Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = type 1 cannabinoid receptor CB1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3132 KB  
Article
Revealing the Specific Contributions of Mitochondrial CB1 Receptors to the Overall Function of Skeletal Muscle in Mice
by Zoltán Singlár, Péter Szentesi, Nyamkhuu Ganbat, Barnabás Horváth, László Juhász, Mónika Gönczi, Anikó Keller-Pintér, Attila Oláh, Zoltán Máté, Ferenc Erdélyi, László Csernoch and Mónika Sztretye
Cells 2025, 14(19), 1517; https://doi.org/10.3390/cells14191517 - 28 Sep 2025
Abstract
Skeletal muscle, constituting 40–50% of total body mass, is vital for mobility, posture, and systemic homeostasis. Muscle contraction heavily relies on ATP, primarily generated by mitochondrial oxidative phosphorylation. Mitochondria play a key role in decoding intracellular calcium signals. The endocannabinoid system (ECS), including [...] Read more.
Skeletal muscle, constituting 40–50% of total body mass, is vital for mobility, posture, and systemic homeostasis. Muscle contraction heavily relies on ATP, primarily generated by mitochondrial oxidative phosphorylation. Mitochondria play a key role in decoding intracellular calcium signals. The endocannabinoid system (ECS), including CB1 receptors (CB1Rs), broadly influences physiological processes and, in muscles, regulates functions like energy metabolism, development, and repair. While plasma membrane CB1Rs (pCB1Rs) are well-established, a distinct mitochondrial CB1R (mtCB1R) population also exists in muscles, influencing mitochondrial oxidative activity and quality control. We investigated the role of mtCB1Rs in skeletal muscle physiology using a novel systemic mitochondrial CB1 deletion murine model. Our in vivo studies showed no changes in motor function, coordination, or grip strength in mtCB1 knockout mice. However, in vitro force measurements revealed significantly reduced specific force in both fast-twitch (EDL) and slow-twitch (SOL) muscles following mtCB1R ablation. Interestingly, knockout EDL muscles exhibited hypertrophy, suggesting a compensatory response to reduced force quality. Electron microscopy revealed significant mitochondrial morphological abnormalities, including enlargement and irregular shapes, correlating with these functional deficits. High-resolution respirometry further demonstrated impaired mitochondrial respiration, with reduced oxidative phosphorylation and electron transport system capacities in knockout mitochondria. Crucially, mitochondrial membrane potential dissipated faster in mtCB1 knockout muscle fibers, whilst mitochondrial calcium levels were higher at rest. These findings collectively establish that mtCB1Rs are critical for maintaining mitochondrial health and function, directly impacting muscle energy production and contractile performance. Our results provide new insights into ECS-mediated regulation of skeletal muscle function and open therapeutic opportunities for muscle disorders and aging. Full article
(This article belongs to the Special Issue Skeletal Muscle: Structure, Physiology and Diseases)
Show Figures

