Topic Editors

Animal Science and Technology College, Jilin Agriculture Science and Technology University, Changchun, China
Dr. Wentao Yang
College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
Beijing Institute of Microbiology and Epidemiology, Beijing, China

Research on the Prevention and Infection Mechanisms of Transboundary Viruses

Abstract submission deadline
closed (25 February 2023)
Manuscript submission deadline
closed (25 May 2023)
Viewed by
9658

Topic Information

Dear Colleagues, 

Our Topic focuses on the prevention and infection mechanisms of transboundary viruses. A transboundary virus is a virus that can be transmitted between two or more species. Different animals have receptors for specifc viruses on their cell surfaces, and if a virus is able to recognise the receptors on multiple animals at the same time, then it can achieve the infection of multiple species, i.e., cross-species transmission. The new coronavirus, for example, is able to bind to ACE2 in humans and also in animals such as pangolins and bats, so that it can infect multiple species. Of course, this phenomenon could be natural or the virus could have developed this ability by mutation. Our Topic includes research on infection mechanisms, virus identification, virus isolation, epidemiology, testing methods, and vaccine development.

Dr. Yanzhu Zhu
Dr. Wentao Yang
Dr. Wei Liu
Topic Editors

Keywords

  • transboundary viruses
  • infection mechanisms
  • virus identification
  • virus isolation
  • epidemiology
  • testing methods
  • vaccine development

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Microbiology Research
microbiolres
2.1 1.9 2010 16.7 Days CHF 1600
Microorganisms
microorganisms
4.1 7.4 2013 13.4 Days CHF 2700
Pathogens
pathogens
3.3 6.4 2012 16.3 Days CHF 2200
Vaccines
vaccines
5.2 8.9 2013 17.6 Days CHF 2700
Viruses
viruses
3.8 7.3 2009 16.1 Days CHF 2600

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (4 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
12 pages, 5376 KiB  
Article
Lumpy Skin Disease Virus Infection Activates Autophagy and Endoplasmic Reticulum Stress-Related Cell Apoptosis in Primary Bovine Embryonic Fibroblast Cells
by Jinlong Tan, Yinju Liu, Weike Li, Yongzhi Zhang, Guohua Chen, Yongxiang Fang, Xiaobing He and Zhizhong Jing
Microorganisms 2023, 11(8), 1883; https://doi.org/10.3390/microorganisms11081883 - 26 Jul 2023
Cited by 1 | Viewed by 1684
Abstract
Poxviruses have been associated with humans for centuries. From smallpox to mpox to lumpy skin disease virus (LSDV), members of the poxvirus family have continued to threaten the lives of humans and domestic animals. A complete understanding of poxvirus-mediated cellular processes will aid [...] Read more.
Poxviruses have been associated with humans for centuries. From smallpox to mpox to lumpy skin disease virus (LSDV), members of the poxvirus family have continued to threaten the lives of humans and domestic animals. A complete understanding of poxvirus-mediated cellular processes will aid in the response to challenges from the viruses. In this study, we demonstrate that LSDV infection results in an abnormal ultrastructure of the endoplasmic reticulum (ER) lumen in primary bovine embryonic fibroblast (BEF) cells, and we further show that an ER imbalance occurs in LSDV-infected BEF cells. Additionally, we believe that ER stress-related apoptosis plays a role in the late apoptosis of BEF cells infected with LSDV, primarily through the activation of the CCAAT/enhancer binding protein homologous protein (CHOP)-Caspase-12 signal. In addition to cell apoptosis, a further investigation showed that LSDV could also activate autophagy in BEF cells, providing additional insight into the exact causes of LSDV-induced BEF cell death. Our findings suggest that LSDV-induced BEF cell apoptosis and autophagy may provide new avenues for laboratory diagnosis of lumpy skin disease progression and exploration of BEF cell processes. Full article
Show Figures

Figure 1

12 pages, 7478 KiB  
Article
Porcine Epidemic Diarrhea Virus Replication in Human Intestinal Cells Reveals Potential Susceptibility to Cross-Species Infection
by Zheng Niu, Shujuan Zhang, Shasha Xu, Jing Wang, Siying Wang, Xia Hu, Li Zhang, Lixin Ren, Jingyi Zhang, Xiangyang Liu, Yang Zhou, Liu Yang and Zhenhui Song
Viruses 2023, 15(4), 956; https://doi.org/10.3390/v15040956 - 13 Apr 2023
Cited by 3 | Viewed by 2602
Abstract
Various coronaviruses have emerged as a result of cross-species transmission among humans and domestic animals. Porcine epidemic diarrhea virus (PEDV; family Coronaviridae, genus Alphacoronavirus) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets. Porcine small intestinal epithelial cells (IPEC-J2 cells) can [...] Read more.
Various coronaviruses have emerged as a result of cross-species transmission among humans and domestic animals. Porcine epidemic diarrhea virus (PEDV; family Coronaviridae, genus Alphacoronavirus) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets. Porcine small intestinal epithelial cells (IPEC-J2 cells) can be used as target cells for PEDV infection. However, the origin of PEDV in pigs, the host range, and cross-species infection of PEDV remain unclear. To determine whether PEDV has the ability to infect human cells in vitro, human small intestinal epithelial cells (FHs 74 Int cells) were inoculated with PEDV LJX and PEDV CV777 strains. The results indicated that PEDV LJX, but not PEDV CV777, could infect FHs 74 Int cells. Furthermore, we observed M gene mRNA transcripts and N protein expression in infected FHs 74 Int cells. A one-step growth curve showed that the highest viral titer of PEDV occurred at 12 h post infection. Viral particles in vacuoles were observed in FHs 74 Int cells at 24 h post infection. The results proved that human small intestinal epithelial cells are susceptible to PEDV infection, suggesting the possibility of cross-species transmission of PEDV. Full article
Show Figures

