Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = triplex RNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8519 KB  
Article
RNA-Seq Analysis of MCF-7 Breast Cancer Cells Treated with Methyl Gallate Isolated from the Rhizomes of Nymphaea Odorata L. Shows Upregulation of Apoptosis, Autophagy, and Unfolded Protein Canonical Pathways
by Nishikant A. Raut, Pinal N. Kanabar, Mark Maienschein-Cline, Nina S. Los, Zarema Arbieva, Temitope O. Lawal, Shitalben Patel and Gail B. Mahady
Molecules 2025, 30(14), 3022; https://doi.org/10.3390/molecules30143022 - 18 Jul 2025
Viewed by 953
Abstract
The effects of a methanol extract of Nymphaea odorata (MeNO) rhizomes, its fractions and the active compound (methyl gallate, MeG) were investigated in estrogen receptor-positive (ER+) breast cancer cell lines MCF-7 and T47-D:A18, as well as ER-negative line SKBr3. Cell viability and cytotoxicity [...] Read more.
The effects of a methanol extract of Nymphaea odorata (MeNO) rhizomes, its fractions and the active compound (methyl gallate, MeG) were investigated in estrogen receptor-positive (ER+) breast cancer cell lines MCF-7 and T47-D:A18, as well as ER-negative line SKBr3. Cell viability and cytotoxicity were determined using CellTiter-Glo® 2.0 assays at concentrations ranging from 1 to 100 μg/mL. Caspase activity and apoptosis were determined using Caspase-Glo® 3/7, Caspase-Glo® 8, and ApoTox-Glo™ triplex assays, as well as qPCR. Total RNA was isolated from MCF-7 cells treated with MeG. RNA-seq libraries were prepared using a Universal Plus mRNASeq kit, and sequencing was performed on a NovaSeq 6000. MeNO inhibited the growth of MCF-7 cells with an IC50 of 14.1 μg/mL, as well as T47-D:A18 (IC50 of 25.6 μg/mL) and SKBr3 cells (IC50 of 35.5 μg/mL). Bioassay-guided fractionation of MeNO in MCF-7 cells identified the active fraction containing one compound, namely methyl gallate (MeG). MeG had an IC50 of 8.6 μg/mL in MCF-7 cells. Transcriptomic analysis of MeG-treated MCF-7 cells showed differential expression of 10,634 genes, with 5643 upregulated and 4991 downregulated (FDR < 0.05). Ingenuity pathway analysis revealed the involvement of 43 canonical pathways, with the top upregulated pathways including apoptosis, autophagy, and the unfolded protein response pathways. Full article
Show Figures

Graphical abstract

16 pages, 3466 KB  
Article
Conformational Analysis and Structure-Altering Mutations of the HIV-1 Frameshifting Element
by Katelyn Newton, Shuting Yan and Tamar Schlick
Int. J. Mol. Sci. 2025, 26(13), 6297; https://doi.org/10.3390/ijms26136297 - 30 Jun 2025
Viewed by 629
Abstract
Human immunodeficiency virus (HIV) continues to be a threat to public health. An emerging technique with promise in the context of fighting HIV type 1 (HIV-1) focuses on targeting ribosomal frameshifting. A crucial –1 programmed ribosomal frameshift (PRF) has been observed in several [...] Read more.
Human immunodeficiency virus (HIV) continues to be a threat to public health. An emerging technique with promise in the context of fighting HIV type 1 (HIV-1) focuses on targeting ribosomal frameshifting. A crucial –1 programmed ribosomal frameshift (PRF) has been observed in several pathogenic viruses, including HIV-1. Altered folds of the HIV-1 RNA frameshift element (FSE) have been shown to alter frameshifting efficiency. Here, we use RNA-As-Graphs (RAG), a graph-theory based framework for representing and analyzing RNA secondary structures, to perform conformational analysis in motif space to propose how sequence length may influence folding patterns. This combined analysis, along with all-atom modeling and experimental testing of our designed mutants, has already proven valuable for the SARS-CoV-2 FSE. As a first step to launching the same computational/experimental approach for HIV-1, we compare prior experiments and perform SHAPE-guided 2D-fold predictions for the HIV-1 FSE embedded in increasing sequence contexts and predict structure-altering mutations. We find a highly stable upper stem and highly flexible lower stem for the core FSE, with a three-way junction connecting to other motifs at increasing lengths. In particular, we find little support for a pseudoknot or triplex interaction in the core FSE, although pseudoknots can form separately as a connective motif at longer sequences. We also identify sensitive residues in the upper stem and central loop that, when minimally mutated, alter the core stem loop folding. These insights into the FSE fold and structure-altering mutations can be further pursued by all-atom simulations and experimental testing to advance the mechanistic understanding and therapeutic strategies for HIV-1. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

