multifunctional Composite Structures)
Show Figures

Figure 1

11 pages, 2663 KB  
Article
Closed-Loop Composite Welding and Bonding System Using Radio-Frequency Heating and Pressure
by Ian Enriquez, Colin Noronha, Katrina Teo, Anubhav Sarmah, Surabhit Gupta, Ankush Nandi, Blake Fishbeck, Micah J. Green and Aniruddh Vashisth
J. Compos. Sci. 2023, 7(3), 116; https://doi.org/10.3390/jcs7030116 - 13 Mar 2023
Cited by 4 | Viewed by 2936
Abstract
Polymer parts often replace traditional metallic parts in load-bearing applications due to their high strength-to-weight ratio, with thermoplastics at the forefront. Conventional manufacturing processes rely on using fasteners or adhesives to hold composite assemblies together, but thermoplastics can be welded together. Ultrasonic welding [...] Read more.
Polymer parts often replace traditional metallic parts in load-bearing applications due to their high strength-to-weight ratio, with thermoplastics at the forefront. Conventional manufacturing processes rely on using fasteners or adhesives to hold composite assemblies together, but thermoplastics can be welded together. Ultrasonic welding is widely used but becomes challenging for complex geometries, and new parameters need to be developed for different polymers and specimen geometries. In this work, we developed a closed-loop welding machine that employs the recent discovery of radio-frequency (RF) heating of carbonaceous materials. The machine is successfully able to weld polylactic acid (PLA) coupons with graphitic RF susceptors at the bondline in less than 2 min and using less than 50 W of input RF power. We found that a higher areal density of the graphitic paint lowers the mechanical properties of the weld because the carbonaceous materials hinder polymer chain diffusion. A significant change was not observed in weld properties for welding pressure ranges between 0 and 0.3 MPa. However, increasing out-of-plane welding displacement increased the modulus and strength of the weld. This work provides an interesting new automated system for welding polymer composites using RF fields, with potential applications in various manufacturing industries. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume II)
Show Figures

Figure 1

23 pages, 9885 KB  
Article
Magneto-Thermal Coupling Simulation of Flowing Liquid Induction Heating through Static Mixer-Type Susceptors
by Mingxuan Shi, Qing Xu, Yanhua Li, Lisheng Deng and Xiaoyong Dai
Processes 2023, 11(2), 533; https://doi.org/10.3390/pr11020533 - 9 Feb 2023
Viewed by 2239
Abstract
As a new non-contact heating technology, induction heating technology has very broad application prospects in the field of fluid food heating. However, its application is inevitably affected by the heat concentration caused by uneven energy distribution. The uneven temperature distribution of the heating [...] Read more.
As a new non-contact heating technology, induction heating technology has very broad application prospects in the field of fluid food heating. However, its application is inevitably affected by the heat concentration caused by uneven energy distribution. The uneven temperature distribution of the heating process will lead to the decrease in the quality of heating products. Therefore, based on the previous research, in order to improve the uniformity of heat distribution in the heating process, this study selected the susceptor with the greatest potential for efficient and the most uniform heating fluid to carry out the coupling simulation of electromagnetic heat transfer. The susceptor was simulated and optimized in three aspects: different power comparisons, the influence of structural change on temperature distribution uniformity, and the influence of physical property change of metal material on temperature distribution uniformity. The results show that the simulation results are in good agreement with the experimental results, and the error between the experimental and simulation values of the outlet temperature at Kelvin temperature is less than 0.18%. The change of geometric structure had a great influence on the uniformity of temperature distribution, and the uniformity of temperature distribution was inversely proportional to the conductivity. During the simulation, the temperature of the fluid heated by the susceptor was increased from 284.75 K to about 333K. The temperature distribution of the fluid at the outlet of the susceptor was uniform, and the temperature difference was about 1 K. Full article
Show Figures

Figure 1

Back to TopTop