Figure 1

5 pages, 190 KB  
Editorial
Therapeutic Potential of Cannabinoid Receptors Type 1 and 2—Novel Insights for Enhancing the Chance of Clinical Success
by Uwe Grether
Pharmaceuticals 2025, 18(9), 1324; https://doi.org/10.3390/ph18091324 - 4 Sep 2025
Viewed by 627
Abstract
This Special Issue of Pharmaceuticals presents eight original articles and three reviews, underscoring the ongoing robust interest in research on cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) more than 30 years after their discovery [...] Full article
26 pages, 2099 KB  
Review
Cannabis Medicine 2.0: Nanotechnology-Based Delivery Systems for Synthetic and Chemically Modified Cannabinoids for Enhanced Therapeutic Performance
by Izabela Żółnowska, Aleksandra Gostyńska-Stawna, Anna Jelińska and Maciej Stawny
Nanomaterials 2025, 15(16), 1260; https://doi.org/10.3390/nano15161260 - 15 Aug 2025
Viewed by 713
Abstract
The therapeutic potential of cannabinoids and other ligands of cannabinoid receptors attracts considerable attention due to their diverse pharmacological effects and utility in various medical applications. However, challenges such as low solubility, limited bioavailability, and potential side effects hinder their broad clinical use. [...] Read more.
The therapeutic potential of cannabinoids and other ligands of cannabinoid receptors attracts considerable attention due to their diverse pharmacological effects and utility in various medical applications. However, challenges such as low solubility, limited bioavailability, and potential side effects hinder their broad clinical use. Nanoformulation techniques offer a promising approach to address these issues and optimize the therapeutic effectiveness of cannabinoids and other cannabinoid receptor ligands. This comprehensive review explores the advancements in nanoformulation strategies to enhance the therapeutic efficacy and safety of synthetic cannabinoids and related compounds, such as CB13, rimonabant, and HU-211, which have been studied in a range of preclinical models addressing conditions such as neuropathic pain, depression, and cancer. The review discusses various nanocarriers employed in this field, including lipid-based, polymeric, and hybrid nanoparticles, micelles, emulsions, and other nanoengineered carriers. In addition to formulation approaches, this review provides an in-depth analysis of chemical structures and their effect on compound activity, especially in the context of the affinity for the cannabinoid type 1 receptor in the brain, which is chiefly responsible for the psychoactive effects. The provided summary of research concerning either chemical modifications of existing cannabinoids or the creation of new compounds that interact with cannabinoid receptors, followed by the development of nanoformulations for these agents, allows for the identification of new research directions and future perspectives for Cannabis-based medicine. In conclusion, the combination of nanotechnology and cannabinoid pharmacology holds promise for delivering more effective and safer therapeutic solutions for a broad spectrum of medical conditions, making this an exciting area of research with profound implications for the healthcare and pharmaceutical industries. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

39 pages, 2934 KB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Cited by 2 | Viewed by 1056
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

24 pages, 5287 KB  
Article
A Tourette Syndrome/ADHD-like Phenotype Results from Postnatal Disruption of CB1 and CB2 Receptor Signalling
by Victoria Gorberg, Tamar Harpaz, Emilya Natali Shamir, Orit Diana Karminsky, Ester Fride, Roger G. Pertwee, Iain R. Greig, Peter McCaffery and Sharon Anavi-Goffer
Int. J. Mol. Sci. 2025, 26(13), 6052; https://doi.org/10.3390/ijms26136052 - 24 Jun 2025
Viewed by 888
Abstract
Cannabinoid receptor 1 (CB1) signalling is critical for weight gain and for milk intake in newborn pups. This is important as in humans, low birth weight increases the risk for attention-deficit hyperactivity disorder (ADHD). Moreover, some children with ADHD also have [...] Read more.
Cannabinoid receptor 1 (CB1) signalling is critical for weight gain and for milk intake in newborn pups. This is important as in humans, low birth weight increases the risk for attention-deficit hyperactivity disorder (ADHD). Moreover, some children with ADHD also have Tourette syndrome (TS). However, it remains unclear if insufficient CB1 receptor signalling may promote ADHD/TS-like behaviours. Here, ADHD/TS-like behaviours were studied from postnatal to adulthood by exposing postnatal wild-type CB1 and Cannabinoid receptor 2 (CB2) knockout mouse pups to SR141716A (rimonabant), a CB1 receptor antagonist/inverse agonist. Postnatal disruption of the cannabinoid system by SR141716A induced vocal-like tics and learning deficits in male mice, accompanied by excessive vocalisation, hyperactivity, motor-like tics and/or high-risk behaviour in adults. In CB1 knockouts, rearing and risky behaviours increased in females. In CB2 knockouts, vocal-like tics did not develop, and males were hyperactive with learning deficits. Importantly, females were hyperactive but showed no vocal-like tics. The appearance of vocal-like tics depends on disrupted CB1 receptor signalling and on functional CB2 receptors after birth. Inhibition of CB1 receptor signalling together with CB2 receptor stimulation underlie ADHD/TS-like behaviours in males. This study suggests that the ADHD/TS phenotype may be a single clinical entity resulting from incorrect cannabinoid signalling after birth. Full article
Show Figures