29 pages, 30337 KB  
Review
Triplexes Color the Chromaverse by Modulating Nucleosome Phasing and Anchoring Chromatin Condensates
by Alan Herbert
Int. J. Mol. Sci. 2025, 26(9), 4032; https://doi.org/10.3390/ijms26094032 - 24 Apr 2025
Viewed by 1375
Abstract
Genomic sequences that form three-stranded triplexes (TPXs) under physiological conditions (called T-flipons) play an important role in defining DNA nucleosome-free regions (NFRs). Within these NFRs, other flipon types can cycle conformations to actuate gene expression. The transcripts read from the NFR form condensates [...] Read more.
Genomic sequences that form three-stranded triplexes (TPXs) under physiological conditions (called T-flipons) play an important role in defining DNA nucleosome-free regions (NFRs). Within these NFRs, other flipon types can cycle conformations to actuate gene expression. The transcripts read from the NFR form condensates that engage proteins and small RNAs. The helicases bound then trigger RNA polymerase release by dissociating the 7SK ribonucleoprotein. The TPXs formed usually incorporate RNA as the third strand. TPXs made only from DNA arise mostly during DNA replication. Many small RNA types (sRNAs) and long noncoding (lncRNA) can direct TPX formation. TPXs made with circular RNAs have greater stability and specificity than those formed with linear RNAs. LncRNAs can affect local gene expression through TPX formation and transcriptional interference. The condensates seeded by lncRNAs are updated by feedback loops involving proteins and noncoding RNAs from the genes they regulate. Some lncRNAs also target distant loci in a sequence-specific manner. Overall, lncRNAs can rapidly evolve by adding or subtracting sequence motifs that modify the condensates they nucleate. LncRNAs show less sequence conservation than protein-coding sequences. TPXs formed by lncRNAs and sRNAs help place nucleosomes to restrict endogenous retroelement (ERE) expression. The silencing of EREs starts early in embryogenesis and is essential for bootstrapping development. Once the system is set, EREs play a different role, with a notable enrichment of Short Interspersed Nuclear Repeats (SINEs) in Enhancer–Promoter condensates. The highly programmable TPX-dependent processes create a chromaverse capable of many complexities. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

28 pages, 1358 KB  
Review
Biomolecules Interacting with Long Noncoding RNAs
by Hidenori Tani
Biology 2025, 14(4), 442; https://doi.org/10.3390/biology14040442 - 19 Apr 2025
Cited by 1 | Viewed by 982
Abstract
This review explores the complex interactions between long noncoding RNAs (lncRNAs) and other biomolecules, highlighting their pivotal roles in gene regulation and cellular function. LncRNAs, defined as RNA transcripts exceeding 200 nucleotides without encoding proteins, are involved in diverse biological processes, from embryogenesis [...] Read more.
This review explores the complex interactions between long noncoding RNAs (lncRNAs) and other biomolecules, highlighting their pivotal roles in gene regulation and cellular function. LncRNAs, defined as RNA transcripts exceeding 200 nucleotides without encoding proteins, are involved in diverse biological processes, from embryogenesis to pathogenesis. They interact with DNA through mechanisms like triplex structure formation, influencing chromatin organization and gene expression. LncRNAs also modulate RNA-mediated processes, including mRNA stability, translational control, and splicing regulation. Their versatility stems from their forming of complex structures that enable interactions with various biomolecules. This review synthesizes current knowledge on lncRNA functions, discusses emerging roles in development and disease, and evaluates potential applications in diagnostics and therapeutics. By examining lncRNA interactions, it provides insights into the intricate regulatory networks governing cellular processes, underscoring the importance of lncRNAs in molecular biology. Unlike the majority of previous reviews that primarily focused on individual aspects of lncRNA biology, this comprehensive review uniquely integrates structural, functional, and mechanistic perspectives on lncRNA interactions across diverse biomolecules. Additionally, this review critically evaluates cutting-edge methodologies for studying lncRNA interactions, bridges fundamental molecular mechanisms with potential clinical applications, and highlights their potential. Full article
(This article belongs to the Special Issue RNA Biology and mRNA in Diseases)
Show Figures

