Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = ultra-fast charger

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 7481 KB  
Article
A Multi-Scheme Comparison Framework for Ultra-Fast Charging Stations with Active Load Management and Energy Storage Under Grid Capacity Constraints
by Qingyu Yin, Lili Li, Jian Zhang, Xiaonan Liu and Boqiang Ren
World Electr. Veh. J. 2025, 16(5), 250; https://doi.org/10.3390/wevj16050250 - 27 Apr 2025
Cited by 1 | Viewed by 663
Abstract
Grid capacity constraints present a prominent challenge in the construction of ultra-fast charging (UFC) stations. Active load management (ALM) and battery energy storage systems (BESSs) are currently two primary countermeasures to address this issue. ALM allows UFC stations to install larger-capacity transformers by [...] Read more.
Grid capacity constraints present a prominent challenge in the construction of ultra-fast charging (UFC) stations. Active load management (ALM) and battery energy storage systems (BESSs) are currently two primary countermeasures to address this issue. ALM allows UFC stations to install larger-capacity transformers by utilizing valley capacity margins to meet the peak charging demand during grid valley periods, while BESSs rely more on energy storage batteries to solve the gap between the transformer capacity and charging demand This paper proposes a four-quadrant classification method and defines four types of schemes for UFC stations to address grid capacity constraints: (1) ALM with a minimal BESS (ALM-Smin), (2) ALM with a maximal BESS (ALM-Smax), (3) passive load management (PLM) with a minimal BESS (PLM-Smin), and (4) PLM with a maximal BESS (PLM-Smax). A generalized comparison framework is established as follows: First, daily charging load profiles are simulated based on preset vehicle demand and predefined charger specifications. Next, transformer capacity, BESS capacity, and daily operational profiles are calculated for each scheme. Finally, a comprehensive economic evaluation is performed using the levelized cost of electricity (LCOE) and internal rate of return (IRR). A case study of a typical public UFC station in Tianjin, China, validates the effectiveness of the proposed schemes and comparison framework. A sensitivity analysis explored how grid interconnection costs and BESS costs influence decision boundaries between schemes. The study concludes by highlighting its contributions, limitations, and future research directions. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

24 pages, 6825 KB  
Article
Numerical Analysis on Cooling Performances for Connectors Using Immersion Cooling in Ultra-Fast Chargers for Electric Vehicles
by Seong-Guk Hwang, Moo-Yeon Lee and Beom-Seok Ko
Symmetry 2025, 17(4), 624; https://doi.org/10.3390/sym17040624 - 20 Apr 2025
Cited by 2 | Viewed by 879
Abstract
The increasing demand for ultra-fast charging in electric vehicles (EVs) necessitates advancements in thermal management strategies to mitigate Joule heating, which arises due to electrical resistance in charging connectors and cable cores. This study presents a numerical analysis of immersion cooling performance for [...] Read more.
The increasing demand for ultra-fast charging in electric vehicles (EVs) necessitates advancements in thermal management strategies to mitigate Joule heating, which arises due to electrical resistance in charging connectors and cable cores. This study presents a numerical analysis of immersion cooling performance for ultra-fast chargers under realistic charging conditions. The simulated results are validated by experiments with a maximum deviation of 5.5% at 600 A and 700 A currents. The novelty of this work lies in the consideration of a realistic charging cable length of 5 m, the evaluation of temperature characteristics in the charger connector, and the analysis of geometric symmetry in the charging cable and coolant configuration to ensure uniform heat distribution. Key operating conditions were systematically analyzed, including applied currents, ambient temperatures, coolant flow rates, cable core cross-sectional areas, and different types of coolants. Results indicate that increasing the applied current from 400 A to 800 A raised the connector temperature from 60.73 °C to 97.33 °C. As the ambient temperature increased from 20 °C to 50 °C, the connector temperature rose significantly from 42.71 °C to 74.99 °C, while the maximum cable core temperature increased from 65.26 °C to 100.61 °C. Increasing the cable core cross-sectional area from 20 mm2 to 30 mm2 reduced the connector temperature from 77.20 °C to 74.99 °C. Meanwhile, increasing the coolant flow rate from 2 LPM to 5 LPM had a negligible effect on the connector temperature. Among the three tested coolants, Novec 7500 exhibited the highest cooling efficiency, achieving the lowest contact temperature (74.76 °C) and the highest performance evaluation criteria (PEC) value of 3.8. This study provides valuable guidelines for enhancing symmetry-driven thermal management systems and demonstrates the potential of immersion cooling to improve efficiency, safety, and operational reliability in next-generation high-power EV chargers. Full article
(This article belongs to the Special Issue Symmetry in Power Systems and Thermal Engineering)
Show Figures