Figure 1

22 pages, 5898 KB  
Article
Adult Neurogenesis Is Regulated by the Endocannabinoid and Kisspeptin Systems
by Marianna Marino, Paola Di Pietro, Raffaella D’Auria, Martina Lombardi, Grazia Maria Giovanna Pastorino, Jacopo Troisi, Francesca Felicia Operto, Albino Carrizzo, Carmine Vecchione, Andrea Viggiano, Rosaria Meccariello and Antonietta Santoro
Int. J. Mol. Sci. 2025, 26(9), 3977; https://doi.org/10.3390/ijms26093977 - 23 Apr 2025
Cited by 2 | Viewed by 3350
Abstract
Neurogenesis is considered the most robust form of plasticity in the adult brain. To better decipher this process, we evaluated the potential crosstalk of Kisspeptin and Endocannabinoid Systems (KPS and ECS, respectively) on hippocampal neurogenesis. Male adolescent rats were exposed to kisspeptin-10 (KP10) [...] Read more.
Neurogenesis is considered the most robust form of plasticity in the adult brain. To better decipher this process, we evaluated the potential crosstalk of Kisspeptin and Endocannabinoid Systems (KPS and ECS, respectively) on hippocampal neurogenesis. Male adolescent rats were exposed to kisspeptin-10 (KP10) and the endocannabinoid anandamide (AEA) administered alone or in combination with the type 1 cannabinoid receptor (CB1R) antagonist SR141716A. The expression of Kiss1 and Kisspeptin receptor (Kiss1R) has been characterized for the first time in rat hippocampus together with the expression of the CB1R and the Transient Receptor Potential Vanilloid 1 ion channel receptor (TRPV1). Results show that both systems inhibit neurogenesis by reducing the extracellular signal-regulated kinase (ERK) signaling. Despite little differences in the expression of Kiss1R and CB1R, TRPV1 is enhanced by both KP10 and AEA treatments, suggesting TRPV1 as a common thread. KP10 administration reduces CB1R expression in the dentate gyrus, while AEA does not. KPS, unlike ECS, promotes the expression of estrogen receptor α (ER-α) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), also upregulating sirtuin 1 (SIRT1), brain-derived-neurotrophic factor (BDNF), and c-Jun. These findings suggest that the interaction between ECS and KPS could be involved in the fine-tuning of neurogenesis, highlighting a novel role for KPS. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

22 pages, 2267 KB  
Article
The Effects of Indirect and Direct Modulation of Endocannabinoid System Function on Anxiety-Related Behavior in Mice Assessed in the Elevated Plus Maze Test
by Marta Kruk-Slomka, Agnieszka Dzik and Grazyna Biala
Molecules 2025, 30(4), 867; https://doi.org/10.3390/molecules30040867 - 13 Feb 2025
Cited by 2 | Viewed by 1625
Abstract
Background: The endocannabinoid system (ECS) is one of the most important systems modulating functions in the body. The ECS, via cannabinoid (CB: CB1 and CB2) receptors, endocannabinoids occurring in the brain (e.g., anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and enzymes degrading endocannabinoids in the [...] Read more.
Background: The endocannabinoid system (ECS) is one of the most important systems modulating functions in the body. The ECS, via cannabinoid (CB: CB1 and CB2) receptors, endocannabinoids occurring in the brain (e.g., anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and enzymes degrading endocannabinoids in the brain (fatty-acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)), plays a key role in the regulation of mood and anxiety. However, the effects of cannabinoid compounds on anxiety-related responses are complex and yield mixed results depending on the type of pharmacological manipulation (direct or indirect) of functions of the ECS, as well as the kinds of cannabinoids, dosage and procedure. Methods: The aim of this study was to determine and compare the influence of the direct (via CB receptors ligands) and indirect (via inhibition of enzymes degrading endocannabinoids in the brain) pharmacological modulation of ECS function on anxiety-like responses in mice in the elevated plus maze (EPM) test. For this purpose, in the first step of the experiments, we used selected ligands of CB1, CB1/CB2 and CB2 receptors to assess which types of CB receptors are involved in anxiety-related responses in mice. Next, we used inhibitors of FAAH (which breaks down AEA) or MAGL (which breaks down 2-AG) to assess which endocannabinoid is more responsible for anxiety-related behavior in mice. Results: The results of our presented research showed that an acute administration of CB1 receptor agonist oleamide (5–20 mg/kg) had no influence on anxiety-related responses and CB1 receptor antagonist AM 251 (0.25–3 mg/kg) had anxiogenic effects in the EPM test in mice. In turn, an acute administration of mixed CB1/CB2 receptor agonist WIN55,212-2 used at a dose of 1 mg/kg had an anxiolytic effect observed in mice in the EPM test. What is of interest is that both the acute administration of a CB2 receptor agonist (JWH 133 at the doses of 1 and 2 mg/kg) and antagonist (AM 630 at the doses of 0.5–2 mg/kg) had anxiogenic effects in this procedure. Moreover, we revealed that an acute administration of only FAAH inhibitor URB 597 (0.3 mg/kg) had an anxiolytic effect, while MAGL inhibitor JZL 184 (at any used doses (2–40 mg/kg)) after an acute injection had no influence on anxiety behavior in mice, as observed in the EPM test. Conclusions: In our experiments, we confirmed the clearly significant involvement of the ECS in anxiety-related responses. In particular, the pharmacological indirect manipulation of ECS functions is able to elicit promising anxiolytic effects. Therefore, the ECS could be a potential target for novel anxiolytic drugs; however, further studies are needed. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