Figure 1

14 pages, 391 KB  
Article
Discriminating North American Swine Influenza Viruses with a Portable, One-Step, Triplex Real-Time RT-PCR Assay, and Portable Sequencing
by Marie K. Kirby, Bo Shu, Matthew W. Keller, Malania M. Wilson, Benjamin L. Rambo-Martin, Yunho Jang, Jimma Liddell, Eduardo Salinas Duron, Jacqueline M. Nolting, Andrew S. Bowman, C. Todd Davis, David E. Wentworth and John R. Barnes
Viruses 2024, 16(10), 1557; https://doi.org/10.3390/v16101557 - 30 Sep 2024
Cited by 1 | Viewed by 1408
Abstract
Swine harbors a genetically diverse population of swine influenza A viruses (IAV-S), with demonstrated potential to transmit to the human population, causing outbreaks and pandemics. Here, we describe the development of a one-step, triplex real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay that detects [...] Read more.
Swine harbors a genetically diverse population of swine influenza A viruses (IAV-S), with demonstrated potential to transmit to the human population, causing outbreaks and pandemics. Here, we describe the development of a one-step, triplex real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay that detects and distinguishes the majority of the antigenically distinct influenza A virus hemagglutinin (HA) clades currently circulating in North American swine, including the IAV-S H1 1A.1 (α), 1A.2 (β), 1A.3 (γ), 1B.2.2 (δ1) and 1B.2.1 (δ2) clades, and the IAV-S H3 2010.1 clade. We performed an in-field test at an exhibition swine show using in-field viral concentration and RNA extraction methodologies and a portable real-time PCR instrument, and rapidly identified three distinct IAV-S clades circulating within the N.A. swine population. Portable sequencing is used to further confirm the results of the in-field test of the swine triplex assay. The IAV-S triplex rRT-PCR assay can be easily transported and used in-field to characterize circulating IAV-S clades in North America, allowing for surveillance and early detection of North American IAV-S with human outbreak and pandemic potential. Full article
(This article belongs to the Special Issue Advances in Animal Influenza Virus Research: Third Edition)
Show Figures