Figure 1

33 pages, 15119 KB  
Article
Optimized Integration of Medium-Voltage Multimegawatt DC Charging Stations: Concepts, Guidelines and Analysis
by Sumanta Biswas, Cham Kpu Gerald, Barbara Herndler, Daniel Stahleder, Yannick Wimmer and Markus Makoschitz
World Electr. Veh. J. 2024, 15(10), 450; https://doi.org/10.3390/wevj15100450 - 3 Oct 2024
Viewed by 5012
Abstract
The integration of multimegawatt fast chargers into local distribution grids is becoming increasingly relevant due to recent initiatives to push for higher charging power, especially for applications like heavy-duty vehicles. However, the high-power capacity of these chargers, especially when multiple units operate simultaneously [...] Read more.
The integration of multimegawatt fast chargers into local distribution grids is becoming increasingly relevant due to recent initiatives to push for higher charging power, especially for applications like heavy-duty vehicles. However, the high-power capacity of these chargers, especially when multiple units operate simultaneously at specific locations, raises several important considerations for the optimal design and integration of multimegawatt fast chargers. These include, for example, power electronics architectures and dedicated designs, grid stability, and the incorporation of renewable energy systems. Thus, this paper provides a comprehensive analysis of the key factors influencing the optimal integration of these ultra-high-power chargers, looking into impacts on medium-voltage (MV) networks, the design considerations for medium-voltage power electronics in DC chargers, and the potential of renewable energy systems to offset grid demand. Additionally, this paper explores the potential high-level communication requirements necessary for efficient and reliable charger operation, including a proposal for a robust communication interface layer stack. This investigation aims to provide a holistic understanding of the challenges and opportunities associated with integrating multimegawatt fast chargers into existing power systems, offering insights into the enhancement of both performance and sustainability. Full article
(This article belongs to the Special Issue Data Exchange between Vehicle and Power System for Optimal Charging)
Show Figures

Figure 1

20 pages, 4477 KB  
Article
Multi-Scenario-Based Strategic Deployment of Electric Vehicle Ultra-Fast Charging Stations in a Radial Distribution Network
by Sharmistha Nandi, Sriparna Roy Ghatak, Parimal Acharjee and Fernando Lopes
Energies 2024, 17(17), 4204; https://doi.org/10.3390/en17174204 - 23 Aug 2024
Cited by 1 | Viewed by 1397
Abstract
In the present work, a strategic multi-scenario EV ultra-fast charging station (CS) planning framework is designed to provide advantages to charging station owners, Distribution Network Operators, and EV owners. Locations of CSs are identified using zonal division and the Voltage Stability Index strategy. [...] Read more.
In the present work, a strategic multi-scenario EV ultra-fast charging station (CS) planning framework is designed to provide advantages to charging station owners, Distribution Network Operators, and EV owners. Locations of CSs are identified using zonal division and the Voltage Stability Index strategy. The number of chargers is determined using the Harris Hawk Optimization (HHO) technique while minimizing the installation, operational costs of CS, and energy loss costs considering all the power system security constraints. To ensure a realistic planning model, uncertainties in EV charging behavior and electricity prices are managed through the 2m-Point Estimate Method. This method produces multiple scenarios of uncertain parameters, which effectively represent the actual dataset, thereby facilitating comprehensive multi-scenario planning. This study incorporates annual EV and system load growth in a long-term planning model of ten years, ensuring the distribution network meets future demand for sustainable transportation infrastructure. The proposed research work is tested on a 33-bus distribution network and a 51-bus real Indian distribution network. To evaluate the financial and environmental benefits of the planning, a cost-benefit analysis in terms of the Return-on-Investment index and a carbon emission analysis are performed, respectively. Furthermore, to prove the efficacy of the HHO technique, the results are compared with several existing algorithms. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