33 pages, 2344 KB  
Review
The Endocannabinoid System: Implications in Gastrointestinal Physiology and Pathology
by Emanuela Aloisio Caruso, Valentina De Nunzio, Valeria Tutino and Maria Notarnicola
Int. J. Mol. Sci. 2025, 26(3), 1306; https://doi.org/10.3390/ijms26031306 - 3 Feb 2025
Cited by 2 | Viewed by 4574
Abstract
The endocannabinoid system (ECS), composed of receptors, endocannabinoids, and enzymes that regulate biosynthesis and degradation, plays a fundamental role in the physiology and pathology of the gastrointestinal tract, particularly in the small and large intestine and liver. Specifically, cannabinoid receptor type 1 (CB1R) [...] Read more.
The endocannabinoid system (ECS), composed of receptors, endocannabinoids, and enzymes that regulate biosynthesis and degradation, plays a fundamental role in the physiology and pathology of the gastrointestinal tract, particularly in the small and large intestine and liver. Specifically, cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R), located principally in the nervous system and immune cells, orchestrate processes such as intestinal motility, intestinal and hepatic inflammation, and energy metabolism, respectively. The main endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), influence appetite, body weight regulation, and inflammatory states and thus have implications in obesity, non-alcoholic fatty liver disease (NAFLD) and irritable bowel syndrome (IBS). Recent studies have highlighted the therapeutic potential of targeting the ECS to modulate gastrointestinal and metabolic diseases. In particular, peripheral CB1R antagonists and CB2R agonists have shown efficacy in treating intestinal inflammation, reducing hepatic steatosis, and controlling IBS symptoms. Moreover, the ECS is emerging as a potential target for the treatment of colorectal cancer, acting on cell proliferation and apoptosis. This review highlights the opportunity to exploit the endocannabinoid system in the search for innovative therapeutic strategies, emphasizing the importance of a targeted approach to optimize treatment efficacy and minimize side effects. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 3136 KB  
Article
Two-Step Cell Death Induction by the New 2-Arachidonoyl Glycerol Analog and Its Modulation by Lysophosphatidylinositol in Human Breast Cancer Cells
by Mikhail G. Akimov, Natalia M. Gretskaya, Evgenia I. Gorbacheva, Nisreen Khadour, Galina D. Sherstyanykh and Vladimir V. Bezuglov
Int. J. Mol. Sci. 2025, 26(2), 820; https://doi.org/10.3390/ijms26020820 - 19 Jan 2025
Viewed by 1599
Abstract
2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, [...] Read more.
2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood. We evaluated the mechanism of the anti-proliferative action by 2-AG and the influence of lysophaosphatidylinositol (LPI) on it in six human breast cancer cell lines of different tumor degree (MCF-10A, MCF-7, BT-474, BT-20, SK-BR-3, and MDA-MB-231) using resazurin test, inhibitor, blocker, and anti-oxidant analysis, and siRNA interference. To avoid acyl migration in 2-AG, we replaced it with the analog 2-arachidonoyl-1,3-difluoropropanol (2-ADFP) newly synthesized by us. Using a molecular docking approach, we showed that at the CB2 receptor, 2-ADFP and 2-AG were very close to each other. However, 2-ADFP demonstrated a stronger affinity towards CB1 in the antagonist-bound conformation. 2-ADFP was anti-proliferative in all the cell lines tested. The toxicity of 2-ADFP was enhanced by LPI. 2-ADFP activity was reduced or prevented by the CB2 and vanilloid receptor 1 (TRPV1) blockers, inositol triphosphate receptor, CREB, and cyclooxygenase 2 inhibitor, and by anti-oxidant addition. Together with the literature data, these results indicate CB2- and TRPV1-dependent COX-2 induction with concomitant cell death induction by the oxidized molecule’s metabolites. Full article
(This article belongs to the Special Issue Breast Cancers: From Molecular Basis to Therapy)
Show Figures