Figure 1

13 pages, 4382 KB  
Article
Establishment and Application of a Triplex Real-Time Reverse-Transcription Polymerase Chain Reaction Assay for Differentiation of PEDV, TGEV and PKV
by Jun Tu, Zhengdan Lin, Erchao Sun, Teng Yu, Weichao Zhang, Yumei Sun, Hechao Zhu, Pin Qian and Guofu Cheng
Vet. Sci. 2024, 11(9), 413; https://doi.org/10.3390/vetsci11090413 - 6 Sep 2024
Cited by 2 | Viewed by 1582
Abstract
The pathogens responsible for porcine viral diarrhea are diverse, causing significant economic losses to the pig industry. PEDV and TGEV are well-known pathogens causing diarrheal diseases in pigs, leading to significant economic losses in the breeding industry. In contrast, the newly identified diarrhea [...] Read more.
The pathogens responsible for porcine viral diarrhea are diverse, causing significant economic losses to the pig industry. PEDV and TGEV are well-known pathogens causing diarrheal diseases in pigs, leading to significant economic losses in the breeding industry. In contrast, the newly identified diarrhea virus, PKV, has not garnered as much attention. However, co-infection of PKV with PEDV results in more severe symptoms in piglets, such as acute gastroenteritis, and promotes increased replication of PEDV. Rapid and accurate diagnosis of viral diarrhea is essential for farms to identify pathogens early and mitigate economic losses. This study describes the development of a triplex real-time fluorescent quantitative RT-qPCR technique that can simultaneously detect three RNA viruses associated with porcine viral diarrhea: PEDV, TGEV, and PKV. To establish the triplex RT-qPCR method for the simultaneous detection and identification of the above three diarrhea viruses, conserved regions of the M gene of TGEV, the N gene of PEDV, and the 3D gene of PKV were selected to design specific primers and probes. After optimizing the reaction conditions, the method’s specificity, sensitivity, and reproducibility were evaluated. The triplex RT-qPCR method did not show a significant difference in PCR efficiency compared to the single RT-qPCR method. The method is specific to TGEV, PKV, and PEDV, exhibits no cross-reactivity with other pathogens, and demonstrates satisfactory sensitivity and reproducibility; the limit of detection (LOD) of PEDV, TGEV, and PKV is 11.42 copies/μL. Furthermore, the performance of the triplex RT-qPCR assay was compared with the Chinese standard single-assay method for detecting TGEV, PKV, and PEDV, showing complete consistency between the two methods (100% compliant). Subsequently, 1502 clinical diarrhea samples were collected from the Guangxi Zhuang Autonomous Region to investigate the local prevalence of TGEV, PKV, and PEDV and the positive rates were 16.38% (246/1502), 1.46% (22/1502), and 45.14% (678/1502), respectively. Co-infection of PEDV and PKV were most common, with a rate of 12.12% (182/1502). This study presents a valuable method for the rapid and simultaneous identification of PEDV, TGEV, and PKV in clinical animal farming practices, and provides a reassessment of the epidemiology of these diarrhea-causing viral pathogens in the Guangxi Zhuang Autonomous Region. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
Show Figures

Figure 1

28 pages, 3486 KB  
Article
Distinctive Nucleic Acid Recognition by Lysine-Embedded Phenanthridine Peptides
by Josipa Matić, Patryciusz Piotrowski, Lucija Vrban, Renata Kobetić, Robert Vianello, Ivona Jurić, Ivana Fabijanić, Margareta Pernar Kovač, Anamaria Brozovic, Ivo Piantanida, Carsten Schmuck and Marijana Radić Stojković
Int. J. Mol. Sci. 2024, 25(9), 4866; https://doi.org/10.3390/ijms25094866 - 29 Apr 2024
Viewed by 1638
Abstract
Three new phenanthridine peptide derivatives (19, 22, and 23) were synthesized to explore their potential as spectrophotometric probes for DNA and RNA. UV/Vis and circular dichroism (CD) spectra, mass spectroscopy, and computational analysis confirmed the presence of intramolecular interactions [...] Read more.
Three new phenanthridine peptide derivatives (19, 22, and 23) were synthesized to explore their potential as spectrophotometric probes for DNA and RNA. UV/Vis and circular dichroism (CD) spectra, mass spectroscopy, and computational analysis confirmed the presence of intramolecular interactions in all three compounds. Computational analysis revealed that compounds alternate between bent and open conformations, highlighting the latter’s crucial influence on successful polynucleotide recognition. Substituting one glycine with lysine in two regioisomers (22, 23) resulted in stronger binding interactions with DNA and RNA than for a compound containing two glycines (19), thus emphasizing the importance of lysine. The regioisomer with lysine closer to the phenanthridine ring (23) exhibited a dual and selective fluorimetric response with non-alternating AT and ATT polynucleotides and induction of triplex formation from the AT duplex. The best binding constant (K) with a value of 2.5 × 107 M−1 was obtained for the interaction with AT and ATT polynucleotides. Furthermore, apart from distinguishing between different types of ds-DNA and ds-RNA, the same compound could recognize GC-rich DNA through distinct induced CD signals. Full article
(This article belongs to the Special Issue Computational, Structural and Spectroscopic Studies of Macromolecules)
Show Figures