25 pages, 2038 KB  
Review
A Comprehensive Review of Developments in Electric Vehicles Fast Charging Technology
by Ahmed Zentani, Ali Almaktoof and Mohamed T. Kahn
Appl. Sci. 2024, 14(11), 4728; https://doi.org/10.3390/app14114728 - 30 May 2024
Cited by 38 | Viewed by 15024
Abstract
Electric vehicle (EV) fast charging systems are rapidly evolving to meet the demands of a growing electric mobility landscape. This paper provides a comprehensive overview of various fast charging techniques, advanced infrastructure, control strategies, and emerging challenges and future trends in EV fast [...] Read more.
Electric vehicle (EV) fast charging systems are rapidly evolving to meet the demands of a growing electric mobility landscape. This paper provides a comprehensive overview of various fast charging techniques, advanced infrastructure, control strategies, and emerging challenges and future trends in EV fast charging. It discusses various fast charging techniques, including inductive charging, ultra-fast charging (UFC), DC fast charging (DCFC), Tesla Superchargers, bidirectional charging integration, and battery swapping, analysing their advantages and limitations. Advanced infrastructure for DC fast charging is explored, covering charging standards, connector types, communication protocols, power levels, and charging modes control strategies. Electric vehicle battery chargers are categorized into on-board and off-board systems, with detailed functionalities provided. The status of DC fast charging station DC-DC converters classification is presented, emphasizing their role in optimizing charging efficiency. Control strategies for EV systems are analysed, focusing on effective charging management while ensuring safety and performance. Challenges and future trends in EV fast charging are thoroughly explored, highlighting infrastructure limitations, standardization efforts, battery technology advancements, and energy optimization through smart grid solutions and bidirectional chargers. The paper advocates for global collaboration to establish universal standards and interoperability among charging systems to facilitate widespread EV adoption. Future research areas include faster charging, infrastructure improvements, standardization, and energy optimization. Encouragement is given for advancements in battery technology, wireless charging, battery swapping, and user experience enhancement to further advance the EV fast charging ecosystem. In summary, this paper offers valuable insights into the current state, challenges, and future directions of EV fast charging, providing a comprehensive examination of technological advancements and emerging trends in the field. Full article
Show Figures

Figure 1

15 pages, 3580 KB  
Article
Design Analysis of High-Power Level 4 Smart Charging Infrastructure Using Next-Generation Power Devices for EVs and Heavy Duty EVs
by Tehseen Ilahi, Tahir Izhar, Muhammad Zahid, Akhtar Rasool, Kelebaone Tsamaase, Tausif Zahid and Ehtisham Muhammad Khan
World Electr. Veh. J. 2024, 15(2), 66; https://doi.org/10.3390/wevj15020066 - 14 Feb 2024
Cited by 4 | Viewed by 4171
Abstract
Trending electric vehicles with different battery technologies need universally compatible and fast chargers. Present semiconductor technology is not suitable for designing high-power-rating converters. The increasing demand for high-capacity electric vehicle chargers requires efficient and optimum advanced material technology. This research presents next-generation material-based [...] Read more.
Trending electric vehicles with different battery technologies need universally compatible and fast chargers. Present semiconductor technology is not suitable for designing high-power-rating converters. The increasing demand for high-capacity electric vehicle chargers requires efficient and optimum advanced material technology. This research presents next-generation material-based smart ultra-fast electric vehicle charging infrastructure for upcoming high-capacity EV batteries. The designed level 4 charger will be helpful for charging future heavy-duty electric vehicles with battery voltages of up to 2000 V. The designed infrastructure will be helpful for charging both EVs and heavy-duty electric trucks with a wide range of power levels. Wireless sensor-based smart systems monitor and control the overall charging infrastructure. The detailed design analysis of the proposed charger using the Simscape physical modeling tool is discussed using mathematical equations. Full article
(This article belongs to the Special Issue Smart Charging Strategies for Plug-In Electric Vehicles)
Show Figures