Figure 1

19 pages, 2892 KB  
Review
Cannabinoids—Multifunctional Compounds, Applications and Challenges—Mini Review
by Dominik Duczmal, Aleksandra Bazan-Wozniak, Krystyna Niedzielska and Robert Pietrzak
Molecules 2024, 29(20), 4923; https://doi.org/10.3390/molecules29204923 - 17 Oct 2024
Cited by 10 | Viewed by 4664
Abstract
Cannabinoids represent a highly researched group of plant-derived ingredients. The substantial investment of funds from state and commercial sources has facilitated a significant increase in knowledge about these ingredients. Cannabinoids can be classified into three principal categories: plant-derived phytocannabinoids, synthetic cannabinoids and endogenous [...] Read more.
Cannabinoids represent a highly researched group of plant-derived ingredients. The substantial investment of funds from state and commercial sources has facilitated a significant increase in knowledge about these ingredients. Cannabinoids can be classified into three principal categories: plant-derived phytocannabinoids, synthetic cannabinoids and endogenous cannabinoids, along with the enzymes responsible for their synthesis and degradation. All of these compounds interact biologically with type 1 (CB1) and/or type 2 (CB2) cannabinoid receptors. A substantial body of evidence from in vitro and in vivo studies has demonstrated that cannabinoids and inhibitors of endocannabinoid degradation possess anti-inflammatory, antioxidant, antitumour and antifibrotic properties with beneficial effects. This review, which spans the period from 1940 to 2024, offers an overview of the potential therapeutic applications of natural and synthetic cannabinoids. The development of these substances is essential for the global market of do-it-yourself drugs to fully exploit the promising therapeutic properties of cannabinoids. Full article
(This article belongs to the Special Issue Featured Reviews in Applied Chemistry 2.0)
Show Figures