Figure 1

12 pages, 671 KB  
Article
Development and Validation of Three Triplex Real-Time RT-PCR Assays for Typing African Horse Sickness Virus: Utility for Disease Control and Other Laboratory Applications
by Rubén Villalba, Cristina Tena-Tomás, María José Ruano, Marta Valero-Lorenzo, Ana López-Herranz, Cristina Cano-Gómez and Montserrat Agüero
Viruses 2024, 16(3), 470; https://doi.org/10.3390/v16030470 - 20 Mar 2024
Cited by 1 | Viewed by 2144
Abstract
The African horse sickness virus (AHSV) belongs to the Genus Orbivirus, family Sedoreoviridae, and nine serotypes of the virus have been described to date. The AHSV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in decreasing size order (Seg-1 [...] Read more.
The African horse sickness virus (AHSV) belongs to the Genus Orbivirus, family Sedoreoviridae, and nine serotypes of the virus have been described to date. The AHSV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in decreasing size order (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable AHSV protein and the primary target for neutralizing antibodies. Consequently, Seg-2 determines the identity of the virus serotype. An African horse sickness (AHS) outbreak in an AHS-free status country requires identifying the serotype as soon as possible to implement a serotype-specific vaccination program. Considering that nowadays ‘polyvalent live attenuated’ is the only commercially available vaccination strategy to control the disease, field and vaccine strains of different serotypes could co-circulate. Additionally, in AHS-endemic countries, more than one serotype is often circulating at the same time. Therefore, a strategy to rapidly determine the virus serotype in an AHS-positive sample is strongly recommended in both epidemiological situations. The main objective of this study is to describe the development and validation of three triplex real-time RT-PCR (rRT-PCR) methods for rapid AHSV serotype detection. Samples from recent AHS outbreaks in Kenia (2015–2017), Thailand (2020), and Nigeria (2023), and from the AHS outbreak in Spain (1987–1990), were included in the study for the validation of these methods. Full article
Show Figures

Figure 1

10 pages, 1423 KB  
Communication
A New Strategy to Investigate RNA:DNA Triplex Using Atomic Force Microscopy
by Giovanni Merici, Davide Amidani, Giorgio Dieci and Claudio Rivetti
Int. J. Mol. Sci. 2024, 25(5), 3035; https://doi.org/10.3390/ijms25053035 - 6 Mar 2024
Cited by 3 | Viewed by 2092
Abstract
Over the past decade, long non-coding RNAs (lncRNAs) have been recognized as key players in gene regulation, influencing genome organization and expression. The locus-specific binding of these non-coding RNAs (ncRNAs) to DNA involves either a non-covalent interaction with DNA-bound proteins or a direct [...] Read more.
Over the past decade, long non-coding RNAs (lncRNAs) have been recognized as key players in gene regulation, influencing genome organization and expression. The locus-specific binding of these non-coding RNAs (ncRNAs) to DNA involves either a non-covalent interaction with DNA-bound proteins or a direct sequence-specific interaction through the formation of RNA:DNA triplexes. In an effort to develop a novel strategy for characterizing a triple-helix formation, we employed atomic force microscopy (AFM) to visualize and study a regulatory RNA:DNA triplex formed between the Khps1 lncRNA and the enhancer of the proto-oncogene SPHK1. The analysis demonstrates the successful formation of RNA:DNA triplexes under various conditions of pH and temperature, indicating the effectiveness of the AFM strategy. Despite challenges in discriminating between the triple-helix and R-loop configurations, this approach opens new perspectives for investigating the role of lncRNAs in gene regulation at the single-molecule level. Full article
(This article belongs to the Special Issue Application of Atomic Force Microscopy in Molecular and Cell Biology)
Show Figures