Figure 1

21 pages, 11954 KB  
Review
Overview of Integration of Power Electronic Topologies and Advanced Control Techniques of Ultra-Fast EV Charging Stations in Standalone Microgrids
by Achraf Saadaoui, Mohammed Ouassaid and Mohamed Maaroufi
Energies 2023, 16(3), 1031; https://doi.org/10.3390/en16031031 - 17 Jan 2023
Cited by 47 | Viewed by 8473
Abstract
For longer journeys, when drivers of electric vehicles need a charge on the road, the best solution is off-board ultra-fast chargers, which offer a short charging time for electric vehicle batteries. Consequently, the ultra-fast charging of batteries is a major issue in electric [...] Read more.
For longer journeys, when drivers of electric vehicles need a charge on the road, the best solution is off-board ultra-fast chargers, which offer a short charging time for electric vehicle batteries. Consequently, the ultra-fast charging of batteries is a major issue in electric mobility development globally. Current research in the area of power electronics for electric vehicle charging applications is focused on new high-power chargers. These chargers will significantly increase the charging power of electric vehicles, which will reduce the charging time. Furthermore, electric vehicles can be deployed to achieve improved efficiency and high-quality power if vehicle to microgrid (V2µG) is applied. In this paper, standards for ultra-fast charging stations and types of fast charging methods are reviewed. Various power electronic topologies, the modular design approach used in ultra-fast charging, and integration of the latter into standalone microgrids are also discussed in this paper. Finally, advanced control techniques for ultra-fast chargers are addressed. Full article
(This article belongs to the Special Issue Towards Intelligent, Reliable and Flexible Stand-Alone Microgrids)
Show Figures

Figure 1

35 pages, 1103 KB  
Review
Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station
by Seyedamin Valedsaravi, Abdelali El Aroudi and Luis Martínez-Salamero
Energies 2022, 15(15), 5602; https://doi.org/10.3390/en15155602 - 2 Aug 2022
Cited by 38 | Viewed by 11225
Abstract
The emergence of DC fast chargers for electric vehicle batteries (EVBs) has prompted the design of ad-hoc microgrids (MGs), in which the use of a solid-state transformer (SST) instead of a low-frequency service transformer can increase the efficiency and reduce the volume and [...] Read more.
The emergence of DC fast chargers for electric vehicle batteries (EVBs) has prompted the design of ad-hoc microgrids (MGs), in which the use of a solid-state transformer (SST) instead of a low-frequency service transformer can increase the efficiency and reduce the volume and weight of the MG electrical architecture. Mimicking a conventional gasoline station in terms of service duration and service simultaneity to several customers has led to the notion of ultra-fast chargers, in which the charging time is less than 10 min and the MG power is higher than 350 kW. This survey reviews the state-of-the-art of DC ultra-fast charging stations, SST transformers, and DC ultra-fast charging stations based on SST. Ultra-fast charging definition and its requirements are analyzed, and SST characteristics and applications together with the configuration of power electronic converters in SST-based ultra-fast charging stations are described. A new classification of topologies for DC SST-based ultra-fast charging stations is proposed considering input power, delta/wye connections, number of output ports, and power electronic converters. More than 250 published papers from the recent literature have been reviewed to identify the common understandings, practical implementation challenges, and research opportunities in the application of DC ultra-fast charging in EVs. In particular, the works published over the last three years about SST-based DC ultra-fast charging have been reviewed. Full article
(This article belongs to the Special Issue Electric Vehicle Charging: Social and Technical Issues)
Show Figures