Figure 1

20 pages, 3262 KB  
Article
Investigating the Role of Cannabinoid Type 1 Receptors in Vascular Function and Remodeling in a Hypercholesterolemic Mouse Model with Low-Density Lipoprotein–Cannabinoid Type 1 Receptor Double Knockout Animals
by Zsolt Vass, Kinga Shenker-Horváth, Bálint Bányai, Kinga Nóra Vető, Viktória Török, Janka Borbála Gém, György L. Nádasy, Kinga Bernadett Kovács, Eszter Mária Horváth, Zoltán Jakus, László Hunyady, Mária Szekeres and Gabriella Dörnyei
Int. J. Mol. Sci. 2024, 25(17), 9537; https://doi.org/10.3390/ijms25179537 - 2 Sep 2024
Cited by 3 | Viewed by 2278
Abstract
Hypercholesterolemia forms the background of several cardiovascular pathologies. LDL receptor-knockout (LDLR-KO) mice kept on a high-fat diet (HFD) develop high cholesterol levels and atherosclerosis (AS). Cannabinoid type 1 receptors (CB1Rs) induce vasodilation, although their role in cardiovascular pathologies is still controversial. [...] Read more.
Hypercholesterolemia forms the background of several cardiovascular pathologies. LDL receptor-knockout (LDLR-KO) mice kept on a high-fat diet (HFD) develop high cholesterol levels and atherosclerosis (AS). Cannabinoid type 1 receptors (CB1Rs) induce vasodilation, although their role in cardiovascular pathologies is still controversial. We aimed to reveal the effects of CB1Rs on vascular function and remodeling in hypercholesterolemic AS-prone LDLR-KO mice. Experiments were performed on a newly established LDLR and CB1R double-knockout (KO) mouse model, in which KO and wild-type (WT) mice were kept on an HFD or a control diet (CD) for 5 months. The vascular functions of abdominal aorta rings were tested with wire myography. The vasorelaxation effects of acetylcholine (Ach, 1 nM–1 µM) were obtained after phenylephrine precontraction, which was repeated with inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX), Nω-nitro-L-arginine (LNA), and indomethacin (INDO), respectively. Blood pressure was measured with the tail-cuff method. Immunostaining of endothelial NOS (eNOS) was carried out. An HFD significantly elevated the cholesterol levels in the LDLR-KO mice more than in the corresponding WT mice (mean values: 1039 ± 162 mg/dL vs. 91 ± 18 mg/dL), and they were not influenced by the presence of the CB1R gene. However, with the defect of the CB1R gene, damage to the Ach relaxation ability was moderated. The blood pressure was higher in the LDLR-KO mice compared to their WT counterparts (systolic/diastolic values: 110/84 ± 5.8/6.8 vs. 102/80 ± 3.3/2.5 mmHg), which was significantly elevated with an HFD (118/96 ± 1.9/2 vs. 100/77 ± 3.4/3.1 mmHg, p < 0.05) but attenuated in the CB1R-KO HFD mice. The expression of eNOS was depressed in the HFD WT mice compared to those on the CD, but it was augmented if CB1R was knocked out. This newly established double-knockout mouse model provides a tool for studying the involvement of CB1Rs in the development of hypercholesterolemia and atherosclerosis. Our results indicate that knocking out the CB1R gene significantly attenuates vascular damage in hypercholesterolemic mice. Full article
(This article belongs to the Special Issue Advances in Animal Models in Biomedical Research, 2nd Edition)
Show Figures

Figure 1

22 pages, 2538 KB  
Article
Cannabis sativa L. Extract Alleviates Neuropathic Pain and Modulates CB1 and CB2 Receptor Expression in Rat
by Joanna Bartkowiak-Wieczorek, Agnieszka Bienert, Kamila Czora-Poczwardowska, Radosław Kujawski, Michał Szulc, Przemysław Mikołajczak, Anna-Maria Wizner, Małgorzata Jamka, Marcin Hołysz, Karolina Wielgus, Ryszard Słomski and Edyta Mądry
Biomolecules 2024, 14(9), 1065; https://doi.org/10.3390/biom14091065 - 26 Aug 2024
Cited by 6 | Viewed by 3326
Abstract
Introduction: Cannabis sativa L. (CSL) extract has pain-relieving potential due to its cannabinoid content, so the effects of two CSL extracts on alleviating neuropathic pain were investigated in vivo. Methods and groups: Male Wistar rats (n = 130) were divided into groups and [...] Read more.
Introduction: Cannabis sativa L. (CSL) extract has pain-relieving potential due to its cannabinoid content, so the effects of two CSL extracts on alleviating neuropathic pain were investigated in vivo. Methods and groups: Male Wistar rats (n = 130) were divided into groups and received vincristine (0.1 mg/kg) and gabapentin (60 mg/kg) to induce and relieve neuropathic pain or CSL extracts (D and B). The mRNA and protein expression of the cannabinoid receptors type 1 and 2 (CB1R, CB2R) were evaluated in the cerebral cortex, hippocampus, and lymphocytes. Behavioural tests (Tail-Flick and von Frey) were performed on all animals. Results: VK-induced neuropathic pain was accompanied by decreased CB1R protein level and CB2R mRNA expression in the cortex. Gabapentin relieved pain and increased CB1R protein levels in the hippocampus compared to the vincristine group. Hippocampus CB1R protein expression increased with the administration of extract D (10 mg/kg, 40 mg/kg) and extract B (7.5 mg/kg, 10 mg/kg) compared to VK group. In the cerebral cortex CSL decreased CB1R protein expression (10 mg/kg, 20 mg/kg, 40 mg/kg of extract B) and mRNA level (5 mg/kg, 7.5 mg/kg of extract B; 20 mg/kg of extract D) compared to the VK-group.CB2R protein expression increased in the hippocampus after treatment with extract B (7.5 mg/kg) compared to the VK-group. In the cerebral cortex extract B (10 mg/kg, 20 mg/kg) increased CB2R protein expression compared to VK-group. Conclusion: Alterations in cannabinoid receptor expression do not fully account for the observed behavioural changes in rats. Therefore, additional signalling pathways may contribute to the initiation and transmission of neuropathic pain. The Cannabis extracts tested demonstrated antinociceptive effects comparable to gabapentin, highlighting the antinociceptive properties of Cannabis extracts for human use. Full article
(This article belongs to the Special Issue The Value of Natural Compounds as Therapeutic Agents: 2nd Edition)
Show Figures