Figure 1

9 pages, 632 KB  
Article
Active Surveillance of Powassan Virus in Massachusetts Ixodes scapularis Ticks, Comparing Detection Using a New Triplex Real-Time PCR Assay with a Luminex Vector-Borne Panel
by Guang Xu, Eric Siegel, Nolan Fernandez, Emily Bechtold, Timothy Daly, Alan P. Dupuis, Alexander Ciota and Stephen M. Rich
Viruses 2024, 16(2), 250; https://doi.org/10.3390/v16020250 - 4 Feb 2024
Cited by 1 | Viewed by 5134
Abstract
Powassan virus is an emerging tick-borne pathogen capable of causing severe neuroinvasive disease. As the incidence of human Powassan virus grows both in magnitude and geographical range, the development of sensitive detection methods for diagnostics and surveillance is critical. In this study, a [...] Read more.
Powassan virus is an emerging tick-borne pathogen capable of causing severe neuroinvasive disease. As the incidence of human Powassan virus grows both in magnitude and geographical range, the development of sensitive detection methods for diagnostics and surveillance is critical. In this study, a Taqman-based triplex real-time PCR assay was developed for the simultaneous and quantitative detection of Powassan virus and Powassan virus lineage II (deer tick virus) in Ixodes scapularis ticks. An exon–exon junction internal control was built-in to allow for accurate detection of RNA quality and the failure of RNA extraction. The newly developed assay was also applied to survey deer tick virus in tick populations at 13 sites on Cape Cod and Martha’s Vineyard Island in Massachusetts. The assay’s performance was compared with the Luminex xMAP MultiFLEX Vector-borne Panel 2. The results suggested that the real-time PCR method was more sensitive. Powassan virus infection rates among ticks collected from these highly endemic tick areas ranged from 0.0 to 10.4%, highlighting the fine-scale geographic variations in deer tick virus presence in this region. Looking forward, our PCR assay could be adopted in other Powassan virus surveillance systems. Full article
(This article belongs to the Special Issue Tick-Borne Viruses: Transmission and Surveillance)
Show Figures

Graphical abstract

21 pages, 4185 KB  
Review
Recent Advancements in Development and Therapeutic Applications of Genome-Targeting Triplex-Forming Oligonucleotides and Peptide Nucleic Acids
by Yu Mikame and Asako Yamayoshi
Pharmaceutics 2023, 15(10), 2515; https://doi.org/10.3390/pharmaceutics15102515 - 23 Oct 2023
Cited by 10 | Viewed by 4441
Abstract
Recent developments in artificial nucleic acid and drug delivery systems present possibilities for the symbiotic engineering of therapeutic oligonucleotides, such as antisense oligonucleotides (ASOs) and small interfering ribonucleic acids (siRNAs). Employing these technologies, triplex-forming oligonucleotides (TFOs) or peptide nucleic acids (PNAs) can be [...] Read more.
Recent developments in artificial nucleic acid and drug delivery systems present possibilities for the symbiotic engineering of therapeutic oligonucleotides, such as antisense oligonucleotides (ASOs) and small interfering ribonucleic acids (siRNAs). Employing these technologies, triplex-forming oligonucleotides (TFOs) or peptide nucleic acids (PNAs) can be applied to the development of symbiotic genome-targeting tools as well as a new class of oligonucleotide drugs, which offer conceptual advantages over antisense as the antigene target generally comprises two gene copies per cell rather than multiple copies of mRNA that are being continually transcribed. Further, genome editing by TFOs or PNAs induces permanent changes in the pathological genes, thus facilitating the complete cure of diseases. Nuclease-based gene-editing tools, such as zinc fingers, CRISPR-Cas9, and TALENs, are being explored for therapeutic applications, although their potential off-target, cytotoxic, and/or immunogenic effects may hinder their in vivo applications. Therefore, this review is aimed at describing the ongoing progress in TFO and PNA technologies, which can be symbiotic genome-targeting tools that will cause a near-future paradigm shift in drug development. Full article
(This article belongs to the Special Issue Symbiotic Materials for Pharmaceutics)
Show Figures