Graphical abstract

16 pages, 23600 KB  
Article
Impact on the Power Grid Caused via Ultra-Fast Charging Technologies of the Electric Buses Fleet
by Mohammed Al-Saadi, Sharmistha Bhattacharyya, Pierre Van Tichelen, Manuel Mathes, Johannes Käsgen, Joeri Van Mierlo and Maitane Berecibar
Energies 2022, 15(4), 1424; https://doi.org/10.3390/en15041424 - 15 Feb 2022
Cited by 18 | Viewed by 3258
Abstract
Battery Electric Buses (BEBs) are considerably integrated into cities worldwide. These buses have a strict schedule; thus, they could be charged in a very short time with a power level up to 600 kW. The high-power systems and short charging times imply special [...] Read more.
Battery Electric Buses (BEBs) are considerably integrated into cities worldwide. These buses have a strict schedule; thus, they could be charged in a very short time with a power level up to 600 kW. The high-power systems and short charging times imply special grid operation conditions that should be taken into account. Therefore, it is necessary to consider the influence of their charging infrastructure on the distribution system operation, especially near the charging point. This work presents two Use Cases (UCs) from two demos (Germany and the Netherlands) to investigate the impact of the slow and fast-chargers’ integrations on the power grid and environment. Fast-chargers up to 350 kW based on pantograph technology and slow-chargers up to 50 kW based on Combined Charging System Type 2 (CCS2) are used on the BEB line route and in the depot, respectively. The charging of BEBs with these solutions is studied here to investigate their impact on the grid in terms of power quality. It was found that the voltage variations due to fast-chargers terminal remain much below the EN50160 standard limit values i.e., ±10%. The obtained maximum Total Harmonic Voltage Distortion (THDv) value is 2.7%, with an average value of 1.3%, which is below the limit value of 8%, as per the standard EN 50160. Similarly, the individual harmonic currents were measured. The maximum value of total harmonic current distortion (THDI) is around 25%, with an average value of 3% only. As the average value of THDI is quite low, the harmonic current pollution is not a big concern for the installation at this time. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

30 pages, 4982 KB  
Review
Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning
by Graham Town, Seyedfoad Taghizadeh and Sara Deilami
Energies 2022, 15(4), 1276; https://doi.org/10.3390/en15041276 - 10 Feb 2022
Cited by 43 | Viewed by 10344
Abstract
As the number and range of electric vehicles in use increases, and the size of batteries in those vehicles increases, the demand for fast and ultra-fast charging infrastructure is also expected to increase. The growth in the fast charging infrastructure raises a number [...] Read more.
As the number and range of electric vehicles in use increases, and the size of batteries in those vehicles increases, the demand for fast and ultra-fast charging infrastructure is also expected to increase. The growth in the fast charging infrastructure raises a number of challenges to be addressed; primarily, high peak loads and their impacts on the electricity network. This paper reviews fast and ultra-fast charging technology and systems from a number of perspectives, including the following: current and expected trends in fast charging demand; the particular temporal and spatial characteristics of electricity demand associated with fast charging; the devices and circuit technologies commonly used in fast chargers; the potential system impacts of fast charging on the electricity distribution network and methods for managing those impacts; methods for long-term planning of fast charging facilities; finally, expected future developments in fast charging technology and systems. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

28 pages, 16707 KB  
Article
Full Digital Control and Multi-Loop Tuning of a Three-Level T-Type Rectifier for Electric Vehicle Ultra-Fast Battery Chargers
by Davide Cittanti, Matteo Gregorio, Eugenio Bossotto, Fabio Mandrile and Radu Bojoi
Electronics 2021, 10(12), 1453; https://doi.org/10.3390/electronics10121453 - 17 Jun 2021
Cited by 16 | Viewed by 5016
Abstract
The rapid development of electric vehicle ultra-fast battery chargers is increasingly demanding higher efficiency and power density. In particular, a proper control of the grid-connected active front–end can ensure minimum passive component size (i.e., limiting design oversizing) and reduce the overall converter losses. [...] Read more.
The rapid development of electric vehicle ultra-fast battery chargers is increasingly demanding higher efficiency and power density. In particular, a proper control of the grid-connected active front–end can ensure minimum passive component size (i.e., limiting design oversizing) and reduce the overall converter losses. Moreover, fast control dynamics and strong disturbance rejection capability are often required by the subsequent DC/DC stage, which may act as a fast-varying and/or unbalanced load. Therefore, this paper proposes the design, tuning and implementation of a complete digital multi-loop control strategy for a three-level unidirectional T-type rectifier, intended for EV ultra-fast battery charging. First, an overview of the operational basics of three-level rectifiers is presented and the state-space model of the considered system is derived. A detailed analysis of the mid-point current generation process is also provided, as this aspect is widely overlooked in the literature. In particular, the converter operation under unbalanced split DC-link loads is analyzed and the converter mid-point current limits are analytically identified. Four controllers (i.e., dq-currents, DC-link voltage and DC-link mid-point voltage balancing loops) are designed and their tuning is described step-by-step, taking into account the delays and the discretization introduced by the digital control implementation. Finally, the proposed multi-loop controller design procedure is validated on a 30 kW, 20 kHz T-type rectifier prototype. The control strategy is implemented on a single general purpose microcontroller unit and the performances of all control loops are successfully verified experimentally, simultaneously achieving low input current zero-crossing distortion, high step response and disturbance rejection dynamics, and stable steady-state operation under unbalanced split DC-link loading. Full article
(This article belongs to the Special Issue Advances in Power Electronics for Transportation Electrification)
Show Figures