Figure 1

13 pages, 2167 KB  
Article
CBD Versus CBDP: Comparing In Vitro Receptor-Binding Activities
by Mehdi Haghdoost, Scott Young, Alisha K. Holloway, Matthew Roberts, Ivori Zvorsky and Marcel O. Bonn-Miller
Int. J. Mol. Sci. 2024, 25(14), 7724; https://doi.org/10.3390/ijms25147724 - 15 Jul 2024
Cited by 3 | Viewed by 3370
Abstract
Phytocannabinoids with seven-carbon alkyl chains (phorols) have gained a lot of attention, as they are commonly believed to be more potent versions of typical cannabinoids with shorter alkyl chains. At the time of this article, cannabidiphorol (CBDP) and tetrahydrocannabiphorol (THCP) can both be [...] Read more.
Phytocannabinoids with seven-carbon alkyl chains (phorols) have gained a lot of attention, as they are commonly believed to be more potent versions of typical cannabinoids with shorter alkyl chains. At the time of this article, cannabidiphorol (CBDP) and tetrahydrocannabiphorol (THCP) can both be purchased in the North American market, even though their biological activities are nearly unknown. To investigate their relative potency, we conducted in vitro receptor-binding experiments with CBDP (cannabinoid CB1/CB2 receptor antagonism, serotonin 5HT-1A agonism, dopamine D2S (short form) agonism, and mu-opioid negative allosteric modulation) and compared the observed activity with that of CBD. To our knowledge, this is the first publication to investigate CBDP’s receptor activity in vitro. A similar activity profile was observed for both CBD and CBDP, with the only notable difference at the CB2 receptor. Contrary to common expectations, CBD was found to be a slightly more potent CB2 antagonist than CBDP (p < 0.05). At the highest tested concentration, CBD demonstrated antagonist activity with a 33% maximum response of SR144528 (selective CB2 antagonist/inverse agonist). CBDP at the same concentration produced a weaker antagonist activity. A radioligand binding assay revealed that among cannabinoid and serotonin receptors, CB2 is likely the main biological target of CBDP. However, both CBD and CBDP were found to be significantly less potent than SR144528. The interaction of CBDP with the mu-opioid receptor (MOR) produced unexpected results. Although the cannabidiol family is considered to be a set of negative allosteric modulators (NAMs) of opioid receptors, we observed a significant increase in met-enkephalin-induced mu-opioid internalization when cells were incubated with 3 µM of CBDP and 1 µM met-enkephalin, a type of activity expected from positive allosteric modulators (PAMs). To provide a structural explanation for the observed PAM effect, we conducted molecular docking simulations. These simulations revealed the co-binding potential of CBDP (or CBD) and met-enkephalin to the MOR. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