Figure 1

21 pages, 6821 KB  
Article
Analyzes In Silico Indicate the lncRNAs MIR31HG and LINC00939 as Possible Epigenetic Inhibitors of the Osteogenic Differentiation in PDLCs
by Rogério S. Ferreira, Rahyza I. F. Assis, Francesca Racca, Ana Carolina Bontempi, Rodrigo A. da Silva, Malgorzata Wiench and Denise C. Andia
Genes 2023, 14(8), 1649; https://doi.org/10.3390/genes14081649 - 18 Aug 2023
Cited by 2 | Viewed by 2254
Abstract
Chromatin conformation, DNA methylation pattern, transcriptional profile, and non-coding RNAs (ncRNAs) interactions constitute an epigenetic pattern that influences the cellular phenotypic commitment and impacts the clinical outcomes in regenerative therapies. Here, we investigated the epigenetic landscape of the SP7 transcriptor factor (SP7 [...] Read more.
Chromatin conformation, DNA methylation pattern, transcriptional profile, and non-coding RNAs (ncRNAs) interactions constitute an epigenetic pattern that influences the cellular phenotypic commitment and impacts the clinical outcomes in regenerative therapies. Here, we investigated the epigenetic landscape of the SP7 transcriptor factor (SP7) and Distal-Less Homeobox 4 (DLX4) osteoblastic transcription factors (TFs), in human periodontal ligament mesenchymal cells (PDLCs) with low (l-PDLCs) and high (h-PDLCs) osteogenic potential. Chromatin accessibility (ATAC-seq), genome DNA methylation (Methylome), and RNA sequencing (RNA-seq) assays were performed in l- and h-PDLCs, cultured at 10 days in non-induced (DMEM) and osteogenic (OM) medium in vitro. Data were processed in HOMER, Genome Studio, and edgeR programs, and metadata was analyzed by online bioinformatics tools and in R and Python environments. ATAC-seq analyses showed the TFs genomic regions are more accessible in l-PDLCs than in h-PDLCs. In Methylome analyses, the TFs presented similar average methylation intensities (AMIs), without differently methylated probes (DMPs) between l- and h-PDLCs; in addition, there were no differences in the expression profiles of TFs signaling pathways. Interestingly, we identified the long non-coding RNAs (lncRNAs), MIR31HG and LINC00939, as upregulated in l-PDLCs, in both DMEM and OM. In the following analysis, the web-based prediction tool LncRRIsearch predicted RNA:RNA base-pairing interactions between SP7, DLX4, MIR31HG, and LINC00939 transcripts. The machine learning program TriplexFPP predicted DNA:RNA triplex-forming potential for the SP7 DNA site and for one of the LINC00939 transcripts (ENST00000502479). PCR data confirmed the upregulation of MIR31HG and LINC00939 transcripts in l-PDLCs (× h-PDLCs) in both DMEM and OM (p < 0.05); conversely, SP7 and DLX4 were downregulated, confirming those results observed in the RNA-Seq analysis. Together, these results indicate the lncRNAs MIR31HG and LINC00939 as possible epigenetic inhibitors of the osteogenic differentiation in PDLCs by (post)transcriptional and translational repression of the SP7 and DLX4 TFs. Full article
(This article belongs to the Special Issue Epigenetics in Human Development and Disease)
Show Figures