Figure 1

18 pages, 9591 KB  
Article
100 kW Three-Phase Wireless Charger for EV: Experimental Validation Adopting Opposition Method
by Jacopo Colussi, Alessandro La Ganga, Roberto Re, Paolo Guglielmi and Eric Armando
Energies 2021, 14(8), 2113; https://doi.org/10.3390/en14082113 - 10 Apr 2021
Cited by 12 | Viewed by 3725
Abstract
This paper presents the experimental validation, using the opposition method, of a high-power three-phase Wireless-Power-Transfer (WPT) system for automotive applications. The system under test consists of three coils with circular sector shape overlapped to minimize the mutual cross-coupling, a three-phase inverter at primary [...] Read more.
This paper presents the experimental validation, using the opposition method, of a high-power three-phase Wireless-Power-Transfer (WPT) system for automotive applications. The system under test consists of three coils with circular sector shape overlapped to minimize the mutual cross-coupling, a three-phase inverter at primary side and a three-phase rectifier at receiver side. In fact thanks to the delta configuration used to connect the coils of the electromagnetic structure, a three-phase Silicon Carbide (SiC) inverter is driving the transmitter side. The resonance tank capacitors are placed outside of the delta configuration reducing in this way their voltage sizing. This WPT system is used as a 100 kW–85 kHz ultrafast battery charger for light delivery vehicle directly supplied by the power grid of tramways. The adopted test-bench for the WPT charger consists of adding circulating boost converter to the system under test to perform the opposition method technique. The experimental results prove the effectiveness of the proposed structure together with the validation of fully exploited simulation analysis. This is demonstrated by transferring 100 kW with more than 94% DC-to-DC efficiency over 50 mm air gap in aligned conditions. Furthermore, testing of Zero-Current and Zero-Voltage commutations are performed to test the performance of SiC technology employed. Full article
(This article belongs to the Special Issue Wide Band Gap Devices in Energy Storage Systems)
Show Figures

Figure 1

20 pages, 6239 KB  
Article
Input Parallel Output Series Structure of Planar Medium Frequency Transformers for 200 kW Power Converter: Model and Parameters Evaluation
by Alessandro La Ganga, Roberto Re and Paolo Guglielmi
Energies 2021, 14(5), 1450; https://doi.org/10.3390/en14051450 - 7 Mar 2021
Cited by 2 | Viewed by 2992
Abstract
Nowadays, the demand for high power converters for DC applications, such as renewable sources or ultra-fast chargers for electric vehicles, is constantly growing. Galvanic isolation is mandatory in most of these applications. In this context, the Solid State Transformer (SST) converter plays a [...] Read more.
Nowadays, the demand for high power converters for DC applications, such as renewable sources or ultra-fast chargers for electric vehicles, is constantly growing. Galvanic isolation is mandatory in most of these applications. In this context, the Solid State Transformer (SST) converter plays a fundamental role. The adoption of the Medium Frequency Transformers (MFT) guarantees galvanic isolation in addition to high performance in reduced size. In the present paper, a multi MFT structure is proposed as a solution to improve the power density and the modularity of the system. Starting from 20kW planar transformer model, experimentally validated, a multi-transformer structure is analyzed. After an analytical treatment of the Input Parallel Output Series (IPOS) structure, an equivalent electrical model of a 200kW IPOS (made by 10 MFTs) is introduced. The model is validated by experimental measurements and tests. Full article
(This article belongs to the Special Issue Power Converters: Modeling, Design and Applications)
Show Figures