22 pages, 4128 KB  
Article
Examination of the Effect of Dimethyl Trisulfide in Acute Stress Mouse Model with the Potential Involvement of the TRPA1 Ion Channel
by Kitti Göntér, Ágnes Dombi, Viktória Kormos, Erika Pintér and Gábor Pozsgai
Int. J. Mol. Sci. 2024, 25(14), 7701; https://doi.org/10.3390/ijms25147701 - 13 Jul 2024
Cited by 2 | Viewed by 1856
Abstract
Polysulfides are endogenously produced in mammals and generally associated with protective functions. Our aim was to investigate the effect of dimethyl trisulfide (DMTS) in a mouse model of acute stress. DMTS activates transient receptor potential ankyrin 1 (TRPA1) channels and leads to neuropeptide [...] Read more.
Polysulfides are endogenously produced in mammals and generally associated with protective functions. Our aim was to investigate the effect of dimethyl trisulfide (DMTS) in a mouse model of acute stress. DMTS activates transient receptor potential ankyrin 1 (TRPA1) channels and leads to neuropeptide release, potentially that of substance P (SP). We hypothesize that DMTS might inhibit the degrading enzymes of endocannabinoids, so this system was also investigated as another possible pathway for mediating the effects of DMTS. Trpa1 gene wild-type (WT) and knockout (KO) mice were used to confirm the role of the TRPA1 ion channel in mediating the effects of DMTS. C57BL/6J, NK1 gene KO, and Tac1 gene KO mice were used to evaluate the effect of DMTS on the release and expression of SP. Some C57BL/6J animals were treated with AM251, an inhibitor of the cannabinoid CB1 receptor, to elucidate the role of the endocannabinoid system in these processes. Open field test (OFT) and forced swim test (FST) were performed in each mouse strain. A tail suspension test (TST) was performed in Trpa1 WT and KO animals. C-FOS immunohistochemistry was carried out on Trpa1 WT and KO animals. The DMTS treatment increased the number of highly active periods and decreased immobility time in the FST in WT animals, but had no effect on the Trpa1 KO mice. The DMTS administration induced neuronal activation in the Trpa1 WT mice in the stress-related brain areas, such as the locus coeruleus, dorsal raphe nucleus, lateral septum, paraventricular nucleus of the thalamus, and paraventricular nucleus of the hypothalamus. DMTS may have a potential role in the regulation of stress-related processes, and the TRPA1 ion channel may also be involved in mediating the effects of DMTS. DMTS can be an ideal candidate for further study as a potential remedy for stress-related disorders. Full article
Show Figures

Figure 1

11 pages, 3611 KB  
Article
Cannabielsoin (CBE), a CBD Oxidation Product, Is a Biased CB1 Agonist
by Mehdi Haghdoost, Scott Young, Matthew Roberts, Caitlyn Krebs and Marcel O. Bonn-Miller
Biomedicines 2024, 12(7), 1551; https://doi.org/10.3390/biomedicines12071551 - 12 Jul 2024
Viewed by 3267
Abstract
Cannabielsoin (CBE) is primarily recognized as an oxidation byproduct of cannabidiol (CBD) and a minor mammalian metabolite of CBD. The pharmacological interactions between CBE and cannabinoid receptors remain largely unexplored, particularly with respect to cannabinoid receptor type 1 (CB1). The present [...] Read more.
Cannabielsoin (CBE) is primarily recognized as an oxidation byproduct of cannabidiol (CBD) and a minor mammalian metabolite of CBD. The pharmacological interactions between CBE and cannabinoid receptors remain largely unexplored, particularly with respect to cannabinoid receptor type 1 (CB1). The present study aimed to elucidate the interaction dynamics of CBE in relation to CB1 by employing cyclic adenosine monophosphate (cAMP) and β-arrestin assays to assess its role as an agonist, antagonist, and positive allosteric modulator (PAM). To our knowledge, this is the first publication to investigate CBE’s receptor activity in vitro. Our findings reveal that S-CBE acts as an agonist to CB1 with EC50 = 1.23 µg/mL (3.7 µM) in the cAMP assay. No agonist activity was observed in the β-arrestin assay in concentrations up to 12 µM, suggesting a noteworthy affinity towards G-protein activation and the cAMP signaling pathway. Furthermore, in silico molecular docking simulations were conducted to provide a structural basis for the interaction between CBE and CB1, offering insights into the molecular determinants of its receptor affinity and functional selectivity. Full article
(This article belongs to the Special Issue Compounds from Natural Products as Sources for Drug Discovery)
Show Figures

Figure 1

Back to TopTop