Figure 1

13 pages, 4837 KiB  
Article
Molecular Detection and Genetic Characterization of Japanese Encephalitis Virus in Animals from 11 Provinces in China
by Guanyu Zhao, Yan Gao, Ning Shi, Shiheng Zhang, Pengpeng Xiao, Jiaqi Zhang, Changzhan Xie, Zhuo Ha, Sheng Feng, Chenghui Li, Xuancheng Zhang, Yubiao Xie, Ning Yu, He Zhang, Junlong Bi and Ningyi Jin
Viruses 2023, 15(3), 625; https://doi.org/10.3390/v15030625 - 24 Feb 2023
Cited by 2 | Viewed by 2239
Abstract
Japanese encephalitis virus (JEV), which uses a mosquito primary vector and swine as a reservoir host, poses a significant risk to human and animal health. JEV can be detected in cattle, goats and dogs. A molecular epidemiological survey of JEV was conducted in [...] Read more.
Japanese encephalitis virus (JEV), which uses a mosquito primary vector and swine as a reservoir host, poses a significant risk to human and animal health. JEV can be detected in cattle, goats and dogs. A molecular epidemiological survey of JEV was conducted in 3105 mammals from five species, swine, fox, racoon dog, yak and goat, and 17,300 mosquitoes from 11 Chinese provinces. JEV was detected in pigs from Heilongjiang (12/328, 3.66%), Jilin (17/642, 2.65%), Shandong (14/832, 1.68%), Guangxi (8/278, 2.88%) and Inner Mongolia (9/952, 0.94%); in goats (1/51, 1.96%) from Tibet; and mosquitoes (6/131, 4.58%) from Yunnan. A total of 13 JEV envelope (E) gene sequences were amplified in pigs from Heilongjiang (5/13), Jilin (2/13) and Guangxi (6/13). Swine had the highest JEV infection rate of any animal species, and the highest infection rates were found in Heilongjiang. Phylogenetic analysis indicated that the predominant strain in Northern China was genotype I. Mutations were found at residues 76, 95, 123, 138, 244, 474 and 475 of E protein but all sequences had predicted glycosylation sites at ′N154. Three strains lacked the threonine 76 phosphorylation site from non-specific (unsp) and protein kinase G (PKG) site predictions; one lacked the threonine 186 phosphorylation site from protein kinase II (CKII) prediction; and one lacked the tyrosine 90 phosphorylation site from epidermal growth factor receptor (EGFR) prediction. The aim of the current study was to contribute to JEV prevention and control through the characterization of its molecular epidemiology and prediction of functional changes due to E-protein mutations. Full article
Show Figures

Figure 1

10 pages, 4685 KiB  
Article
Genetic Diversity and Expanded Host Range of J Paramyxovirus Detected in Wild Small Mammals in China
by Yunfa Zhang, Jingtao Zhang, Yuna Wang, Feng Tian, Xiaolong Zhang, Gang Wang, Shuang Li, Heng Ding, Zhenyu Hu, Wei Liu and Xiaoai Zhang
Viruses 2023, 15(1), 49; https://doi.org/10.3390/v15010049 - 23 Dec 2022
Cited by 5 | Viewed by 1997
Abstract
J paramyxovirus (JPV) is a rodent-borne Jeilongvirus isolated from moribund mice (Mus musculus) with hemorrhagic lung lesions trapped in the 1972 in northern Queensland, Australia. The JPV antibodies have been detected in wild mice, wild rats, pigs, and human populations in [...] Read more.
J paramyxovirus (JPV) is a rodent-borne Jeilongvirus isolated from moribund mice (Mus musculus) with hemorrhagic lung lesions trapped in the 1972 in northern Queensland, Australia. The JPV antibodies have been detected in wild mice, wild rats, pigs, and human populations in Australia. Here, by next-generation sequencing (NGS), we detected JPV from M. musculus in Shandong Province of China. Molecular detection of JPV was performed to survey to survey the infection among 66 species of wild small mammals collected from six eco-climate regions in China by applying JPV specific RT-PCR and sequencing. Altogether, 21 out of 3070 (0.68%) wild small mammals of four species were positive for JPV, including 5.26% (1/19) of Microtus fortis, 3.76% (17/452) of M. musculus, 1.67% (1/60) of Apodemus peninsulae, and 0.48% (2/421) of Apodemus agrarius, which captured three eco-climate regions of China (northeastern China, northern China, and Inner Mongolia-Xinjiang). Sequence analysis revealed the currently identified JPV was clustered with other 14 Jeilongvirus members, and shared 80.2% and 89.2% identity with Australia’s JPV partial RNA polymerase (L) and glycoprotein (G) genes, respectively. Phylogenetic analysis demonstrated the separation of three lineages of the current JPV sequences. Our results show three new hosts (A. agrarius, A. peninsulae, and M. fortis) for JPV, most of which were widely distributed in China, and highlight the potential zoonotic transmission of JPV in humans. The detection of JPV in wild small mammals in China broaden the viral diversity, geographical distribution, and reservoir types of JPV. Future studies should prioritize determining the epidemiological characteristics of JPV, so that potential risks can be mitigated. Full article
Show Figures

Figure 1

Back to TopTop