Figure 1

14 pages, 3197 KB  
Article
Multiplexed Gene Engineering Based on dCas9 and gRNA-tRNA Array Encoded on Single Transcript
by Chaoqian Jiang, Lishuang Geng, Jinpeng Wang, Yingjuan Liang, Xiaochen Guo, Chang Liu, Yunjing Zhao, Junxue Jin, Zhonghua Liu and Yanshuang Mu
Int. J. Mol. Sci. 2023, 24(10), 8535; https://doi.org/10.3390/ijms24108535 - 10 May 2023
Cited by 3 | Viewed by 4323
Abstract
Simultaneously, multiplexed genome engineering and targeting multiple genomic loci are valuable to elucidating gene interactions and characterizing genetic networks that affect phenotypes. Here, we developed a general CRISPR-based platform to perform four functions and target multiple genome loci encoded in a single transcript. [...] Read more.
Simultaneously, multiplexed genome engineering and targeting multiple genomic loci are valuable to elucidating gene interactions and characterizing genetic networks that affect phenotypes. Here, we developed a general CRISPR-based platform to perform four functions and target multiple genome loci encoded in a single transcript. To establish multiple functions for multiple loci targets, we fused four RNA hairpins, MS2, PP7, com and boxB, to stem–loops of gRNA (guide RNA) scaffolds, separately. The RNA-hairpin-binding domains MCP, PCP, Com and λN22 were fused with different functional effectors. These paired combinations of cognate-RNA hairpins and RNA-binding proteins generated the simultaneous, independent regulation of multiple target genes. To ensure that all proteins and RNAs are expressed in one transcript, multiple gRNAs were constructed in a tandemly arrayed tRNA (transfer RNA)-gRNA architecture, and the triplex sequence was cloned between the protein-coding sequences and the tRNA-gRNA array. By leveraging this system, we illustrate the transcriptional activation, transcriptional repression, DNA methylation and DNA demethylation of endogenous targets using up to 16 individual CRISPR gRNAs delivered on a single transcript. This system provides a powerful platform to investigate synthetic biology questions and engineer complex-phenotype medical applications. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 1537 KB  
Review
Recent Development in Biomedical Applications of Oligonucleotides with Triplex-Forming Ability
by Incherah Bekkouche, Alexander Y. Shishonin and Alexandre A. Vetcher
Polymers 2023, 15(4), 858; https://doi.org/10.3390/polym15040858 - 9 Feb 2023
Cited by 9 | Viewed by 4342
Abstract
A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the [...] Read more.
A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive chemical, or as a messenger that enables switching between transcription and replication through the triplex-forming zone. These data are also considered since various illnesses have been linked to the expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some consideration is given to the impact of several low-molecular-weight compounds, including pH on triplex production in vivo. The review is focused on the development of biomedical oligonucleotides with triplexes. Full article
(This article belongs to the Special Issue Nucleic Acids as Polymers)
Show Figures

Figure 1

15 pages, 1944 KB  
Review
Computational Methods to Study DNA:DNA:RNA Triplex Formation by lncRNAs
by Timothy Warwick, Ralf P. Brandes and Matthias S. Leisegang
Non-Coding RNA 2023, 9(1), 10; https://doi.org/10.3390/ncrna9010010 - 21 Jan 2023
Cited by 19 | Viewed by 6821
Abstract
Long non-coding RNAs (lncRNAs) impact cell function via numerous mechanisms. In the nucleus, interactions between lncRNAs and DNA and the consequent formation of non-canonical nucleic acid structures seems to be particularly relevant. Along with interactions between single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA), [...] Read more.
Long non-coding RNAs (lncRNAs) impact cell function via numerous mechanisms. In the nucleus, interactions between lncRNAs and DNA and the consequent formation of non-canonical nucleic acid structures seems to be particularly relevant. Along with interactions between single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA), such as R-loops, ssRNA can also interact with double-stranded DNA (dsDNA) to form DNA:DNA:RNA triplexes. A major challenge in the study of DNA:DNA:RNA triplexes is the identification of the precise RNA component interacting with specific regions of the dsDNA. As this is a crucial step towards understanding lncRNA function, there exist several computational methods designed to predict these sequences. This review summarises the recent progress in the prediction of triplex formation and highlights important DNA:DNA:RNA triplexes. In particular, different prediction tools (Triplexator, LongTarget, TRIPLEXES, Triplex Domain Finder, TriplexFFP, TriplexAligner and Fasim-LongTarget) will be discussed and their use exemplified by selected lncRNAs, whose DNA:DNA:RNA triplex forming potential was validated experimentally. Collectively, these tools revealed that DNA:DNA:RNA triplexes are likely to be numerous and make important contributions to gene expression regulation. Full article
(This article belongs to the Special Issue Methods and Tools in RNA Biology)
Show Figures

Figure 1

Back to TopTop