Figure 1

26 pages, 12603 KB  
Article
Design Space Optimization of a Three-Phase LCL Filter for Electric Vehicle Ultra-Fast Battery Charging
by Davide Cittanti, Fabio Mandrile, Matteo Gregorio and Radu Bojoi
Energies 2021, 14(5), 1303; https://doi.org/10.3390/en14051303 - 27 Feb 2021
Cited by 18 | Viewed by 5345
Abstract
State-of-the-art ultra-fast battery chargers for electric vehicles simultaneously require high efficiency and high power density, leading to a challenging power converter design. In particular, the grid-side filter, which ensures sinusoidal current absorption with low pulse-width modulation (PWM) harmonic content, can be a major [...] Read more.
State-of-the-art ultra-fast battery chargers for electric vehicles simultaneously require high efficiency and high power density, leading to a challenging power converter design. In particular, the grid-side filter, which ensures sinusoidal current absorption with low pulse-width modulation (PWM) harmonic content, can be a major contributor to the overall converter size and losses. Therefore, this paper proposes a complete analysis, design and optimization procedure of a three-phase LCL filter for a modular DC fast charger. First, an overview of the basic LCL filter modeling is provided and the most significant system transfer functions are identified. Then, the optimal ratio between grid-side and converter-side inductance is discussed, aiming for the maximum filtering performance. A novel design methodology, based on a graphical representation of the filter design space, is thus proposed. Specifically, several constraints on the LCL filtering elements are enforced, such that all feasible design parameter combinations are identified. Therefore, since in low-voltage high-power applications the inductive components typically dominate the overall filter volume, loss and cost, the viable LCL filter design that minimizes the total required inductance is selected. The proposed design procedure is applied to a 30 kW, 20 kHz 3-level unidirectional rectifier, employed in a modular DC fast charger. The performance of the selected optimal design, featuring equal grid-side and converter-side 175 μμH inductors and 15 μμF capacitors, is verified experimentally on an active front-end prototype, both in terms of harmonic attenuation capability and current control dynamics. A current total harmonic distortion (THD) of 1.2% is achieved at full load and all generated current harmonics comply with the applicable harmonic standard. Moreover, separate tests are performed with different values of grid inner impedance, verifying the converter control stability in various operating conditions and supporting the general validity of the proposed design methodology. Full article
Show Figures

Figure 1

26 pages, 3932 KB  
Review
Beyond the State of the Art of Electric Vehicles: A Fact-Based Paper of the Current and Prospective Electric Vehicle Technologies
by Joeri Van Mierlo, Maitane Berecibar, Mohamed El Baghdadi, Cedric De Cauwer, Maarten Messagie, Thierry Coosemans, Valéry Ann Jacobs and Omar Hegazy
World Electr. Veh. J. 2021, 12(1), 20; https://doi.org/10.3390/wevj12010020 - 3 Feb 2021
Cited by 110 | Viewed by 24781
Abstract
Today, there are many recent developments that focus on improving the electric vehicles and their components, particularly regarding advances in batteries, energy management systems, autonomous features and charging infrastructure. This plays an important role in developing next electric vehicle generations, and encourages more [...] Read more.
Today, there are many recent developments that focus on improving the electric vehicles and their components, particularly regarding advances in batteries, energy management systems, autonomous features and charging infrastructure. This plays an important role in developing next electric vehicle generations, and encourages more efficient and sustainable eco-system. This paper not only provides insights in the latest knowledge and developments of electric vehicles (EVs), but also the new promising and novel EV technologies based on scientific facts and figures—which could be from a technological point of view feasible by 2030. In this paper, potential design and modelling tools, such as digital twin with connected Internet-of-Things (IoT), are addressed. Furthermore, the potential technological challenges and research gaps in all EV aspects from hard-core battery material sciences, power electronics and powertrain engineering up to environmental assessments and market considerations are addressed. The paper is based on the knowledge of the 140+ FTE counting multidisciplinary research centre MOBI-VUB, that has a 40-year track record in the field of electric vehicles and e-mobility. Full article
(This article belongs to the Special Issue Feature Papers in World Electric Vehicle Journal in 2021)
Show Figures

Figure 1

Back to TopTop